Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
18c6f40b
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
18c6f40b
编写于
2月 17, 2022
作者:
B
Baibaifan
提交者:
GitHub
2月 17, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
optimizer sharding paramters (#39581)
上级
1f7f8561
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
45 addition
and
78 deletion
+45
-78
python/paddle/distributed/fleet/meta_optimizers/dygraph_optimizer/sharding_optimizer_stage2.py
...optimizers/dygraph_optimizer/sharding_optimizer_stage2.py
+22
-2
python/paddle/distributed/fleet/meta_parallel/sharding/sharding_stage2.py
...stributed/fleet/meta_parallel/sharding/sharding_stage2.py
+2
-38
python/paddle/distributed/fleet/meta_parallel/sharding/sharding_stage3.py
...stributed/fleet/meta_parallel/sharding/sharding_stage3.py
+7
-12
python/paddle/fluid/tests/unittests/dygraph_sharding_stage2.py
...n/paddle/fluid/tests/unittests/dygraph_sharding_stage2.py
+8
-7
python/paddle/fluid/tests/unittests/dygraph_sharding_stage2_offload.py
.../fluid/tests/unittests/dygraph_sharding_stage2_offload.py
+2
-3
python/paddle/fluid/tests/unittests/dygraph_sharding_stage3.py
...n/paddle/fluid/tests/unittests/dygraph_sharding_stage3.py
+3
-11
python/paddle/fluid/tests/unittests/dygraph_sharding_stage3_offload.py
.../fluid/tests/unittests/dygraph_sharding_stage3_offload.py
+1
-5
未找到文件。
python/paddle/distributed/fleet/meta_optimizers/dygraph_optimizer/sharding_optimizer_stage2.py
浏览文件 @
18c6f40b
...
...
@@ -65,9 +65,9 @@ class ShardingOptimizerStage2(Optimizer):
params
,
optim
,
group
=
None
,
broadcast_fp16
=
False
,
offload
=
False
,
device
=
"gpu"
,
pertrain_sync_models
=
True
,
**
kw
):
super
().
__init__
(
optim
.
_learning_rate
,
params
,
kw
)
...
...
@@ -98,8 +98,12 @@ class ShardingOptimizerStage2(Optimizer):
self
.
world_size
=
self
.
group
.
nranks
self
.
rank
=
self
.
group
.
rank
self
.
_global_root_rank
=
0
# Synchronous all ranks models
if
pertrain_sync_models
:
self
.
_sync_params_and_buffers
()
self
.
broadcast_fp16
=
broadcast_fp16
self
.
param_storages
=
{}
# {dtype: {rank: InternalStorage}}
if
isinstance
(
self
.
_optim
.
_grad_clip
,
ClipGradByGlobalNorm
):
...
...
@@ -132,6 +136,22 @@ class ShardingOptimizerStage2(Optimizer):
# Update optimizer parameters and adjust parameter storage and use according to rank.
self
.
_update_opt_status
()
@
paddle
.
no_grad
()
def
_sync_params_and_buffers
(
self
):
"""
Sync all model states for all ranks
"""
for
p
in
self
.
_local_params
:
dist
.
broadcast
(
p
,
src
=
self
.
_global_root_rank
,
group
=
self
.
group
,
use_calc_stream
=
True
)
# Multi stream operation will be supported later
dist
.
wait
(
tensor
=
p
,
group
=
self
.
group
,
use_calc_stream
=
True
)
def
_generate_master_params
(
self
,
trainable_params
):
if
self
.
offload
:
for
param
in
trainable_params
:
...
...
python/paddle/distributed/fleet/meta_parallel/sharding/sharding_stage2.py
浏览文件 @
18c6f40b
...
...
@@ -61,12 +61,10 @@ class ShardingStage2(nn.Layer):
sharding_optimizer
,
group
=
None
,
sync_buffers
=
False
,
pertrain_sync_models
=
True
,
buffer_max_size
=
2
**
23
,
#8MB
auto_refresh_trainable
=
True
,
device
=
"gpu"
,
use_grad_storage
=
True
,
accumulate_grads
=
False
):
use_grad_storage
=
True
):
super
().
__init__
()
# training options
...
...
@@ -81,9 +79,6 @@ class ShardingStage2(nn.Layer):
self
.
_sync_buffers
=
sync_buffers
self
.
_auto_refresh_trainable
=
auto_refresh_trainable
# Gradient accumulation, Gradient flip
self
.
_accumulate_grads
=
accumulate_grads
# Communication related attributes
self
.
_group
=
dist
.
new_group
(
_get_global_group
()
.
ranks
)
if
group
is
None
else
group
...
...
@@ -128,15 +123,10 @@ class ShardingStage2(nn.Layer):
# Set backward pass hooks
self
.
_bw_hooks
=
[]
# Synchronous all ranks models
if
pertrain_sync_models
:
self
.
_sync_params_and_buffers
()
# Set tasks flow
self
.
_tasks_flow
=
deque
()
# Define optimizer step and clear_grad
if
self
.
_accumulate_grads
:
self
.
_redefine_opt_step
()
self
.
_redefine_opt_clear
()
...
...
@@ -313,9 +303,6 @@ class ShardingStage2(nn.Layer):
# Change reduce information
self
.
_grad_reduced
[
index
]
=
False
if
not
self
.
_accumulate_grads
:
param
.
grad
.
scale_
(
scale
=
self
.
_world_size_scaling
)
param
.
_reset_grad_inplace_version
(
True
)
# Clear the gradient that does not belong to the current rank through the callback function
def
cleanup
():
...
...
@@ -362,11 +349,6 @@ class ShardingStage2(nn.Layer):
if
grad_storage
.
all_checked_in
:
assert
grad_storage
.
buffer
is
not
None
# Normalize all ranks grad_storage
if
not
self
.
_accumulate_grads
:
grad_storage
.
buffer
.
scale_
(
scale
=
self
.
_world_size_scaling
)
# Clearing up the grad_storage buffer
def
cleanup
():
if
dst_rank
!=
self
.
_rank
:
...
...
@@ -432,22 +414,6 @@ class ShardingStage2(nn.Layer):
self
.
_bw_hooks
.
append
(
param
.
_register_backward_hook
(
reduce_function
))
@
paddle
.
no_grad
()
def
_sync_params_and_buffers
(
self
):
"""
Sync all model states for all ranks
"""
for
t
in
self
.
_layer
.
parameters
():
dist
.
broadcast
(
t
,
src
=
self
.
_global_root_rank
,
group
=
self
.
_group
,
use_calc_stream
=
True
)
# Multi stream operation will be supported later
dist
.
wait
(
tensor
=
t
,
group
=
self
.
_group
,
use_calc_stream
=
True
)
def
_setup_use_grad_storage
(
self
):
"""
Integrate the parameters gradient into a continuous memory according to rank, and support the update of training parameters.
...
...
@@ -555,8 +521,6 @@ class ShardingStage2(nn.Layer):
return
rank_buffer_size
def
_redefine_opt_step
(
self
):
if
not
self
.
_accumulate_grads
:
return
grad_func
=
self
.
_grad_scale
for
opt
in
self
.
_sharding_optimizers
:
opt_step
=
opt
.
step
...
...
python/paddle/distributed/fleet/meta_parallel/sharding/sharding_stage3.py
浏览文件 @
18c6f40b
...
...
@@ -72,7 +72,6 @@ class ShardingStage3(nn.Layer):
device
=
"gpu"
,
segment_size
=
2
**
15
,
pertrain_sync_models
=
True
,
accumulate_grads
=
False
,
offload
=
False
,
sync_comm
=
False
):
super
().
__init__
()
...
...
@@ -82,7 +81,6 @@ class ShardingStage3(nn.Layer):
self
.
_layer
=
layer
self
.
_default_device
=
device
self
.
__sync_buffers
=
sync_buffers
self
.
_accumulate_grads
=
accumulate_grads
self
.
_offload
=
offload
self
.
_sync_comm
=
sync_comm
# segmentation size
...
...
@@ -190,6 +188,7 @@ class ShardingStage3(nn.Layer):
param
.
fw_storage
.
clear_gradient
(
False
)
param
.
fw_storage
.
_gradient_set_empty
(
False
)
param
.
bw_storage
.
_clear
()
param
.
bw_storage
=
None
# 2.Handle unslice param
if
not
self
.
_offload
:
for
grad_storage
in
self
.
_grad_storages
.
values
():
...
...
@@ -446,8 +445,7 @@ class ShardingStage3(nn.Layer):
param
,
"fw_storage"
),
"Find {} don't have fw_storage attribute"
.
format
(
param
.
name
)
if
self
.
_accumulate_grads
:
# Gradient average
if
self
.
_offload
:
with
device_guard
(
device
=
"cpu"
):
param
.
bw_storage
.
scale_
(
scale
=
self
.
_world_size_scaling
)
...
...
@@ -526,8 +524,6 @@ class ShardingStage3(nn.Layer):
def
reduce
(
*
_
):
if
param
.
name
in
self
.
_task_flow
.
full_grad
.
keys
():
full_grad
=
self
.
_task_flow
.
full_grad
[
param
.
name
]
if
not
self
.
_accumulate_grads
:
full_grad
.
scale_
(
scale
=
self
.
_world_size_scaling
)
# Only support sync allreduce current rank's layer now
dist
.
all_reduce
(
tensor
=
full_grad
,
group
=
self
.
_group
,
use_calc_stream
=
True
)
...
...
@@ -535,8 +531,7 @@ class ShardingStage3(nn.Layer):
tensor
=
full_grad
,
group
=
self
.
_group
,
use_calc_stream
=
True
)
start
,
end
=
self
.
_param2buffer
[
param
.
name
][
self
.
_rank
]
if
not
self
.
_accumulate_grads
or
param
.
bw_storage
is
None
or
not
param
.
bw_storage
.
value
(
).
get_tensor
().
_is_initialized
():
if
param
.
bw_storage
is
None
:
param
.
bw_storage
=
core
.
VarBase
(
full_grad
.
_slice
(
start
,
end
)).
detach
().
clone
()
if
self
.
_offload
:
...
...
python/paddle/fluid/tests/unittests/dygraph_sharding_stage2.py
浏览文件 @
18c6f40b
...
...
@@ -27,7 +27,7 @@ from paddle.fluid.dygraph import nn
from
paddle.distributed.fleet.meta_optimizers.dygraph_optimizer.sharding_optimizer_stage2
import
ShardingOptimizerStage2
from
paddle.distributed.fleet.meta_parallel.sharding.sharding_stage2
import
ShardingStage2
seed
=
202
1
seed
=
202
2
epoch
=
2
linear_size
=
1000
...
...
@@ -105,11 +105,7 @@ def train_mlp(model,
params
=
model
.
parameters
(),
optim
=
optimizer
,
group
=
group
)
model
=
ShardingStage2
(
model
,
optimizer
,
group
=
group
,
buffer_max_size
=
2
**
21
,
accumulate_grads
=
batch_size
==
20
)
model
,
optimizer
,
group
=
group
,
buffer_max_size
=
2
**
21
)
else
:
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
)
model
=
fleet
.
distributed_model
(
model
)
...
...
@@ -140,6 +136,8 @@ def train_mlp(model,
loss
=
paddle
.
nn
.
functional
.
cross_entropy
(
input
=
out
,
label
=
label
)
avg_loss
=
paddle
.
mean
(
x
=
loss
.
cast
(
dtype
=
paddle
.
float32
))
if
batch_size
==
20
:
avg_loss
=
avg_loss
/
5
avg_loss
.
backward
()
if
not
accumulate_grad
:
...
...
@@ -166,6 +164,7 @@ def test_dp_stage2():
mlp4
.
set_state_dict
(
state_dict
)
mlp5
.
set_state_dict
(
state_dict
)
# DP VS stage2
dp_params
=
train_mlp
(
mlp1
,
sharding_stage
=
"dp"
,
use_pure_fp16
=
False
,
opt_group
=
False
)
stage2_params
=
train_mlp
(
...
...
@@ -174,7 +173,8 @@ def test_dp_stage2():
np
.
testing
.
assert_allclose
(
dp_params
[
i
].
numpy
(),
stage2_params
[
i
].
numpy
(),
rtol
=
1e-6
)
stage2_params
=
train_mlp
(
mlp3
,
sharding_stage
=
2
)
# stage2 accumulate grad
stage2_params
=
train_mlp
(
mlp3
,
sharding_stage
=
2
,
accumulate_grad
=
True
)
stage2_accumulate_grad
=
train_mlp
(
mlp4
,
sharding_stage
=
2
,
batch_size
=
20
,
accumulate_grad
=
True
)
for
i
in
range
(
len
(
stage2_params
)):
...
...
@@ -184,6 +184,7 @@ def test_dp_stage2():
rtol
=
1e-5
,
atol
=
1e-5
)
# stage2 param list VS param group
stage2_params
=
train_mlp
(
mlp2
,
sharding_stage
=
2
,
use_pure_fp16
=
False
,
opt_group
=
True
)
for
i
in
range
(
len
(
dp_params
)):
...
...
python/paddle/fluid/tests/unittests/dygraph_sharding_stage2_offload.py
浏览文件 @
18c6f40b
...
...
@@ -43,13 +43,12 @@ def train_mlp(model, offload=False):
optimizer
=
optimizer_setting
(
model
=
model
,
use_pure_fp16
=
True
)
model
=
paddle
.
amp
.
decorate
(
models
=
model
,
level
=
'O2'
,
save_dtype
=
'float32'
)
scaler
=
paddle
.
amp
.
GradScaler
(
init_loss_scaling
=
32768
)
scaler
=
paddle
.
amp
.
GradScaler
(
init_loss_scaling
=
1024
)
scaler
=
ShardingScaler
(
scaler
)
optimizer
=
ShardingOptimizerStage2
(
params
=
model
.
parameters
(),
optim
=
optimizer
,
offload
=
offload
)
model
=
ShardingStage2
(
model
,
optimizer
,
buffer_max_size
=
2
**
21
,
accumulate_grads
=
False
)
model
=
ShardingStage2
(
model
,
optimizer
,
buffer_max_size
=
2
**
21
)
train_reader
=
paddle
.
batch
(
reader_decorator
(
linear_size
),
batch_size
=
batch_size
,
drop_last
=
True
)
...
...
python/paddle/fluid/tests/unittests/dygraph_sharding_stage3.py
浏览文件 @
18c6f40b
...
...
@@ -101,18 +101,10 @@ def train_mlp(model,
optimizer
=
ShardingOptimizerStage2
(
params
=
model
.
parameters
(),
optim
=
optimizer
,
group
=
group
)
model
=
ShardingStage2
(
model
,
optimizer
,
group
=
group
,
buffer_max_size
=
2
**
21
,
accumulate_grads
=
batch_size
==
20
)
model
,
optimizer
,
group
=
group
,
buffer_max_size
=
2
**
21
)
elif
sharding_stage
==
3
:
model
=
ShardingStage3
(
model
,
optimizer
=
optimizer
,
group
=
group
,
accumulate_grads
=
batch_size
==
20
,
sync_comm
=
recompute
)
model
,
optimizer
=
optimizer
,
group
=
group
,
sync_comm
=
recompute
)
# check optimizer.minimize() error
if
test_minimize
:
...
...
@@ -231,7 +223,7 @@ def test_stage2_stage3():
stage2_params
[
i
].
numpy
(),
stage3_params
[
i
].
numpy
(),
rtol
=
1e-4
,
atol
=
1e-
4
)
atol
=
1e-
3
)
# fp16 recompute
stage3_params
=
train_mlp
(
...
...
python/paddle/fluid/tests/unittests/dygraph_sharding_stage3_offload.py
浏览文件 @
18c6f40b
...
...
@@ -91,11 +91,7 @@ def train_mlp(model,
scaler
=
ShardingScaler
(
scaler
)
model
=
ShardingStage3
(
model
,
optimizer
=
optimizer
,
group
=
group
,
offload
=
offload
,
accumulate_grads
=
accumulate_grad
)
model
,
optimizer
=
optimizer
,
group
=
group
,
offload
=
offload
)
train_reader
=
paddle
.
batch
(
reader_decorator
(),
batch_size
=
batch_size
,
drop_last
=
True
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录