From 16817c70fc6a9df174341905a1afda00cbc36275 Mon Sep 17 00:00:00 2001 From: yaoxuefeng Date: Mon, 18 May 2020 10:59:19 +0800 Subject: [PATCH] OP(datanorm lookupsparsetable lookuptable) error message enhancement (#24506) * OP(datanorm lookupsparsetable lookuptable) error message enhancement * fix test=develop * fix test=develop * fix test=develop * fix test=develop * fix test=develop * fix test=develop * fix test=develop --- paddle/fluid/operators/data_norm_op.cc | 86 ++++++++++++------- .../operators/distributed_ops/merge_ids_op.cc | 24 +++--- .../operators/distributed_ops/merge_ids_op.h | 15 ++-- .../fluid/operators/lookup_sparse_table_op.cc | 21 +++-- paddle/fluid/operators/lookup_table_op.cc | 25 +++--- paddle/fluid/operators/lookup_table_op.h | 58 +++++++------ 6 files changed, 138 insertions(+), 91 deletions(-) diff --git a/paddle/fluid/operators/data_norm_op.cc b/paddle/fluid/operators/data_norm_op.cc index 394feba78ed..e83b9194c9e 100644 --- a/paddle/fluid/operators/data_norm_op.cc +++ b/paddle/fluid/operators/data_norm_op.cc @@ -44,13 +44,15 @@ class DataNormOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext *ctx) const override { - PADDLE_ENFORCE(ctx->HasInput("X"), ""); - PADDLE_ENFORCE(ctx->HasInput("BatchSize"), ""); - PADDLE_ENFORCE(ctx->HasInput("BatchSum"), ""); - PADDLE_ENFORCE(ctx->HasInput("BatchSquareSum"), ""); - PADDLE_ENFORCE(ctx->HasOutput("Means"), ""); - PADDLE_ENFORCE(ctx->HasOutput("Scales"), ""); - PADDLE_ENFORCE(ctx->HasOutput("Y"), ""); + OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "DataNorm"); + OP_INOUT_CHECK(ctx->HasInput("BatchSize"), "Input", "BatchSize", + "DataNorm"); + OP_INOUT_CHECK(ctx->HasInput("BatchSum"), "Input", "BatchSum", "DataNorm"); + OP_INOUT_CHECK(ctx->HasInput("BatchSquareSum"), "Input", "BatchSquareSum", + "DataNorm"); + OP_INOUT_CHECK(ctx->HasOutput("Means"), "Output", "Means", "DataNorm"); + OP_INOUT_CHECK(ctx->HasOutput("Scales"), "Output", "Scales", "DataNorm"); + OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "DataNorm"); bool enable_scale_and_shift = ctx->Attrs().Get("enable_scale_and_shift"); if (enable_scale_and_shift) { @@ -67,20 +69,33 @@ class DataNormOp : public framework::OperatorWithKernel { const DataLayout data_layout = framework::StringToDataLayout( ctx->Attrs().Get("data_layout")); - PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5, - "Input X must have 2 to 5 dimensions."); + PADDLE_ENFORCE_EQ(x_dims.size() >= 2 && x_dims.size() <= 5, true, + platform::errors::InvalidArgument( + "Input X must have 2 to 5 dimensions.")); const int64_t C = (data_layout == DataLayout::kNCHW ? x_dims[1] : x_dims[x_dims.size() - 1]); - PADDLE_ENFORCE_EQ(ctx->GetInputDim("BatchSize").size(), 1UL); - PADDLE_ENFORCE_EQ(ctx->GetInputDim("BatchSum").size(), 1UL); - PADDLE_ENFORCE_EQ(ctx->GetInputDim("BatchSquareSum").size(), 1UL); + PADDLE_ENFORCE_EQ(ctx->GetInputDim("BatchSize").size(), 1UL, + platform::errors::InvalidArgument( + "The input dim of BatchSize shouold be 1")); + PADDLE_ENFORCE_EQ(ctx->GetInputDim("BatchSum").size(), 1UL, + platform::errors::InvalidArgument( + "The input dim of BatchSum shouold be 1")); + PADDLE_ENFORCE_EQ(ctx->GetInputDim("BatchSquareSum").size(), 1UL, + platform::errors::InvalidArgument( + "The input dim of BatchSquareSum shouold be 1")); if (ctx->IsRuntime()) { - PADDLE_ENFORCE_EQ(ctx->GetInputDim("BatchSize")[0], C); - PADDLE_ENFORCE_EQ(ctx->GetInputDim("BatchSum")[0], C); - PADDLE_ENFORCE_EQ(ctx->GetInputDim("BatchSquareSum")[0], C); + PADDLE_ENFORCE_EQ(ctx->GetInputDim("BatchSize")[0], C, + platform::errors::InvalidArgument( + "The input dim[0] of BatchSize shouold be C")); + PADDLE_ENFORCE_EQ(ctx->GetInputDim("BatchSum")[0], C, + platform::errors::InvalidArgument( + "The input dim[0] of BatchSum shouold be C")); + PADDLE_ENFORCE_EQ(ctx->GetInputDim("BatchSquareSum")[0], C, + platform::errors::InvalidArgument( + "The input dim[0] of BatchSqureSum shouold be C")); } if (enable_scale_and_shift) { @@ -141,13 +156,16 @@ class DataNormOp : public framework::OperatorWithKernel { } PADDLE_ENFORCE_EQ(dn_param_type, OperatorWithKernel::IndicateVarDataType(ctx, "BatchSize"), - "BatchSize input should be of float type"); + platform::errors::InvalidArgument( + "BatchSize input should be of float type")); PADDLE_ENFORCE_EQ(dn_param_type, OperatorWithKernel::IndicateVarDataType(ctx, "BatchSum"), - "BatchSum input should be of float type"); + platform::errors::InvalidArgument( + "BatchSum input should be of float type")); PADDLE_ENFORCE_EQ(dn_param_type, OperatorWithKernel::IndicateVarDataType( ctx, "BatchSquareSum"), - "BatchSquareSum input should be of float type"); + platform::errors::InvalidArgument( + "BatchSquareSum input should be of float type")); bool enable_scale_and_shift = ctx.Attr("enable_scale_and_shift"); if (enable_scale_and_shift) { @@ -183,8 +201,9 @@ class DataNormOpMaker : public framework::OpProtoAndCheckerMaker { AddAttr("epsilon", "") .SetDefault(1e-4) .AddCustomChecker([](const float &epsilon) { - PADDLE_ENFORCE(epsilon >= 0.0f && epsilon <= 0.001f, - "'epsilon' should be between 0.0 and 0.001."); + PADDLE_ENFORCE_EQ(epsilon >= 0.0f && epsilon <= 0.001f, true, + platform::errors::InvalidArgument( + "'epsilon' should be between 0.0 and 0.001.")); }); AddAttr("slot_dim", "(int, default -1) Dimension of one slot if set, " @@ -256,7 +275,8 @@ class DataNormKernel const auto *x = ctx.Input("X"); const auto &x_dims = x->dims(); - PADDLE_ENFORCE(x_dims.size() == 2, "The Input dim size should be 2"); + PADDLE_ENFORCE_EQ(x_dims.size(), 2, platform::errors::InvalidArgument( + "The Input dim size should be 2")); const int N = x_dims[0]; const int C = (data_layout == DataLayout::kNCHW ? x_dims[1] @@ -379,8 +399,9 @@ class DataNormGradOp : public framework::OperatorWithKernel { void InferShape(framework::InferShapeContext *ctx) const override { // check input - PADDLE_ENFORCE(ctx->HasInput("X")); - PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")), ""); + OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "DataNormGrad"); + OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Y")), "Input", + framework::GradVarName("Y"), "DataNormGrad"); PADDLE_ENFORCE_EQ( ctx->HasOutput("BatchSize"), true, platform::errors::NotFound( @@ -393,15 +414,19 @@ class DataNormGradOp : public framework::OperatorWithKernel { ctx->HasOutput("BatchSquareSum"), true, platform::errors::NotFound( "Output(BatchSquareSum) of DataNormGradOp should not be null.")); - PADDLE_ENFORCE(ctx->HasInput("Means"), ""); - PADDLE_ENFORCE(ctx->HasInput("Scales"), ""); + OP_INOUT_CHECK(ctx->HasInput("Means"), "Input", "Means", "DataNormGrad"); + OP_INOUT_CHECK(ctx->HasInput("Scales"), "Input", "Scales", "DataNormGrad"); bool enable_scale_and_shift = ctx->Attrs().Get("enable_scale_and_shift"); // check output - PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("BatchSize")), ""); - PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("BatchSum")), ""); - PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("BatchSquareSum")), - ""); + OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("BatchSize")), + "Output", framework::GradVarName("BatchSize"), + "DataNormGrad"); + OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("BatchSum")), "Output", + framework::GradVarName("BatchSum"), "DataNormGrad"); + OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("BatchSquareSum")), + "Output", framework::GradVarName("BatchSquareSum"), + "DataNormGrad"); const auto x_dims = ctx->GetInputDim("X"); const DataLayout data_layout = framework::StringToDataLayout( @@ -486,7 +511,8 @@ class DataNormGradKernel // Get the size for each dimension. // NCHW [batch_size, in_channels, in_height, in_width] const auto &x_dims = x->dims(); - PADDLE_ENFORCE(x_dims.size() == 2, "The Input dim size should be 2"); + PADDLE_ENFORCE_EQ(x_dims.size(), 2, platform::errors::InvalidArgument( + "The Input dim size should be 2")); const int N = x_dims[0]; const int C = (data_layout == DataLayout::kNCHW ? x_dims[1] diff --git a/paddle/fluid/operators/distributed_ops/merge_ids_op.cc b/paddle/fluid/operators/distributed_ops/merge_ids_op.cc index 1b309c8a2d4..33a433b0dbe 100644 --- a/paddle/fluid/operators/distributed_ops/merge_ids_op.cc +++ b/paddle/fluid/operators/distributed_ops/merge_ids_op.cc @@ -82,24 +82,28 @@ class MergeIdsOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext *ctx) const override { - PADDLE_ENFORCE(ctx->HasInputs("Ids"), - "MergeIdsOp must have multi input Ids."); - PADDLE_ENFORCE(ctx->HasInputs("Rows"), - "MergeIdsOp must have multi input Rows."); - PADDLE_ENFORCE(ctx->HasInputs("X"), "MergeIdsOp must have multi input X."); - PADDLE_ENFORCE(ctx->HasOutputs("Out"), - "MergeIdsOp must have multi output Out."); + OP_INOUT_CHECK(ctx->HasInputs("Ids"), "Input", "Ids", "MergeIds"); + OP_INOUT_CHECK(ctx->HasInputs("Rows"), "Input", "Rows", "MergeIds"); + OP_INOUT_CHECK(ctx->HasInputs("X"), "Input", "X", "MergeIds"); + OP_INOUT_CHECK(ctx->HasOutputs("Out"), "Output", "Out", "MergeIds"); auto ids_var_type = ctx->GetInputsVarType("Ids").front(); auto ids_dims = ctx->GetInputsDim("Ids"); if (ids_var_type == framework::proto::VarType::LOD_TENSOR) { - PADDLE_ENFORCE_EQ(ids_dims[0].size(), 2); - PADDLE_ENFORCE_EQ(ids_dims[0][1], 1); + PADDLE_ENFORCE_EQ( + ids_dims[0].size(), 2, + platform::errors::InvalidArgument( + "the ids size must be 2, but received %d", ids_dims[0].size())); + PADDLE_ENFORCE_EQ( + ids_dims[0][1], 1, + platform::errors::InvalidArgument( + "the ids dim must be 1, but received %d", ids_dims[0][1])); } auto x_var_type = ctx->GetInputsVarType("X"); for (auto &var_type : x_var_type) { PADDLE_ENFORCE_EQ(var_type, framework::proto::VarType::LOD_TENSOR, - "input X only support lod tensors"); + platform::errors::InvalidArgument( + "input X only support lod tensors")); } ctx->ShareLoD("Ids", "Out"); } diff --git a/paddle/fluid/operators/distributed_ops/merge_ids_op.h b/paddle/fluid/operators/distributed_ops/merge_ids_op.h index 05c00251b97..33dfadbe648 100644 --- a/paddle/fluid/operators/distributed_ops/merge_ids_op.h +++ b/paddle/fluid/operators/distributed_ops/merge_ids_op.h @@ -39,9 +39,11 @@ class MergeIdsOpKernel : public framework::OpKernel { auto outs = ctx.MultiOutput("Out"); PADDLE_ENFORCE_EQ(row_ids.size(), x_tensors.size(), - "the number of Rows and X should be the same"); + platform::errors::InvalidArgument( + "the number of Rows and X should be the same")); PADDLE_ENFORCE_EQ(ids.size(), outs.size(), - "the number of Ids and Out should be the same"); + platform::errors::InvalidArgument( + "the number of Ids and Out should be the same")); int64_t row_ids_size = 0; int64_t row_size = 0; @@ -55,14 +57,16 @@ class MergeIdsOpKernel : public framework::OpKernel { embedding_size = x_tensor->dims()[1]; } PADDLE_ENFORCE_EQ(embedding_size, x_tensor->dims()[1], - "embedding size of all input should be the same"); + platform::errors::InvalidArgument( + "embedding size of all input should be the same")); row_size += x_tensor->dims()[0]; row_ids_size += row_id->dims()[0]; } PADDLE_ENFORCE_EQ( row_size, row_ids_size, - "the merged X dim[0] and merged Rows dim[0] should be the same"); + platform::errors::InvalidArgument( + "the merged X dim[0] and merged Rows dim[0] should be the same")); std::unordered_map> selected_rows_idx_map; @@ -76,7 +80,8 @@ class MergeIdsOpKernel : public framework::OpKernel { } } PADDLE_ENFORCE_EQ(row_ids_size, selected_rows_idx_map.size(), - "the rows and tensor map size should be the same"); + platform::errors::InvalidArgument( + "the rows and tensor map size should be the same")); for (size_t i = 0; i < outs.size(); ++i) { auto *out_ids = ids[i]; diff --git a/paddle/fluid/operators/lookup_sparse_table_op.cc b/paddle/fluid/operators/lookup_sparse_table_op.cc index ef3030d9be2..e40575110e7 100644 --- a/paddle/fluid/operators/lookup_sparse_table_op.cc +++ b/paddle/fluid/operators/lookup_sparse_table_op.cc @@ -26,8 +26,7 @@ constexpr int64_t kNoPadding = -1; class LookupSparseTableInferShape : public framework::InferShapeBase { public: void operator()(framework::InferShapeContext *ctx) const override { - PADDLE_ENFORCE(ctx->HasOutput("Out"), - "Output(Out) of LookupSparseTableOp should not be null."); + OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "LookupSparseTable"); auto shape_w = ctx->GetInputDim("W"); auto shape_ids = ctx->GetInputDim("Ids"); shape_w[0] = shape_ids.size(); @@ -47,12 +46,15 @@ class LookupSparseTableOp : public framework::OperatorBase { auto ids_var = scope.FindVar(Input("Ids")); auto is_test = Attr("is_test"); - PADDLE_ENFORCE(out_var->IsType(), - "The type of Out var should be LodTensor."); - PADDLE_ENFORCE(w_var->IsType(), - "The type of W var should be SelectedRows."); - PADDLE_ENFORCE(ids_var->IsType(), - "The type of Ids var should be LoDTensor."); + PADDLE_ENFORCE_EQ(out_var->IsType(), true, + platform::errors::InvalidArgument( + "The type of Out var should be LodTensor.")); + PADDLE_ENFORCE_EQ(w_var->IsType(), true, + platform::errors::InvalidArgument( + "The type of W var should be SelectedRows.")); + PADDLE_ENFORCE_EQ(ids_var->IsType(), true, + platform::errors::InvalidArgument( + "The type of Ids var should be LoDTensor.")); auto &ids_t = ids_var->Get(); auto out_t = out_var->GetMutable(); auto w_t = w_var->GetMutable(); @@ -64,7 +66,8 @@ class LookupSparseTableOp : public framework::OperatorBase { out_t->Resize(out_shape); out_t->mutable_data(cpu, w_t->value().type()); PADDLE_ENFORCE_EQ(w_t->value().type(), framework::proto::VarType::FP32, - "The sparse table only support FP32"); + platform::errors::InvalidArgument( + "The sparse table only support FP32")); w_t->Get(ids_t, out_t, true, is_test); out_t->set_lod(ids_t.lod()); } diff --git a/paddle/fluid/operators/lookup_table_op.cc b/paddle/fluid/operators/lookup_table_op.cc index 8bf5ba925e9..158080cf8a3 100644 --- a/paddle/fluid/operators/lookup_table_op.cc +++ b/paddle/fluid/operators/lookup_table_op.cc @@ -27,12 +27,9 @@ class LookupTableOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { - PADDLE_ENFORCE_EQ(ctx->HasInput("W"), true, - "Input(W) of LookupTableOp should not be null."); - PADDLE_ENFORCE_EQ(ctx->HasInput("Ids"), true, - "Input(Ids) of LookupTableOp should not be null."); - PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true, - "Output(Out) of LookupTableOp should not be null."); + OP_INOUT_CHECK(ctx->HasInput("W"), "Input", "W", "LookupTable"); + OP_INOUT_CHECK(ctx->HasInput("Ids"), "Input", "Ids", "LookupTable"); + OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "LookupTable"); auto table_dims = ctx->GetInputDim("W"); auto ids_dims = ctx->GetInputDim("Ids"); @@ -40,15 +37,17 @@ class LookupTableOp : public framework::OperatorWithKernel { VLOG(5) << "ids rank is " << ids_rank << std::endl; PADDLE_ENFORCE_EQ( table_dims.size(), 2, - "ShapeError: The dimensions of the 'lookup table' must be 2. " - "But received lookup table's dimensions = %d, " - "lookup table's shape = [%s].", - table_dims.size(), table_dims); + platform::errors::InvalidArgument( + "ShapeError: The dimensions of the 'lookup table' must be 2. " + "But received lookup table's dimensions = %d, " + "lookup table's shape = [%s].", + table_dims.size(), table_dims)); PADDLE_ENFORCE_EQ( ids_dims[ids_rank - 1], 1, - "ShapeError: The last dimensions of the 'Ids' tensor must be 1. " - "But received Ids's last dimensions = %d, Ids's shape = [%s].", - ids_dims[ids_rank - 1], ids_dims); + platform::errors::InvalidArgument( + "ShapeError: The last dimensions of the 'Ids' tensor must be 1. " + "But received Ids's last dimensions = %d, Ids's shape = [%s].", + ids_dims[ids_rank - 1], ids_dims)); auto output_dims = framework::vectorize(framework::slice_ddim(ids_dims, 0, ids_rank - 1)); diff --git a/paddle/fluid/operators/lookup_table_op.h b/paddle/fluid/operators/lookup_table_op.h index e56988b83ae..1a8c18f158c 100644 --- a/paddle/fluid/operators/lookup_table_op.h +++ b/paddle/fluid/operators/lookup_table_op.h @@ -88,16 +88,18 @@ class LookupTableKernel : public framework::OpKernel { } else { PADDLE_ENFORCE_LT( ids[i], row_number, - "Variable value (input) of OP(fluid.layers.embedding) " - "expected >= 0 and < %ld, but got %ld. Please check input " - "value.", - row_number, ids[i]); + platform::errors::InvalidArgument( + "Variable value (input) of OP(fluid.layers.embedding) " + "expected >= 0 and < %ld, but got %ld. Please check input " + "value.", + row_number, ids[i])); PADDLE_ENFORCE_GE( ids[i], 0, - "Variable value (input) of OP(fluid.layers.embedding) " - "expected >= 0 and < %ld, but got %ld. Please check input " - "value.", - row_number, ids[i]); + platform::errors::InvalidArgument( + "Variable value (input) of OP(fluid.layers.embedding) " + "expected >= 0 and < %ld, but got %ld. Please check input " + "value.", + row_number, ids[i])); memcpy(output + i * row_width, table + ids[i] * row_width, row_width * sizeof(T)); } @@ -114,13 +116,16 @@ class LookupTableKernel : public framework::OpKernel { } else { PADDLE_ENFORCE_GE( ids[i], 0, - "Variable value (input) of OP(fluid.layers.embedding) " - "expected >= 0. But received %ld", - ids[i]); + platform::errors::InvalidArgument( + "Variable value (input) of OP(fluid.layers.embedding) " + "expected >= 0. But received %ld", + ids[i])); auto id_index = table_t.Index(ids[i]); PADDLE_ENFORCE_GE( - id_index, 0, "the input key should be exists. But received %d.", - id_index); + id_index, 0, + platform::errors::InvalidArgument( + "the input key should be exists. But received %d.", + id_index)); if (input_data_type == framework::proto::VarType::INT8) { memcpy(output + i * row_width, table + id_index * row_width, row_width * sizeof(T)); @@ -194,11 +199,12 @@ class LookupTableGradKernel : public framework::OpKernel { auto d_output_dims_2d = framework::flatten_to_2d(d_output_dims, d_output_dims.size() - 1); PADDLE_ENFORCE_EQ(d_table_value->dims(), d_output_dims_2d, - "ShapeError: The shape of lookup_table@Grad and " - "output@Grad should be same. " - "But received lookup_table@Grad's shape = [%s], " - "output@Grad's shape = [%s].", - d_table_value->dims(), d_output_dims_2d); + platform::errors::InvalidArgument( + "ShapeError: The shape of lookup_table@Grad and " + "output@Grad should be same. " + "But received lookup_table@Grad's shape = [%s], " + "output@Grad's shape = [%s].", + d_table_value->dims(), d_output_dims_2d)); memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel()); } } else { @@ -223,14 +229,18 @@ class LookupTableGradKernel : public framework::OpKernel { } else { PADDLE_ENFORCE_LT( ids_data[i], N, - "Variable value (input) of OP(fluid.layers.embedding) " - "expected >= 0 and < %ld, but got %ld. Please check input value.", - N, ids_data[i]); + platform::errors::InvalidArgument( + "Variable value (input) of OP(fluid.layers.embedding) " + "expected >= 0 and < %ld, but got %ld. Please check input " + "value.", + N, ids_data[i])); PADDLE_ENFORCE_GE( ids_data[i], 0, - "Variable value (input) of OP(fluid.layers.embedding) " - "expected >= 0 and < %ld, but got %ld. Please check input value.", - N, ids_data[i]); + platform::errors::InvalidArgument( + "Variable value (input) of OP(fluid.layers.embedding) " + "expected >= 0 and < %ld, but got %ld. Please check input" + "value.", + N, ids_data[i])); for (int j = 0; j < D; ++j) { d_table_data[ids_data[i] * D + j] += d_output_data[i * D + j]; } -- GitLab