Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
15913d92
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
15913d92
编写于
6月 07, 2018
作者:
Y
Yancey1989
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of github.com:PaddlePaddle/Paddle into overlap_memcpy_with_dist
上级
e533a4b4
ddd95022
变更
40
显示空白变更内容
内联
并排
Showing
40 changed file
with
669 addition
and
207 deletion
+669
-207
benchmark/fluid/README.md
benchmark/fluid/README.md
+2
-0
benchmark/fluid/run_fluid_benchmark.sh
benchmark/fluid/run_fluid_benchmark.sh
+9
-0
paddle/fluid/framework/scope.cc
paddle/fluid/framework/scope.cc
+17
-13
paddle/fluid/framework/scope.h
paddle/fluid/framework/scope.h
+14
-3
paddle/fluid/inference/analysis/helper.h
paddle/fluid/inference/analysis/helper.h
+9
-0
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
+7
-1
paddle/fluid/inference/tensorrt/convert/activation_op.cc
paddle/fluid/inference/tensorrt/convert/activation_op.cc
+3
-2
paddle/fluid/inference/tensorrt/convert/conv2d_op.cc
paddle/fluid/inference/tensorrt/convert/conv2d_op.cc
+3
-3
paddle/fluid/inference/tensorrt/convert/fc_op.cc
paddle/fluid/inference/tensorrt/convert/fc_op.cc
+6
-4
paddle/fluid/inference/tensorrt/convert/mul_op.cc
paddle/fluid/inference/tensorrt/convert/mul_op.cc
+10
-5
paddle/fluid/inference/tensorrt/convert/op_converter.h
paddle/fluid/inference/tensorrt/convert/op_converter.h
+29
-11
paddle/fluid/inference/tensorrt/convert/test_op_converter.cc
paddle/fluid/inference/tensorrt/convert/test_op_converter.cc
+2
-0
paddle/fluid/inference/tensorrt/convert/ut_helper.h
paddle/fluid/inference/tensorrt/convert/ut_helper.h
+3
-2
paddle/fluid/inference/tensorrt/engine.cc
paddle/fluid/inference/tensorrt/engine.cc
+8
-1
paddle/fluid/inference/tensorrt/engine.h
paddle/fluid/inference/tensorrt/engine.h
+27
-1
paddle/fluid/inference/tests/book/test_inference_nlp.cc
paddle/fluid/inference/tests/book/test_inference_nlp.cc
+26
-31
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+2
-0
paddle/fluid/operators/detail/CMakeLists.txt
paddle/fluid/operators/detail/CMakeLists.txt
+1
-1
paddle/fluid/operators/detail/grpc_client.cc
paddle/fluid/operators/detail/grpc_client.cc
+25
-39
paddle/fluid/operators/detail/grpc_client.h
paddle/fluid/operators/detail/grpc_client.h
+27
-29
paddle/fluid/operators/detail/grpc_server_test.cc
paddle/fluid/operators/detail/grpc_server_test.cc
+4
-2
paddle/fluid/operators/detail/rpc_client.cc
paddle/fluid/operators/detail/rpc_client.cc
+26
-0
paddle/fluid/operators/detail/rpc_client.h
paddle/fluid/operators/detail/rpc_client.h
+82
-0
paddle/fluid/operators/fetch_barrier_op.cc
paddle/fluid/operators/fetch_barrier_op.cc
+3
-1
paddle/fluid/operators/gen_nccl_id_op.cc
paddle/fluid/operators/gen_nccl_id_op.cc
+4
-3
paddle/fluid/operators/prefetch_op.cc
paddle/fluid/operators/prefetch_op.cc
+3
-3
paddle/fluid/operators/recv_op.cc
paddle/fluid/operators/recv_op.cc
+3
-2
paddle/fluid/operators/send_barrier_op.cc
paddle/fluid/operators/send_barrier_op.cc
+2
-1
paddle/fluid/operators/send_op.cc
paddle/fluid/operators/send_op.cc
+4
-3
paddle/fluid/operators/send_vars_op.cc
paddle/fluid/operators/send_vars_op.cc
+3
-2
paddle/fluid/operators/tensorrt_engine_op.cc
paddle/fluid/operators/tensorrt_engine_op.cc
+77
-5
paddle/fluid/operators/tensorrt_engine_op.h
paddle/fluid/operators/tensorrt_engine_op.h
+19
-11
paddle/fluid/operators/tensorrt_engine_op_test.cc
paddle/fluid/operators/tensorrt_engine_op_test.cc
+152
-0
paddle/fluid/operators/test_send_nccl_id.cc
paddle/fluid/operators/test_send_nccl_id.cc
+4
-3
paddle/fluid/platform/assert.h
paddle/fluid/platform/assert.h
+5
-2
paddle/fluid/platform/cudnn_helper.h
paddle/fluid/platform/cudnn_helper.h
+22
-0
paddle/scripts/paddle_build.sh
paddle/scripts/paddle_build.sh
+1
-1
python/paddle/fluid/tests/no_test_concurrency.py
python/paddle/fluid/tests/no_test_concurrency.py
+0
-0
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+2
-4
python/paddle/fluid/tests/unittests/test_mul_op.py
python/paddle/fluid/tests/unittests/test_mul_op.py
+23
-18
未找到文件。
benchmark/fluid/README.md
浏览文件 @
15913d92
...
...
@@ -29,9 +29,11 @@ Currently supported `--model` argument include:
You can choose to use GPU/CPU training. With GPU training, you can specify
`--gpus <gpu_num>`
to run multi GPU training.
*
Run distributed training with parameter servers:
*
see
[
run_fluid_benchmark.sh
](
https://github.com/PaddlePaddle/Paddle/blob/develop/benchmark/fluid/run_fluid_benchmark.sh
)
as an example.
*
start parameter servers:
```
bash
PADDLE_TRAINING_ROLE
=
PSERVER
PADDLE_PSERVER_PORT
=
7164
PADDLE_PSERVER_IPS
=
127.0.0.1
PADDLE_TRAINERS
=
1
PADDLE_CURRENT_IP
=
127.0.0.1
PADDLE_TRAINER_ID
=
0 python fluid_benchmark.py
--model
mnist
--device
GPU
--update_method
pserver
sleep
15
```
*
start trainers:
```
bash
...
...
benchmark/fluid/run_fluid_benchmark.sh
0 → 100644
浏览文件 @
15913d92
#!/bin/bash
PADDLE_TRAINING_ROLE
=
PSERVER
PADDLE_PSERVER_PORT
=
7164
PADDLE_PSERVER_IPS
=
127.0.0.1
PADDLE_TRAINERS
=
2
PADDLE_CURRENT_IP
=
127.0.0.1
PADDLE_TRAINER_ID
=
0 python fluid_benchmark.py
--model
resnet
--device
CPU
--update_method
pserver
--iterations
=
10000 &
sleep
15
CUDA_VISIBLE_DEVICES
=
0,1
PADDLE_TRAINING_ROLE
=
TRAINER
PADDLE_PSERVER_PORT
=
7164
PADDLE_PSERVER_IPS
=
127.0.0.1
PADDLE_TRAINERS
=
2
PADDLE_CURRENT_IP
=
127.0.0.1
PADDLE_TRAINER_ID
=
0 python fluid_benchmark.py
--model
resnet
--device
GPU
--update_method
pserver
--iterations
=
10000
--gpus
2 &
CUDA_VISIBLE_DEVICES
=
2,3
PADDLE_TRAINING_ROLE
=
TRAINER
PADDLE_PSERVER_PORT
=
7164
PADDLE_PSERVER_IPS
=
127.0.0.1
PADDLE_TRAINERS
=
2
PADDLE_CURRENT_IP
=
127.0.0.1
PADDLE_TRAINER_ID
=
1 python fluid_benchmark.py
--model
resnet
--device
GPU
--update_method
pserver
--iterations
=
10000
--gpus
2 &
paddle/fluid/framework/scope.cc
浏览文件 @
15913d92
...
...
@@ -34,13 +34,7 @@ DEFINE_bool(
namespace
paddle
{
namespace
framework
{
Scope
::~
Scope
()
{
DropKids
();
for
(
auto
&
kv
:
vars_
)
{
VLOG
(
3
)
<<
"Destroy variable "
<<
kv
.
first
;
delete
kv
.
second
;
}
}
Scope
::~
Scope
()
{
DropKids
();
}
Scope
&
Scope
::
NewScope
()
const
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
...
...
@@ -49,10 +43,13 @@ Scope& Scope::NewScope() const {
}
Variable
*
Scope
::
Var
(
const
std
::
string
&
name
)
{
// acquire the lock when new var under this scope
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
auto
*
v
=
FindVarLocally
(
name
);
if
(
v
!=
nullptr
)
return
v
;
v
=
new
Variable
();
vars_
[
name
]
=
v
;
vars_
[
name
]
.
reset
(
v
)
;
VLOG
(
3
)
<<
"Create variable "
<<
name
;
v
->
name_
=
&
(
vars_
.
find
(
name
)
->
first
);
return
v
;
...
...
@@ -67,22 +64,29 @@ Variable* Scope::Var(std::string* name) {
}
Variable
*
Scope
::
FindVar
(
const
std
::
string
&
name
)
const
{
// acquire the lock when find var
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
return
FindVarInternal
(
name
);
}
Variable
*
Scope
::
FindVarInternal
(
const
std
::
string
&
name
)
const
{
auto
var
=
FindVarLocally
(
name
);
if
(
var
!=
nullptr
)
{
return
var
;
}
return
(
parent_
==
nullptr
)
?
nullptr
:
parent_
->
FindVar
(
name
);
return
(
parent_
==
nullptr
)
?
nullptr
:
parent_
->
FindVar
Internal
(
name
);
}
const
Scope
*
Scope
::
FindScope
(
const
Variable
*
var
)
const
{
for
(
auto
&
kv
:
vars_
)
{
if
(
kv
.
second
==
var
)
{
if
(
kv
.
second
.
get
()
==
var
)
{
return
this
;
}
}
return
(
parent_
==
nullptr
)
?
nullptr
:
parent_
->
FindScope
(
var
);
}
void
Scope
::
DropKids
()
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
for
(
Scope
*
s
:
kids_
)
delete
s
;
kids_
.
clear
();
}
...
...
@@ -110,10 +114,10 @@ void Scope::DeleteScope(Scope* scope) const {
}
void
Scope
::
EraseVars
(
const
std
::
vector
<
std
::
string
>&
var_names
)
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
std
::
set
<
std
::
string
>
var_set
(
var_names
.
begin
(),
var_names
.
end
());
for
(
auto
it
=
vars_
.
begin
();
it
!=
vars_
.
end
();)
{
if
(
var_set
.
find
(
it
->
first
)
!=
var_set
.
end
())
{
delete
it
->
second
;
it
=
vars_
.
erase
(
it
);
}
else
{
++
it
;
...
...
@@ -129,7 +133,7 @@ void Scope::Rename(const std::string& origin_name,
auto
new_it
=
vars_
.
find
(
new_name
);
PADDLE_ENFORCE
(
new_it
==
vars_
.
end
(),
"The variable with name %s is already in the scope"
,
new_name
);
vars_
[
new_name
]
=
origin_it
->
second
;
vars_
[
new_name
]
.
reset
(
origin_it
->
second
.
release
())
;
vars_
.
erase
(
origin_it
);
}
...
...
@@ -141,7 +145,7 @@ std::string Scope::Rename(const std::string& origin_name) const {
Variable
*
Scope
::
FindVarLocally
(
const
std
::
string
&
name
)
const
{
auto
it
=
vars_
.
find
(
name
);
if
(
it
!=
vars_
.
end
())
return
it
->
second
;
if
(
it
!=
vars_
.
end
())
return
it
->
second
.
get
()
;
return
nullptr
;
}
...
...
paddle/fluid/framework/scope.h
浏览文件 @
15913d92
...
...
@@ -47,15 +47,18 @@ class Scope {
Scope
&
NewScope
()
const
;
/// Create a variable with given name if it doesn't exist.
/// Caller doesn't own the returned Variable.
Variable
*
Var
(
const
std
::
string
&
name
);
/// Create a variable with a scope-unique name.
/// Caller doesn't own the returned Variable.
Variable
*
Var
(
std
::
string
*
name
=
nullptr
);
void
EraseVars
(
const
std
::
vector
<
std
::
string
>&
var_names
);
/// Find a variable in the scope or any of its ancestors. Returns
/// nullptr if cannot find.
/// Caller doesn't own the returned Variable.
Variable
*
FindVar
(
const
std
::
string
&
name
)
const
;
const
Scope
*
parent
()
const
{
return
parent_
;
}
...
...
@@ -78,13 +81,21 @@ class Scope {
// Rename variable to a new name and return the new name
std
::
string
Rename
(
const
std
::
string
&
origin_name
)
const
;
Variable
*
FindVarLocally
(
const
std
::
string
&
name
)
const
;
private:
// Call Scope::NewScope for a sub-scope.
explicit
Scope
(
Scope
const
*
parent
)
:
parent_
(
parent
)
{}
mutable
std
::
unordered_map
<
std
::
string
,
Variable
*>
vars_
;
// Called by FindVar recursively.
// Caller doesn't own the returned Variable.
Variable
*
FindVarInternal
(
const
std
::
string
&
name
)
const
;
// Called by FindVarInternal and Var.
// Caller doesn't own the returned Variable.
Variable
*
FindVarLocally
(
const
std
::
string
&
name
)
const
;
mutable
std
::
unordered_map
<
std
::
string
,
std
::
unique_ptr
<
Variable
>>
vars_
;
// Scope in `kids_` are owned by this class.
mutable
std
::
list
<
Scope
*>
kids_
;
Scope
const
*
parent_
{
nullptr
};
...
...
paddle/fluid/inference/analysis/helper.h
浏览文件 @
15913d92
...
...
@@ -18,6 +18,8 @@ limitations under the License. */
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
...
...
@@ -107,6 +109,13 @@ class OrderedRegistry {
std
::
vector
<
std
::
unique_ptr
<
T
>>
data_
;
};
template
<
typename
T
>
T
&
GetFromScope
(
const
framework
::
Scope
&
scope
,
const
std
::
string
&
name
)
{
framework
::
Variable
*
var
=
scope
.
FindVar
(
name
);
PADDLE_ENFORCE
(
var
!=
nullptr
);
return
*
var
->
GetMutable
<
T
>
();
}
}
// namespace analysis
}
// namespace inference
}
// namespace paddle
...
...
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
浏览文件 @
15913d92
# Add TRT tests
nv_test
(
test_op_converter SRCS test_op_converter.cc mul_op.cc conv2d_op.cc DEPS
${
FLUID_CORE_MODULES
}
tensorrt_engine
)
# This test is not stable
# See https://paddleci.ngrok.io/viewLog.html?tab=buildLog&buildTypeId=Paddle_PrCi2&buildId=36834&_focus=8828
#nv_test(test_trt_activation_op SRCS test_activation_op.cc activation_op.cc io_converter.cc
# DEPS ${FLUID_CORE_MODULES} activation_op tensorrt_engine
# SERIAL)
nv_library
(
tensorrt_converter
SRCS mul_op.cc conv2d_op.cc fc_op.cc
DEPS tensorrt_engine mul_op
)
nv_test
(
test_op_converter SRCS test_op_converter.cc DEPS
${
FLUID_CORE_MODULES
}
tensorrt_engine tensorrt_converter
)
nv_test
(
test_io_converter SRCS test_io_converter.cc io_converter.cc DEPS dynload_cuda dynamic_loader lod_tensor
)
nv_test
(
test_trt_mul_op SRCS test_mul_op.cc mul_op.cc
DEPS
${
FLUID_CORE_MODULES
}
tensorrt_engine mul_op SERIAL
)
...
...
paddle/fluid/inference/tensorrt/convert/activation_op.cc
浏览文件 @
15913d92
...
...
@@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace
paddle
{
...
...
@@ -36,8 +37,8 @@ class ReluOpConverter : public OpConverter {
}
};
REGISTER_TRT_OP_CONVERTER
(
relu
,
ReluOpConverter
);
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
REGISTER_TRT_OP_CONVERTER
(
relu
,
ReluOpConverter
);
paddle/fluid/inference/tensorrt/convert/conv2d_op.cc
浏览文件 @
15913d92
...
...
@@ -22,14 +22,14 @@ class Conv2dOpConverter : public OpConverter {
public:
Conv2dOpConverter
()
{}
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
)
override
{
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
LOG
(
INFO
)
<<
"convert a fluid conv2d op to tensorrt conv layer without bias"
;
}
};
REGISTER_TRT_OP_CONVERTER
(
conv2d
,
Conv2dOpConverter
);
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
REGISTER_TRT_OP_CONVERTER
(
conv2d
,
Conv2dOpConverter
);
paddle/fluid/inference/tensorrt/convert/fc_op.cc
浏览文件 @
15913d92
...
...
@@ -56,7 +56,7 @@ void ReorderCKtoKC(TensorRTEngine::Weight& iweights,
class
FcOpConverter
:
public
OpConverter
{
public:
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
)
override
{
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
VLOG
(
4
)
<<
"convert a fluid fc op to tensorrt fc layer without bias"
;
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
...
...
@@ -106,14 +106,16 @@ class FcOpConverter : public OpConverter {
n_output
,
weight
.
get
(),
bias
.
get
());
auto
output_name
=
op_desc
.
Output
(
"Out"
).
front
();
engine_
->
DeclareOutput
(
layer
,
0
,
output_name
);
engine_
->
SetITensor
(
output_name
,
layer
->
getOutput
(
0
));
if
(
test_mode
)
{
engine_
->
DeclareOutput
(
output_name
);
}
}
};
REGISTER_TRT_OP_CONVERTER
(
fc
,
FcOpConverter
);
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
REGISTER_TRT_OP_CONVERTER
(
fc
,
FcOpConverter
);
USE_OP
(
mul
);
paddle/fluid/inference/tensorrt/convert/mul_op.cc
浏览文件 @
15913d92
...
...
@@ -23,9 +23,8 @@ namespace tensorrt {
*/
class
MulOpConverter
:
public
OpConverter
{
public:
MulOpConverter
()
{}
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
)
override
{
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
VLOG
(
4
)
<<
"convert a fluid mul op to tensorrt mul layer without bias"
;
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
...
...
@@ -37,12 +36,18 @@ class MulOpConverter : public OpConverter {
engine_
,
MatrixMultiply
,
*
const_cast
<
nvinfer1
::
ITensor
*>
(
input1
),
false
,
*
const_cast
<
nvinfer1
::
ITensor
*>
(
input2
),
false
);
engine_
->
DeclareOutput
(
layer
,
0
,
op_desc
.
Output
(
"Out"
)[
0
]);
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
engine_
->
SetITensor
(
output_name
,
layer
->
getOutput
(
0
));
if
(
test_mode
)
{
// the test framework can not determine which is the
// output, so place the declaration inside.
engine_
->
DeclareOutput
(
output_name
);
}
}
};
REGISTER_TRT_OP_CONVERTER
(
mul
,
MulOpConverter
);
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
USE_OP
(
mul
);
REGISTER_TRT_OP_CONVERTER
(
mul
,
MulOpConverter
);
paddle/fluid/inference/tensorrt/convert/op_converter.h
浏览文件 @
15913d92
...
...
@@ -17,6 +17,7 @@ limitations under the License. */
#include <string>
#include <unordered_map>
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/inference/utils/singleton.h"
...
...
@@ -34,12 +35,15 @@ class OpConverter {
// Converter logic for an op.
virtual
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
)
{}
const
framework
::
Scope
&
scope
,
bool
test_mode
=
false
)
{}
// Convert a single fluid operaotr and add the corresponding layer to TRT.
// Convert a single fluid operator and add the corresponding layer to TRT.
// test_mode: whether the instance executes in an unit test.
void
ConvertOp
(
const
framework
::
proto
::
OpDesc
&
op
,
const
std
::
unordered_set
<
std
::
string
>&
parameters
,
const
framework
::
Scope
&
scope
,
TensorRTEngine
*
engine
)
{
const
framework
::
Scope
&
scope
,
TensorRTEngine
*
engine
,
bool
test_mode
=
false
)
{
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
OpConverter
*
it
{
nullptr
};
...
...
@@ -57,7 +61,7 @@ class OpConverter {
PADDLE_ENFORCE_NOT_NULL
(
it
,
"no OpConverter for optype [%s]"
,
op_desc
.
Type
());
it
->
SetEngine
(
engine
);
(
*
it
)(
op
,
scope
);
(
*
it
)(
op
,
scope
,
test_mode
);
}
// convert fluid block to tensorrt network
...
...
@@ -77,6 +81,9 @@ class OpConverter {
// TensorRT engine
TensorRTEngine
*
engine_
{
nullptr
};
protected:
bool
test_mode_
;
private:
// registered op converter map, whose key is the fluid op type, and value is
// the pointer position of corresponding OpConverter class.
...
...
@@ -86,12 +93,23 @@ class OpConverter {
};
#define REGISTER_TRT_OP_CONVERTER(op_type__, Converter__) \
struct trt_##op_type__##_converter
{
\
struct trt_##op_type__##_converter
: public ::paddle::framework::Registrar {
\
trt_##op_type__##_converter() { \
Registry<OpConverter>::Register<Converter__>(#op_type__); \
::paddle::inference:: \
Registry<paddle::inference::tensorrt::OpConverter>::Register< \
::paddle::inference::tensorrt::Converter__>(#op_type__); \
} \
}; \
trt_##op_type__##_converter trt_##op_type__##_converter__;
trt_##op_type__##_converter trt_##op_type__##_converter__; \
int TouchConverterRegister_##op_type__() { \
trt_##op_type__##_converter__.Touch(); \
return 0; \
}
#define USE_TRT_CONVERTER(op_type__) \
extern int TouchConverterRegister_##op_type__(); \
static int use_op_converter_trt_##op_type__ __attribute__((unused)) = \
TouchConverterRegister_##op_type__();
}
// namespace tensorrt
}
// namespace inference
...
...
paddle/fluid/inference/tensorrt/convert/test_op_converter.cc
浏览文件 @
15913d92
...
...
@@ -36,3 +36,5 @@ TEST(OpConverter, ConvertBlock) {
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
USE_TRT_CONVERTER
(
conv2d
)
paddle/fluid/inference/tensorrt/convert/ut_helper.h
浏览文件 @
15913d92
...
...
@@ -27,6 +27,7 @@ limitations under the License. */
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/inference/utils/singleton.h"
namespace
paddle
{
namespace
inference
{
...
...
@@ -104,8 +105,8 @@ class TRTConvertValidation {
void
SetOp
(
const
framework
::
proto
::
OpDesc
&
desc
)
{
op_
=
framework
::
OpRegistry
::
CreateOp
(
desc
);
OpConverter
op_converter
;
op_converter
.
ConvertOp
(
desc
,
parameters_
,
scope_
,
engine_
.
get
()
);
Singleton
<
OpConverter
>::
Global
().
ConvertOp
(
desc
,
parameters_
,
scope_
,
engine_
.
get
(),
true
/*test_mode*/
);
engine_
->
FreezeNetwork
();
...
...
paddle/fluid/inference/tensorrt/engine.cc
浏览文件 @
15913d92
...
...
@@ -43,9 +43,10 @@ void TensorRTEngine::Execute(int batch_size) {
}
TensorRTEngine
::~
TensorRTEngine
()
{
cudaStreamSynchronize
(
*
stream_
);
// clean buffer
for
(
auto
&
buf
:
buffers_
)
{
if
(
buf
.
buffer
!=
nullptr
)
{
if
(
buf
.
device
==
DeviceType
::
GPU
&&
buf
.
buffer
!=
nullptr
)
{
PADDLE_ENFORCE_EQ
(
0
,
cudaFree
(
buf
.
buffer
));
buf
.
buffer
=
nullptr
;
buf
.
max_size
=
0
;
...
...
@@ -80,6 +81,8 @@ void TensorRTEngine::FreezeNetwork() {
auto
&
buf
=
buffer
(
item
.
first
);
CHECK
(
buf
.
buffer
==
nullptr
);
// buffer should be allocated only once.
PADDLE_ENFORCE_EQ
(
0
,
cudaMalloc
(
&
buf
.
buffer
,
item
.
second
));
VLOG
(
4
)
<<
"buffer malloc "
<<
item
.
first
<<
" "
<<
item
.
second
<<
" "
<<
buf
.
buffer
;
buf
.
size
=
buf
.
max_size
=
item
.
second
;
buf
.
device
=
DeviceType
::
GPU
;
}
...
...
@@ -96,6 +99,7 @@ nvinfer1::ITensor* TensorRTEngine::DeclareInput(const std::string& name,
PADDLE_ENFORCE
(
input
,
"infer network add input %s failed"
,
name
);
buffer_sizes_
[
name
]
=
kDataTypeSize
[
static_cast
<
int
>
(
dtype
)]
*
analysis
::
AccuDims
(
dims
.
d
,
dims
.
nbDims
);
PADDLE_ENFORCE
(
input
->
isNetworkInput
());
TensorRTEngine
::
SetITensor
(
name
,
input
);
return
input
;
}
...
...
@@ -109,7 +113,9 @@ void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer* layer, int offset,
SetITensor
(
name
,
output
);
PADDLE_ENFORCE
(
output
!=
nullptr
);
output
->
setName
(
name
.
c_str
());
PADDLE_ENFORCE
(
!
output
->
isNetworkInput
());
infer_network_
->
markOutput
(
*
output
);
PADDLE_ENFORCE
(
output
->
isNetworkOutput
());
// output buffers' size can only be decided latter, set zero here to mark this
// and will reset latter.
buffer_sizes_
[
name
]
=
0
;
...
...
@@ -122,6 +128,7 @@ void TensorRTEngine::DeclareOutput(const std::string& name) {
auto
*
output
=
TensorRTEngine
::
GetITensor
(
name
);
PADDLE_ENFORCE
(
output
!=
nullptr
);
output
->
setName
(
name
.
c_str
());
PADDLE_ENFORCE
(
!
output
->
isNetworkInput
());
infer_network_
->
markOutput
(
*
output
);
// output buffers' size can only be decided latter, set zero here to mark this
// and will reset latter.
...
...
paddle/fluid/inference/tensorrt/engine.h
浏览文件 @
15913d92
...
...
@@ -21,6 +21,7 @@ limitations under the License. */
#include <vector>
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
#include "paddle/fluid/inference/utils/singleton.h"
namespace
paddle
{
namespace
inference
{
...
...
@@ -131,7 +132,11 @@ class TensorRTEngine : public EngineBase {
// TensorRT related internal members
template
<
typename
T
>
struct
Destroyer
{
void
operator
()(
T
*
x
)
{
x
->
destroy
();
}
void
operator
()(
T
*
x
)
{
if
(
x
)
{
x
->
destroy
();
}
}
};
template
<
typename
T
>
using
infer_ptr
=
std
::
unique_ptr
<
T
,
Destroyer
<
T
>>
;
...
...
@@ -155,6 +160,27 @@ class TensorRTEngine : public EngineBase {
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ARGS...) \
engine__->network()->add##layer__(ARGS);
/*
* Helper to control the TensorRT engine's creation and deletion.
*/
class
TRT_EngineManager
{
public:
TensorRTEngine
*
Create
(
int
max_batch
,
int
max_workspace
,
cudaStream_t
*
stream
)
{
engines_
.
emplace_back
(
new
TensorRTEngine
(
max_batch
,
max_workspace
,
stream
));
return
engines_
.
back
().
get
();
}
void
DeleteALl
()
{
for
(
auto
&
ptr
:
engines_
)
{
ptr
.
reset
(
nullptr
);
}
}
private:
std
::
vector
<
std
::
unique_ptr
<
TensorRTEngine
>>
engines_
;
};
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/tests/book/test_inference_nlp.cc
浏览文件 @
15913d92
...
...
@@ -101,23 +101,22 @@ void SplitData(
}
void
ThreadRunInfer
(
const
int
tid
,
paddle
::
framework
::
Executor
*
executor
,
paddle
::
framework
::
Scope
*
scope
,
const
std
::
unique_ptr
<
paddle
::
framework
::
ProgramDesc
>&
inference_program
,
const
int
tid
,
paddle
::
framework
::
Scope
*
scope
,
const
std
::
vector
<
std
::
vector
<
const
paddle
::
framework
::
LoDTensor
*>>&
jobs
)
{
auto
copy_program
=
std
::
unique_ptr
<
paddle
::
framework
::
ProgramDesc
>
(
new
paddle
::
framework
::
ProgramDesc
(
*
inference_program
));
// maybe framework:ProgramDesc is not thread-safe
auto
&
sub_scope
=
scope
->
NewScope
();
auto
place
=
paddle
::
platform
::
CPUPlace
();
auto
executor
=
paddle
::
framework
::
Executor
(
place
);
auto
inference_program
=
paddle
::
inference
::
Load
(
&
executor
,
scope
,
FLAGS_model_path
);
std
::
string
feed_holder_name
=
"feed_"
+
paddle
::
string
::
to_string
(
tid
);
std
::
string
fetch_holder_name
=
"fetch_"
+
paddle
::
string
::
to_string
(
tid
);
copy_program
->
SetFeedHolderName
(
feed_holder_name
);
copy_program
->
SetFetchHolderName
(
fetch_holder_name
);
auto
ctx
=
executor
.
Prepare
(
*
inference_program
,
/*block_id*/
0
);
executor
.
CreateVariables
(
*
inference_program
,
&
sub_scope
,
/*block_id*/
0
);
const
std
::
vector
<
std
::
string
>&
feed_target_names
=
copy
_program
->
GetFeedTargetNames
();
inference
_program
->
GetFeedTargetNames
();
const
std
::
vector
<
std
::
string
>&
fetch_target_names
=
copy
_program
->
GetFetchTargetNames
();
inference
_program
->
GetFetchTargetNames
();
PADDLE_ENFORCE_EQ
(
fetch_target_names
.
size
(),
1UL
);
std
::
map
<
std
::
string
,
paddle
::
framework
::
LoDTensor
*>
fetch_targets
;
...
...
@@ -131,9 +130,8 @@ void ThreadRunInfer(
auto
start_ms
=
GetCurrentMs
();
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
++
i
)
{
feed_targets
[
feed_target_names
[
0
]]
=
inputs
[
i
];
executor
->
Run
(
*
copy_program
,
&
sub_scope
,
&
feed_targets
,
&
fetch_targets
,
true
/*create_local_scope*/
,
true
/*create_vars*/
,
feed_holder_name
,
fetch_holder_name
);
executor
.
RunPreparedContext
(
ctx
.
get
(),
&
sub_scope
,
&
feed_targets
,
&
fetch_targets
,
false
/*create_local_scope*/
);
}
auto
stop_ms
=
GetCurrentMs
();
scope
->
DeleteScope
(
&
sub_scope
);
...
...
@@ -158,22 +156,10 @@ TEST(inference, nlp) {
LOG
(
INFO
)
<<
"Number of samples (seq_len<1024): "
<<
datasets
.
size
();
LOG
(
INFO
)
<<
"Total number of words: "
<<
num_total_words
;
const
bool
model_combined
=
false
;
// 0. Call `paddle::framework::InitDevices()` initialize all the devices
// 1. Define place, executor, scope
auto
place
=
paddle
::
platform
::
CPUPlace
();
auto
executor
=
paddle
::
framework
::
Executor
(
place
);
std
::
unique_ptr
<
paddle
::
framework
::
Scope
>
scope
(
new
paddle
::
framework
::
Scope
());
// 2. Initialize the inference_program and load parameters
std
::
unique_ptr
<
paddle
::
framework
::
ProgramDesc
>
inference_program
;
inference_program
=
InitProgram
(
&
executor
,
scope
.
get
(),
FLAGS_model_path
,
model_combined
);
if
(
FLAGS_use_mkldnn
)
{
EnableMKLDNN
(
inference_program
);
}
#ifdef PADDLE_WITH_MKLML
// only use 1 thread number per std::thread
omp_set_dynamic
(
0
);
...
...
@@ -189,21 +175,30 @@ TEST(inference, nlp) {
start_ms
=
GetCurrentMs
();
for
(
int
i
=
0
;
i
<
FLAGS_num_threads
;
++
i
)
{
threads
.
emplace_back
(
new
std
::
thread
(
ThreadRunInfer
,
i
,
&
executor
,
scope
.
get
(),
std
::
ref
(
inference_program
),
std
::
ref
(
jobs
)));
new
std
::
thread
(
ThreadRunInfer
,
i
,
scope
.
get
(),
std
::
ref
(
jobs
)));
}
for
(
int
i
=
0
;
i
<
FLAGS_num_threads
;
++
i
)
{
threads
[
i
]
->
join
();
}
stop_ms
=
GetCurrentMs
();
}
else
{
if
(
FLAGS_prepare_vars
)
{
executor
.
CreateVariables
(
*
inference_program
,
scope
.
get
(),
0
);
// 1. Define place, executor, scope
auto
place
=
paddle
::
platform
::
CPUPlace
();
auto
executor
=
paddle
::
framework
::
Executor
(
place
);
// 2. Initialize the inference_program and load parameters
std
::
unique_ptr
<
paddle
::
framework
::
ProgramDesc
>
inference_program
;
inference_program
=
InitProgram
(
&
executor
,
scope
.
get
(),
FLAGS_model_path
,
/*model combined*/
false
);
if
(
FLAGS_use_mkldnn
)
{
EnableMKLDNN
(
inference_program
);
}
// always prepare context
std
::
unique_ptr
<
paddle
::
framework
::
ExecutorPrepareContext
>
ctx
;
ctx
=
executor
.
Prepare
(
*
inference_program
,
0
);
if
(
FLAGS_prepare_vars
)
{
executor
.
CreateVariables
(
*
inference_program
,
scope
.
get
(),
0
);
}
// preapre fetch
const
std
::
vector
<
std
::
string
>&
fetch_target_names
=
inference_program
->
GetFetchTargetNames
();
...
...
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
15913d92
...
...
@@ -227,6 +227,8 @@ op_library(softmax_op DEPS softmax)
op_library
(
sequence_softmax_op DEPS softmax
)
if
(
WITH_GPU AND TENSORRT_FOUND
)
op_library
(
tensorrt_engine_op DEPS tensorrt_engine
)
nv_test
(
test_tensorrt_engine_op SRCS tensorrt_engine_op_test.cc
DEPS tensorrt_engine_op tensorrt_engine tensorrt_converter
)
else
()
set
(
DEPS_OPS
${
DEPS_OPS
}
tensorrt_engine_op
)
endif
()
...
...
paddle/fluid/operators/detail/CMakeLists.txt
浏览文件 @
15913d92
if
(
WITH_DISTRIBUTE
)
grpc_library
(
sendrecvop_grpc SRCS bytebuffer_stream.cc sendrecvop_utils.cc grpc_client.cc
request_handler_impl.cc rpc_server.cc grpc_server.cc variable_response.cc PROTO send_recv.proto DEPS lod_tensor
request_handler_impl.cc rpc_
client.cc rpc_
server.cc grpc_server.cc variable_response.cc PROTO send_recv.proto DEPS lod_tensor
selected_rows memory
)
set
(
DISTRIBUTE_COMPILE_FLAGS
"-Wno-non-virtual-dtor -Wno-error=non-virtual-dtor -Wno-error=delete-non-virtual-dtor"
)
set_source_files_properties
(
serde_test.cc grpc_server_test.cc PROPERTIES COMPILE_FLAGS
${
DISTRIBUTE_COMPILE_FLAGS
}
)
...
...
paddle/fluid/operators/detail/grpc_client.cc
浏览文件 @
15913d92
...
...
@@ -25,29 +25,15 @@ namespace paddle {
namespace
operators
{
namespace
detail
{
std
::
once_flag
RPCClient
::
init_flag_
;
void
GRPCClient
::
InitImpl
()
{
InitEventLoop
();
}
std
::
unique_ptr
<
RPCClient
>
RPCClient
::
rpc_client_
(
nullptr
);
RPCClient
*
RPCClient
::
GetInstance
()
{
std
::
call_once
(
init_flag_
,
&
RPCClient
::
Init
);
return
rpc_client_
.
get
();
}
void
RPCClient
::
Init
()
{
if
(
rpc_client_
.
get
()
==
nullptr
)
{
rpc_client_
.
reset
(
new
RPCClient
());
}
rpc_client_
->
InitEventLoop
();
}
void
RPCClient
::
InitEventLoop
()
{
void
GRPCClient
::
InitEventLoop
()
{
// start the client process thread
// TODO(wuyi): can make this in a threadpool
client_thread_
.
reset
(
new
std
::
thread
(
std
::
bind
(
&
RPCClient
::
Proceed
,
this
)));
client_thread_
.
reset
(
new
std
::
thread
(
std
::
bind
(
&
G
RPCClient
::
Proceed
,
this
)));
}
RPCClient
::~
RPCClient
()
{
GRPCClient
::~
G
RPCClient
()
{
Wait
();
cq_
.
Shutdown
();
{
...
...
@@ -59,11 +45,10 @@ RPCClient::~RPCClient() {
client_thread_
->
join
();
}
bool
RPCClient
::
AsyncSendVariable
(
const
std
::
string
&
ep
,
bool
GRPCClient
::
AsyncSendVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
)
{
const
std
::
string
&
var_name
,
int64_t
time_out
)
{
const
platform
::
DeviceContext
*
p_ctx
=
&
ctx
;
const
std
::
string
ep_val
=
ep
;
const
std
::
string
var_name_val
=
var_name
;
...
...
@@ -113,11 +98,10 @@ void RequestToByteBuffer(const T& proto, ::grpc::ByteBuffer* result) {
result
->
Swap
(
&
tmp
);
}
bool
RPCClient
::
AsyncGetVariable
(
const
std
::
string
&
ep
,
bool
GRPCClient
::
AsyncGetVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
)
{
const
std
::
string
&
var_name
,
int64_t
time_out
)
{
const
platform
::
DeviceContext
*
p_ctx
=
&
ctx
;
const
std
::
string
ep_val
=
ep
;
const
std
::
string
var_name_val
=
var_name
;
...
...
@@ -155,7 +139,7 @@ bool RPCClient::AsyncGetVariable(const std::string& ep,
return
true
;
}
bool
RPCClient
::
AsyncPrefetchVariable
(
const
std
::
string
&
ep
,
bool
GRPCClient
::
AsyncPrefetchVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
in_var_name
,
...
...
@@ -198,7 +182,8 @@ bool RPCClient::AsyncPrefetchVariable(const std::string& ep,
return
true
;
}
void
RPCClient
::
AsyncSendBatchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
)
{
void
GRPCClient
::
AsyncSendBatchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
)
{
const
auto
ch
=
GetChannel
(
ep
);
BatchBarrierProcessor
*
s
=
new
BatchBarrierProcessor
(
ch
);
...
...
@@ -211,7 +196,8 @@ void RPCClient::AsyncSendBatchBarrier(const std::string& ep, int64_t time_out) {
req_count_
++
;
}
void
RPCClient
::
AsyncSendFetchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
)
{
void
GRPCClient
::
AsyncSendFetchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
)
{
const
auto
ch
=
GetChannel
(
ep
);
FetchBarrierProcessor
*
s
=
new
FetchBarrierProcessor
(
ch
);
s
->
Prepare
(
time_out
);
...
...
@@ -223,12 +209,12 @@ void RPCClient::AsyncSendFetchBarrier(const std::string& ep, int64_t time_out) {
req_count_
++
;
}
void
RPCClient
::
Wait
()
{
void
G
RPCClient
::
Wait
()
{
std
::
unique_lock
<
std
::
mutex
>
lk
(
sync_mutex_
);
sync_cond_
.
wait
(
lk
,
[
this
]
{
return
req_count_
==
0
;
});
}
void
RPCClient
::
Proceed
()
{
void
G
RPCClient
::
Proceed
()
{
void
*
tag
=
nullptr
;
bool
ok
=
false
;
...
...
@@ -251,7 +237,7 @@ void RPCClient::Proceed() {
}
}
std
::
shared_ptr
<
grpc
::
Channel
>
RPCClient
::
GetChannel
(
const
std
::
string
&
ep
)
{
std
::
shared_ptr
<
grpc
::
Channel
>
G
RPCClient
::
GetChannel
(
const
std
::
string
&
ep
)
{
// TODO(Yancey1989): make grpc client completely thread-safe
std
::
lock_guard
<
std
::
mutex
>
guard
(
chan_mutex_
);
auto
it
=
channels_
.
find
(
ep
);
...
...
paddle/fluid/operators/detail/grpc_client.h
浏览文件 @
15913d92
...
...
@@ -38,6 +38,7 @@ limitations under the License. */
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/operators/detail/rpc_client.h"
#include "paddle/fluid/operators/detail/sendrecvop_utils.h"
#include "paddle/fluid/platform/macros.h" // for DISABLE_COPY_AND_ASSIGN
...
...
@@ -164,47 +165,46 @@ class FetchBarrierProcessor : public BaseProcessor {
std
::
unique_ptr
<
sendrecv
::
SendRecvService
::
Stub
>
stub_
;
};
class
RPCClient
{
class
GRPCClient
:
public
RPCClient
{
public:
RPCClient
()
{}
~
RPCClient
();
G
RPCClient
()
{}
virtual
~
G
RPCClient
();
static
RPCClient
*
GetInstance
();
bool
AsyncSendVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
=
RPCClient
::
rpc_time_out
)
override
;
bool
AsyncSendVariable
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
=
600
*
1000
);
bool
AsyncGetVariable
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
=
600
*
1000
);
bool
AsyncGetVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
=
RPCClient
::
rpc_time_out
)
override
;
bool
AsyncPrefetchVar
iable
(
const
std
::
string
&
ep
,
bool
AsyncPrefetchVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
in_var_name
,
const
std
::
string
&
out_var_name
,
int64_t
time_out
=
600
*
1000
)
;
int64_t
time_out
=
RPCClient
::
rpc_time_out
)
override
;
void
AsyncSendBatchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
=
600
*
1000
);
void
AsyncSendBatchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
=
RPCClient
::
rpc_time_out
)
override
;
void
AsyncSendFetchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
=
600
*
1000
);
void
AsyncSendFetchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
=
RPCClient
::
rpc_time_out
)
override
;
void
Wait
();
void
Wait
()
override
;
protected:
void
InitImpl
()
override
;
private:
// InitEventLoop should only be called by Init()
void
InitEventLoop
();
private:
void
Proceed
();
std
::
shared_ptr
<
grpc
::
Channel
>
GetChannel
(
const
std
::
string
&
ep
);
// Init is called by GetInstance.
static
void
Init
();
private:
grpc
::
CompletionQueue
cq_
;
...
...
@@ -218,9 +218,7 @@ class RPCClient {
// mutex for GetChannel thread safety
std
::
mutex
chan_mutex_
;
static
std
::
unique_ptr
<
RPCClient
>
rpc_client_
;
static
std
::
once_flag
init_flag_
;
DISABLE_COPY_AND_ASSIGN
(
RPCClient
);
DISABLE_COPY_AND_ASSIGN
(
GRPCClient
);
};
}
// namespace detail
...
...
paddle/fluid/operators/detail/grpc_server_test.cc
浏览文件 @
15913d92
...
...
@@ -19,6 +19,7 @@ limitations under the License. */
#include "gtest/gtest.h"
#include "paddle/fluid/operators/detail/grpc_client.h"
#include "paddle/fluid/operators/detail/grpc_server.h"
#include "paddle/fluid/operators/detail/rpc_client.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/op_registry.h"
...
...
@@ -123,7 +124,8 @@ TEST(PREFETCH, CPU) {
std
::
thread
server_thread
(
StartServer
);
g_rpc_service
->
WaitServerReady
();
detail
::
RPCClient
*
client
=
detail
::
RPCClient
::
GetInstance
();
detail
::
RPCClient
*
client
=
detail
::
RPCClient
::
GetInstance
<
detail
::
GRPCClient
>
();
int
port
=
g_rpc_service
->
GetSelectedPort
();
std
::
string
ep
=
paddle
::
string
::
Sprintf
(
"127.0.0.1:%d"
,
port
);
...
...
@@ -137,7 +139,7 @@ TEST(PREFETCH, CPU) {
std
::
string
in_var_name
(
"ids"
);
std
::
string
out_var_name
(
"out"
);
client
->
AsyncPrefetchVar
iable
(
ep
,
ctx
,
scope
,
in_var_name
,
out_var_name
);
client
->
AsyncPrefetchVar
(
ep
,
ctx
,
scope
,
in_var_name
,
out_var_name
);
client
->
Wait
();
auto
var
=
scope
.
Var
(
out_var_name
);
auto
value
=
var
->
GetMutable
<
framework
::
SelectedRows
>
()
->
value
();
...
...
paddle/fluid/operators/detail/rpc_client.cc
0 → 100644
浏览文件 @
15913d92
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/detail/rpc_client.h"
namespace
paddle
{
namespace
operators
{
namespace
detail
{
std
::
once_flag
RPCClient
::
init_flag_
;
std
::
unique_ptr
<
RPCClient
>
RPCClient
::
rpc_client_
(
nullptr
);
}
// namespace detail
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/detail/rpc_client.h
0 → 100644
浏览文件 @
15913d92
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
namespace
paddle
{
namespace
operators
{
namespace
detail
{
class
RPCClient
{
public:
virtual
bool
AsyncSendVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
=
rpc_time_out
)
=
0
;
virtual
bool
AsyncGetVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
=
rpc_time_out
)
=
0
;
virtual
bool
AsyncPrefetchVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
in_var_name
,
const
std
::
string
&
out_var_name
,
int64_t
time_out
=
rpc_time_out
)
=
0
;
virtual
void
AsyncSendBatchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
=
rpc_time_out
)
=
0
;
virtual
void
AsyncSendFetchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
=
rpc_time_out
)
=
0
;
virtual
void
Wait
()
=
0
;
static
constexpr
int64_t
rpc_time_out
=
120
*
1000
;
template
<
typename
T
>
static
RPCClient
*
GetInstance
()
{
std
::
call_once
(
init_flag_
,
&
RPCClient
::
Init
<
T
>
);
return
rpc_client_
.
get
();
}
// Init is called by GetInstance.
template
<
typename
T
>
static
void
Init
()
{
if
(
rpc_client_
.
get
()
==
nullptr
)
{
rpc_client_
.
reset
(
new
T
());
rpc_client_
->
InitImpl
();
}
}
protected:
virtual
void
InitImpl
()
{}
private:
static
std
::
once_flag
init_flag_
;
static
std
::
unique_ptr
<
RPCClient
>
rpc_client_
;
};
}
// namespace detail
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/fetch_barrier_op.cc
浏览文件 @
15913d92
...
...
@@ -21,6 +21,7 @@ limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/grpc_client.h"
#include "paddle/fluid/operators/detail/rpc_client.h"
#include "paddle/fluid/platform/profiler.h"
namespace
paddle
{
...
...
@@ -43,7 +44,8 @@ class FetchBarrierOp : public framework::OperatorBase {
// For profiling
platform
::
RecordEvent
record_event
(
Type
(),
&
ctx
);
auto
rpc_client
=
detail
::
RPCClient
::
GetInstance
();
detail
::
RPCClient
*
rpc_client
=
detail
::
RPCClient
::
GetInstance
<
detail
::
GRPCClient
>
();
rpc_client
->
Wait
();
...
...
paddle/fluid/operators/gen_nccl_id_op.cc
浏览文件 @
15913d92
...
...
@@ -61,12 +61,13 @@ class GenNCCLIdOp : public framework::OperatorBase {
std
::
vector
<
std
::
string
>
endpoint_list
=
Attr
<
std
::
vector
<
std
::
string
>>
(
"endpoint_list"
);
detail
::
RPCClient
client
;
detail
::
RPCClient
*
client
=
detail
::
RPCClient
::
GetInstance
<
detail
::
GRPCClient
>
();
for
(
auto
&
ep
:
endpoint_list
)
{
VLOG
(
3
)
<<
"sending nccl id to "
<<
ep
;
client
.
AsyncSendVariable
(
ep
,
dev_ctx
,
*
scope
,
NCCL_ID_VARNAME
);
client
->
AsyncSendVar
(
ep
,
dev_ctx
,
*
scope
,
NCCL_ID_VARNAME
);
}
client
.
Wait
();
client
->
Wait
();
VLOG
(
3
)
<<
"sending completed..."
;
}
...
...
paddle/fluid/operators/prefetch_op.cc
浏览文件 @
15913d92
...
...
@@ -41,14 +41,14 @@ class PrefetchOp : public framework::OperatorBase {
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
&
ctx
=
*
pool
.
Get
(
place
);
auto
rpc_client
=
detail
::
RPCClient
::
GetInstance
();
detail
::
RPCClient
*
rpc_client
=
detail
::
RPCClient
::
GetInstance
<
detail
::
GRPCClient
>
();
for
(
size_t
i
=
0
;
i
<
ins
.
size
();
i
++
)
{
if
(
NeedSend
(
scope
,
ins
[
i
]))
{
VLOG
(
3
)
<<
"sending "
<<
ins
[
i
]
<<
" to "
<<
epmap
[
i
]
<<
" to get "
<<
outs
[
i
]
<<
" back"
;
rpc_client
->
AsyncPrefetchVariable
(
epmap
[
i
],
ctx
,
scope
,
ins
[
i
],
outs
[
i
]);
rpc_client
->
AsyncPrefetchVar
(
epmap
[
i
],
ctx
,
scope
,
ins
[
i
],
outs
[
i
]);
}
else
{
VLOG
(
3
)
<<
"don't send no-initialied variable: "
<<
ins
[
i
];
}
...
...
paddle/fluid/operators/recv_op.cc
浏览文件 @
15913d92
...
...
@@ -44,11 +44,12 @@ class RecvOp : public framework::OperatorBase {
// For profiling
platform
::
RecordEvent
record_event
(
Type
(),
&
ctx
);
auto
rpc_client
=
detail
::
RPCClient
::
GetInstance
();
detail
::
RPCClient
*
rpc_client
=
detail
::
RPCClient
::
GetInstance
<
detail
::
GRPCClient
>
();
for
(
size_t
i
=
0
;
i
<
outs
.
size
();
i
++
)
{
VLOG
(
3
)
<<
"getting "
<<
outs
[
i
]
<<
" from "
<<
epmap
[
i
];
rpc_client
->
AsyncGetVar
iable
(
epmap
[
i
],
ctx
,
scope
,
outs
[
i
]);
rpc_client
->
AsyncGetVar
(
epmap
[
i
],
ctx
,
scope
,
outs
[
i
]);
}
if
(
sync_mode
)
{
rpc_client
->
Wait
();
...
...
paddle/fluid/operators/send_barrier_op.cc
浏览文件 @
15913d92
...
...
@@ -44,7 +44,8 @@ class SendBarrierOp : public framework::OperatorBase {
// For profiling
platform
::
RecordEvent
record_event
(
Type
(),
&
ctx
);
auto
rpc_client
=
detail
::
RPCClient
::
GetInstance
();
detail
::
RPCClient
*
rpc_client
=
detail
::
RPCClient
::
GetInstance
<
detail
::
GRPCClient
>
();
VLOG
(
3
)
<<
"SendBarrierOp sync_mode:"
<<
sync_mode
;
...
...
paddle/fluid/operators/send_op.cc
浏览文件 @
15913d92
...
...
@@ -49,12 +49,13 @@ class SendOp : public framework::OperatorBase {
// For profiling
platform
::
RecordEvent
record_event
(
Type
(),
&
ctx
);
auto
rpc_client
=
detail
::
RPCClient
::
GetInstance
();
detail
::
RPCClient
*
rpc_client
=
detail
::
RPCClient
::
GetInstance
<
detail
::
GRPCClient
>
();
for
(
size_t
i
=
0
;
i
<
ins
.
size
();
i
++
)
{
if
(
NeedSend
(
scope
,
ins
[
i
]))
{
VLOG
(
3
)
<<
"sending "
<<
ins
[
i
]
<<
" to "
<<
epmap
[
i
];
rpc_client
->
AsyncSendVar
iable
(
epmap
[
i
],
ctx
,
scope
,
ins
[
i
]);
rpc_client
->
AsyncSendVar
(
epmap
[
i
],
ctx
,
scope
,
ins
[
i
]);
}
else
{
VLOG
(
3
)
<<
"don't send no-initialied variable: "
<<
ins
[
i
];
}
...
...
@@ -72,7 +73,7 @@ class SendOp : public framework::OperatorBase {
if
(
outs
.
size
()
>
0
)
{
for
(
size_t
i
=
0
;
i
<
outs
.
size
();
i
++
)
{
VLOG
(
2
)
<<
"getting "
<<
outs
[
i
]
<<
" from "
<<
epmap
[
i
];
rpc_client
->
AsyncGetVar
iable
(
epmap
[
i
],
ctx
,
scope
,
outs
[
i
]);
rpc_client
->
AsyncGetVar
(
epmap
[
i
],
ctx
,
scope
,
outs
[
i
]);
}
rpc_client
->
Wait
();
// tell pservers that current trainer have called fetch
...
...
paddle/fluid/operators/send_vars_op.cc
浏览文件 @
15913d92
...
...
@@ -45,14 +45,15 @@ class SendVarsOp : public framework::OperatorBase {
// For profiling
platform
::
RecordEvent
record_event
(
Type
(),
&
ctx
);
auto
rpc_client
=
detail
::
RPCClient
::
GetInstance
();
detail
::
RPCClient
*
rpc_client
=
detail
::
RPCClient
::
GetInstance
<
detail
::
GRPCClient
>
();
for
(
size_t
i
=
0
;
i
<
ins
.
size
();
i
++
)
{
if
(
NeedSend
(
scope
,
ins
[
i
]))
{
VLOG
(
3
)
<<
"sending "
<<
ins
[
i
]
<<
" to "
<<
epmap
[
i
];
// TODO(Yancey1989): we need to use an IO threadpool which has
// a larger number of threads than the computing threadpool.
rpc_client
->
AsyncSendVar
iable
(
epmap
[
i
],
ctx
,
scope
,
ins
[
i
]);
rpc_client
->
AsyncSendVar
(
epmap
[
i
],
ctx
,
scope
,
ins
[
i
]);
}
else
{
VLOG
(
3
)
<<
"don't send no-initialied variable: "
<<
ins
[
i
];
}
...
...
paddle/fluid/operators/tensorrt_engine_op.cc
浏览文件 @
15913d92
...
...
@@ -17,23 +17,93 @@
#include "paddle/fluid/operators/tensorrt_engine_op.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/inference/utils/singleton.h"
namespace
paddle
{
namespace
operators
{
using
inference
::
Singleton
;
using
inference
::
tensorrt
::
TRT_EngineManager
;
using
FluidDT
=
framework
::
proto
::
VarType_Type
;
using
TRT_DT
=
nvinfer1
::
DataType
;
namespace
{
TRT_DT
FluidDataType2TRT
(
FluidDT
type
)
{
switch
(
type
)
{
case
FluidDT
::
VarType_Type_FP32
:
return
TRT_DT
::
kFLOAT
;
case
FluidDT
::
VarType_Type_INT32
:
return
TRT_DT
::
kINT32
;
default:
return
TRT_DT
::
kINT32
;
}
PADDLE_THROW
(
"unkown type"
);
return
TRT_DT
::
kINT32
;
}
nvinfer1
::
Dims
Vec2TRT_Dims
(
const
std
::
vector
<
int64_t
>
&
shape
)
{
PADDLE_ENFORCE_GT
(
shape
.
size
(),
1UL
,
"TensorRT' tensor input requires at least 2 dimensions"
);
PADDLE_ENFORCE_LE
(
shape
.
size
(),
4UL
,
"TensorRT' tensor input requires at most 4 dimensions"
);
switch
(
shape
.
size
())
{
case
2
:
return
nvinfer1
::
Dims2
(
shape
[
0
],
shape
[
1
]);
case
3
:
return
nvinfer1
::
Dims3
(
shape
[
0
],
shape
[
1
],
shape
[
2
]);
case
4
:
return
nvinfer1
::
Dims4
(
shape
[
0
],
shape
[
1
],
shape
[
2
],
shape
[
3
]);
default:
return
nvinfer1
::
Dims
();
}
return
nvinfer1
::
Dims
();
}
}
// namespace
template
<
typename
DeviceContext
,
typename
T
>
void
paddle
::
operators
::
TensorRTEngineKernel
<
DeviceContext
,
T
>::
Prepare
(
const
framework
::
ExecutionContext
&
context
)
const
{
VLOG
(
4
)
<<
"Prepare engine"
;
// Get the ProgramDesc and pass to convert.
const
auto
&
block
=
context
.
Attr
<
framework
::
proto
::
BlockDesc
>
(
"subgraph"
);
framework
::
proto
::
BlockDesc
block_desc
;
block_desc
.
ParseFromString
(
context
.
Attr
<
std
::
string
>
(
"subgraph"
));
max_batch_
=
context
.
Attr
<
int
>
(
"max_batch"
);
auto
max_workspace
=
context
.
Attr
<
int
>
(
"max_workspace"
);
engine_
.
reset
(
new
inference
::
tensorrt
::
TensorRTEngine
(
max_batch_
,
max_workspace
,
nullptr
));
engine_
=
Singleton
<
TRT_EngineManager
>::
Global
().
Create
(
max_batch_
,
max_workspace
,
&
stream_
);
engine_
->
InitNetwork
();
framework
::
BlockDesc
block
(
nullptr
/*programdesc*/
,
&
block_desc
);
// Add inputs
VLOG
(
4
)
<<
"declare inputs"
;
for
(
auto
&
input
:
context
.
Inputs
(
"Xs"
))
{
VLOG
(
4
)
<<
"declare input "
<<
input
;
auto
*
var
=
block
.
FindVar
(
input
);
PADDLE_ENFORCE_EQ
(
var
->
GetType
(),
FluidDT
::
VarType_Type_LOD_TENSOR
,
"TensorRT engine only takes LoDTensor as input"
);
auto
shape
=
var
->
GetShape
();
engine_
->
DeclareInput
(
input
,
FluidDataType2TRT
(
var
->
Proto
()
->
type
().
lod_tensor
().
tensor
().
data_type
()),
Vec2TRT_Dims
(
var
->
GetShape
()));
}
// TODO(Superjomn) parameters should be passed after analysised from outside.
inference
::
Singleton
<
inference
::
tensorrt
::
OpConverter
>::
Global
().
ConvertBlock
(
block
,
{},
context
.
scope
(),
engine_
.
get
());
block_desc
,
{},
context
.
scope
(),
engine_
);
// Add outputs
VLOG
(
4
)
<<
"declare outputs"
;
for
(
auto
&
output
:
context
.
Outputs
(
"Ys"
))
{
VLOG
(
4
)
<<
"declare output "
<<
output
;
engine_
->
DeclareOutput
(
output
);
}
engine_
->
FreezeNetwork
();
}
...
...
@@ -42,7 +112,9 @@ class TensorRTEngineOpMaker : public framework::OpProtoAndCheckerMaker {
void
Make
()
override
{
AddInput
(
"Xs"
,
"A list of inputs."
).
AsDuplicable
();
AddOutput
(
"Ys"
,
"A list of outputs"
).
AsDuplicable
();
AddAttr
<
std
::
string
>
(
"subgraph"
,
"the subgraph"
);
AddAttr
<
std
::
string
>
(
"subgraph"
,
"the subgraph."
);
AddAttr
<
int
>
(
"max_batch"
,
"the maximum batch size."
);
AddAttr
<
int
>
(
"max_workspace"
,
"the maximum batch size."
);
AddComment
(
"TensorRT engine operator."
);
}
};
...
...
paddle/fluid/operators/tensorrt_engine_op.h
浏览文件 @
15913d92
...
...
@@ -32,9 +32,12 @@ class TensorRTEngineOp : public framework::OperatorWithKernel {
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
input0
=
ctx
.
Inputs
(
"Xs"
).
front
();
framework
::
OpKernelType
kt
=
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"pre_ids"
)
->
type
()),
framework
::
ToDataType
(
ctx
.
scope
()
.
FindVar
(
input0
)
->
GetMutable
<
framework
::
LoDTensor
>
()
->
type
()),
platform
::
CPUPlace
());
return
kt
;
}
...
...
@@ -50,17 +53,16 @@ class TensorRTEngineKernel : public framework::OpKernel<T> {
auto
input_names
=
context
.
op
().
Inputs
(
"Xs"
);
PADDLE_ENFORCE
(
!
input_names
.
empty
(),
"should pass more than one inputs"
);
// Try to determine a batch_size
auto
*
tensor0
=
context
.
Input
<
framework
::
LoDTensor
>
(
input_names
.
front
());
PADDLE_ENFORCE_NOT_NULL
(
tensor0
);
int
batch_size
=
tensor0
->
dims
()[
0
];
auto
&
tensor0
=
inference
::
analysis
::
GetFromScope
<
framework
::
LoDTensor
>
(
context
.
scope
(),
input_names
.
front
()
);
int
batch_size
=
tensor0
.
dims
()[
0
];
PADDLE_ENFORCE_LE
(
batch_size
,
max_batch_
);
// Convert input tensor from fluid to engine.
for
(
const
auto
&
x
:
context
.
Inputs
(
"Xs"
))
{
// convert input and copy to TRT engine's buffer
auto
*
v
=
context
.
scope
().
FindVar
(
x
);
PADDLE_ENFORCE_NOT_NULL
(
v
,
"no variable called %s"
,
x
);
auto
&
t
=
v
->
Get
<
framework
::
LoDTensor
>
();
auto
&
t
=
inference
::
analysis
::
GetFromScope
<
framework
::
LoDTensor
>
(
context
.
scope
(),
x
);
if
(
platform
::
is_cpu_place
(
t
.
place
()))
{
engine_
->
SetInputFromCPU
(
x
,
static_cast
<
const
void
*>
(
t
.
data
<
void
>
()),
t
.
memory_size
());
...
...
@@ -86,13 +88,18 @@ class TensorRTEngineKernel : public framework::OpKernel<T> {
fluid_t
->
Resize
(
framework
::
make_ddim
(
ddim
));
auto
size
=
inference
::
analysis
::
AccuDims
(
dims
.
d
,
dims
.
nbDims
);
if
(
platform
::
is_cpu_place
(
fluid_t
->
place
()))
{
// TODO(Superjomn) change this float to dtype size.
engine_
->
GetOutputInCPU
(
y
,
fluid_t
->
mutable_data
<
float
>
(
platform
::
CPUPlace
()),
size
);
y
,
fluid_t
->
mutable_data
<
float
>
(
platform
::
CPUPlace
()),
size
*
sizeof
(
float
));
}
else
{
engine_
->
GetOutputInGPU
(
y
,
fluid_t
->
mutable_data
<
float
>
(
platform
::
CUDAPlace
()),
size
);
y
,
fluid_t
->
mutable_data
<
float
>
(
platform
::
CUDAPlace
()),
size
*
sizeof
(
float
));
}
}
cudaStreamSynchronize
(
stream_
);
}
protected:
...
...
@@ -100,7 +107,8 @@ class TensorRTEngineKernel : public framework::OpKernel<T> {
void
Prepare
(
const
framework
::
ExecutionContext
&
context
)
const
;
private:
mutable
std
::
unique_ptr
<
inference
::
tensorrt
::
TensorRTEngine
>
engine_
;
mutable
cudaStream_t
stream_
;
mutable
inference
::
tensorrt
::
TensorRTEngine
*
engine_
{
nullptr
};
mutable
int
max_batch_
{
0
};
};
...
...
paddle/fluid/operators/tensorrt_engine_op_test.cc
0 → 100644
浏览文件 @
15913d92
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/convert/ut_helper.h"
USE_CPU_ONLY_OP
(
tensorrt_engine
);
namespace
paddle
{
namespace
operators
{
namespace
{
void
CreateCPUTensor
(
framework
::
Scope
*
scope
,
const
std
::
string
&
name
,
const
std
::
vector
<
int64_t
>&
shape
)
{
auto
*
var
=
scope
->
Var
(
name
);
auto
*
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
dims
=
framework
::
make_ddim
(
shape
);
tensor
->
Resize
(
dims
);
platform
::
CPUPlace
place
;
platform
::
CPUDeviceContext
ctx
(
place
);
inference
::
tensorrt
::
RandomizeTensor
(
tensor
,
place
,
ctx
);
}
void
AddTensorToBlockDesc
(
framework
::
proto
::
BlockDesc
*
block
,
const
std
::
string
&
name
,
const
std
::
vector
<
int64_t
>&
shape
)
{
using
framework
::
proto
::
VarType
;
auto
*
var
=
block
->
add_vars
();
framework
::
VarDesc
desc
(
name
);
desc
.
SetType
(
VarType
::
LOD_TENSOR
);
desc
.
SetDataType
(
VarType
::
FP32
);
desc
.
SetShape
(
shape
);
*
var
=
*
desc
.
Proto
();
}
template
<
typename
T
>
void
SetAttr
(
framework
::
proto
::
OpDesc
*
op
,
const
std
::
string
&
name
,
const
T
&
data
);
template
<
>
void
SetAttr
<
std
::
string
>
(
framework
::
proto
::
OpDesc
*
op
,
const
std
::
string
&
name
,
const
std
::
string
&
data
)
{
auto
*
attr
=
op
->
add_attrs
();
attr
->
set_name
(
name
);
attr
->
set_type
(
paddle
::
framework
::
proto
::
AttrType
::
STRING
);
attr
->
set_s
(
data
);
}
template
<
>
void
SetAttr
<
int
>
(
framework
::
proto
::
OpDesc
*
op
,
const
std
::
string
&
name
,
const
int
&
data
)
{
auto
*
attr
=
op
->
add_attrs
();
attr
->
set_name
(
name
);
attr
->
set_type
(
paddle
::
framework
::
proto
::
AttrType
::
INT
);
attr
->
set_i
(
data
);
}
template
<
>
void
SetAttr
<
int64_t
>
(
framework
::
proto
::
OpDesc
*
op
,
const
std
::
string
&
name
,
const
int64_t
&
data
)
{
auto
*
attr
=
op
->
add_attrs
();
attr
->
set_name
(
name
);
attr
->
set_type
(
paddle
::
framework
::
proto
::
AttrType
::
LONG
);
attr
->
set_l
(
data
);
}
}
// namespace
TEST
(
TensorRTEngineOp
,
manual
)
{
framework
::
ProgramDesc
program
;
auto
*
block_
=
program
.
Proto
()
->
add_blocks
();
block_
->
set_idx
(
0
);
block_
->
set_parent_idx
(
-
1
);
LOG
(
INFO
)
<<
"create block desc"
;
framework
::
BlockDesc
block_desc
(
&
program
,
block_
);
LOG
(
INFO
)
<<
"create mul op"
;
auto
*
mul
=
block_desc
.
AppendOp
();
mul
->
SetType
(
"mul"
);
mul
->
SetInput
(
"X"
,
std
::
vector
<
std
::
string
>
({
"x"
}));
// 2 x 4
mul
->
SetInput
(
"Y"
,
std
::
vector
<
std
::
string
>
({
"y"
}));
// 4 x 6
mul
->
SetOutput
(
"Out"
,
std
::
vector
<
std
::
string
>
({
"z"
}));
// 2 x 6
LOG
(
INFO
)
<<
"create fc op"
;
auto
*
fc
=
block_desc
.
AppendOp
();
fc
->
SetType
(
"mul"
);
fc
->
SetInput
(
"X"
,
std
::
vector
<
std
::
string
>
({
"z"
}));
fc
->
SetInput
(
"Y"
,
std
::
vector
<
std
::
string
>
({
"y0"
}));
// 6 x 8
fc
->
SetOutput
(
"Out"
,
std
::
vector
<
std
::
string
>
({
"z0"
}));
// 2 x 8
// Set inputs' variable shape in BlockDesc
AddTensorToBlockDesc
(
block_
,
"x"
,
std
::
vector
<
int64_t
>
({
2
,
4
}));
AddTensorToBlockDesc
(
block_
,
"y"
,
std
::
vector
<
int64_t
>
({
4
,
6
}));
AddTensorToBlockDesc
(
block_
,
"y0"
,
std
::
vector
<
int64_t
>
({
6
,
8
}));
AddTensorToBlockDesc
(
block_
,
"z"
,
std
::
vector
<
int64_t
>
({
2
,
6
}));
// It is wired, need to copy manually.
*
block_
->
add_ops
()
=
*
mul
->
Proto
();
*
block_
->
add_ops
()
=
*
fc
->
Proto
();
ASSERT_EQ
(
block_
->
ops_size
(),
2
);
LOG
(
INFO
)
<<
"create tensorrt desc"
;
framework
::
OpDesc
engine_op_desc
(
nullptr
);
engine_op_desc
.
SetType
(
"tensorrt_engine"
);
engine_op_desc
.
SetInput
(
"Xs"
,
std
::
vector
<
std
::
string
>
({
"x"
,
"y"
,
"y0"
}));
engine_op_desc
.
SetOutput
(
"Ys"
,
std
::
vector
<
std
::
string
>
({
"z0"
}));
SetAttr
<
std
::
string
>
(
engine_op_desc
.
Proto
(),
"subgraph"
,
block_
->
SerializeAsString
());
SetAttr
<
int
>
(
engine_op_desc
.
Proto
(),
"max_batch"
,
30
);
SetAttr
<
int
>
(
engine_op_desc
.
Proto
(),
"max_workspace"
,
1
<<
10
);
LOG
(
INFO
)
<<
"create engine op"
;
auto
engine_op
=
framework
::
OpRegistry
::
CreateOp
(
*
engine_op_desc
.
Proto
());
framework
::
Scope
scope
;
platform
::
CPUPlace
place
;
platform
::
CPUDeviceContext
ctx
(
place
);
// Prepare variables.
CreateCPUTensor
(
&
scope
,
"x"
,
std
::
vector
<
int64_t
>
({
2
,
4
}));
CreateCPUTensor
(
&
scope
,
"y"
,
std
::
vector
<
int64_t
>
({
4
,
6
}));
CreateCPUTensor
(
&
scope
,
"z"
,
std
::
vector
<
int64_t
>
({
2
,
6
}));
CreateCPUTensor
(
&
scope
,
"y0"
,
std
::
vector
<
int64_t
>
({
6
,
8
}));
CreateCPUTensor
(
&
scope
,
"z0"
,
std
::
vector
<
int64_t
>
({
2
,
8
}));
// Execute them.
LOG
(
INFO
)
<<
"engine_op run"
;
engine_op
->
Run
(
scope
,
place
);
}
}
// namespace operators
}
// namespace paddle
USE_TRT_CONVERTER
(
mul
)
USE_TRT_CONVERTER
(
fc
)
paddle/fluid/operators/test_send_nccl_id.cc
浏览文件 @
15913d92
...
...
@@ -87,9 +87,10 @@ TEST(SendNcclId, GrpcServer) {
int
port
=
g_rpc_service
->
GetSelectedPort
();
std
::
string
ep
=
string
::
Sprintf
(
"127.0.0.1:%d"
,
port
);
detail
::
RPCClient
*
client
=
detail
::
RPCClient
::
GetInstance
();
LOG
(
INFO
)
<<
"connect to server "
<<
ep
;
client
->
AsyncSendVariable
(
ep
,
dev_ctx
,
scope
,
NCCL_ID_VARNAME
);
detail
::
RPCClient
*
client
=
detail
::
RPCClient
::
GetInstance
<
detail
::
GRPCClient
>
();
LOG
(
INFO
)
<<
"connect to server"
<<
ep
;
client
->
AsyncSendVar
(
ep
,
dev_ctx
,
scope
,
NCCL_ID_VARNAME
);
client
->
Wait
();
client
->
AsyncSendBatchBarrier
(
ep
);
client
->
Wait
();
...
...
paddle/fluid/platform/assert.h
浏览文件 @
15913d92
...
...
@@ -17,7 +17,7 @@ limitations under the License. */
#define STRINGIFY(x) #x
#define TOSTRING(x) STRINGIFY(x)
#if defined(__
APPLE__) && defined(__CUDA_ARCH__) && !defined(NDEBUG
)
#if defined(__
CUDA_ARCH__
)
#include <stdio.h>
#define PADDLE_ASSERT(e) \
do { \
...
...
@@ -38,6 +38,9 @@ limitations under the License. */
} while (0)
#else
#include <assert.h>
#define PADDLE_ASSERT(e) assert(e)
// For cuda, the assertions can affect performance and it is therefore
// recommended to disable them in production code
// https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#assertion
#define PADDLE_ASSERT(e) assert((e))
#define PADDLE_ASSERT_MSG(e, m) assert((e) && (m))
#endif
paddle/fluid/platform/cudnn_helper.h
浏览文件 @
15913d92
...
...
@@ -81,6 +81,27 @@ enum class PoolingMode {
kMaximumDeterministic
,
};
#if CUDNN_VERSION < 6000
#pragma message "CUDNN version under 6.0 is supported at best effort."
#pragma message "We strongly encourage you to move to 6.0 and above."
#pragma message "This message is intended to annoy you enough to update."
#pragma message \
"please see https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/"
inline
cudnnPoolingMode_t
GetPoolingMode
(
const
PoolingMode
&
mode
)
{
switch
(
mode
)
{
case
PoolingMode
::
kMaximumDeterministic
:
return
CUDNN_POOLING_MAX
;
case
PoolingMode
::
kAverage
:
return
CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING
;
case
PoolingMode
::
kMaximum
:
return
CUDNN_POOLING_MAX
;
default:
PADDLE_THROW
(
"Unexpected pooling mode."
);
}
}
#else
inline
cudnnPoolingMode_t
GetPoolingMode
(
const
PoolingMode
&
mode
)
{
switch
(
mode
)
{
case
PoolingMode
::
kMaximumDeterministic
:
...
...
@@ -93,6 +114,7 @@ inline cudnnPoolingMode_t GetPoolingMode(const PoolingMode& mode) {
PADDLE_THROW
(
"Unexpected pooling mode."
);
}
}
#endif // CUDNN_VERSION < 6000
template
<
typename
T
>
class
CudnnDataType
;
...
...
paddle/scripts/paddle_build.sh
浏览文件 @
15913d92
...
...
@@ -447,7 +447,7 @@ EOF
# run paddle version to install python packages first
RUN apt-get update &&
\
${
NCCL_DEPS
}
\
apt-get install -y wget python-pip dmidecode python-tk && easy_install -U pip &&
\
apt-get install -y wget python-pip
python-opencv
dmidecode python-tk && easy_install -U pip &&
\
pip install /*.whl; apt-get install -f -y &&
\
apt-get clean -y &&
\
rm -f /*.whl &&
\
...
...
python/paddle/fluid/tests/test_concurrency.py
→
python/paddle/fluid/tests/
no_
test_concurrency.py
浏览文件 @
15913d92
文件已移动
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
15913d92
...
...
@@ -43,12 +43,10 @@ list(REMOVE_ITEM TEST_OPS test_warpctc_op)
list
(
REMOVE_ITEM TEST_OPS test_dist_train
)
list
(
REMOVE_ITEM TEST_OPS test_parallel_executor_crf
)
list
(
REMOVE_ITEM TEST_OPS test_parallel_executor_fetch_feed
)
# TODO(wuyi): this test hungs on CI, will add it back later
list
(
REMOVE_ITEM TEST_OPS test_listen_and_serv_op
)
foreach
(
TEST_OP
${
TEST_OPS
}
)
py_test_modules
(
${
TEST_OP
}
MODULES
${
TEST_OP
}
)
endforeach
(
TEST_OP
)
py_test_modules
(
test_warpctc_op MODULES test_warpctc_op ENVS FLAGS_warpctc_dir=
${
WARPCTC_LIB_DIR
}
SERIAL
)
py_test_modules
(
test_dist_train MODULES test_dist_train SERIAL
)
# FIXME(Yancey1989): this test would cost much more time on CUDAPlace
# since load cudnn libraries, so we use a longer timeout to make this
# unit test stability.
set_tests_properties
(
test_listen_and_serv_op PROPERTIES TIMEOUT 30
)
python/paddle/fluid/tests/unittests/test_mul_op.py
浏览文件 @
15913d92
...
...
@@ -22,8 +22,8 @@ class TestMulOp(OpTest):
def
setUp
(
self
):
self
.
op_type
=
"mul"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
84
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
84
,
100
)).
astype
(
"float32"
)
'X'
:
np
.
random
.
random
((
2
,
5
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
5
,
3
)).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
dot
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
...
...
@@ -46,13 +46,16 @@ class TestMulOp2(OpTest):
def
setUp
(
self
):
self
.
op_type
=
"mul"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
15
,
4
,
12
,
10
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
4
,
30
,
8
,
2
,
9
)).
astype
(
"float32"
)
'X'
:
np
.
random
.
random
((
3
,
4
,
4
,
3
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
2
,
6
,
1
,
2
,
3
)).
astype
(
"float32"
)
}
self
.
attrs
=
{
'x_num_col_dims'
:
2
,
'y_num_col_dims'
:
2
}
result
=
np
.
dot
(
self
.
inputs
[
'X'
].
reshape
(
15
*
4
,
12
*
10
),
self
.
inputs
[
'Y'
].
reshape
(
4
*
30
,
8
*
2
*
9
))
result
=
result
.
reshape
(
15
,
4
,
8
,
2
,
9
)
self
.
attrs
=
{
'x_num_col_dims'
:
2
,
'y_num_col_dims'
:
2
,
}
result
=
np
.
dot
(
self
.
inputs
[
'X'
].
reshape
(
3
*
4
,
4
*
3
),
self
.
inputs
[
'Y'
].
reshape
(
2
*
6
,
1
*
2
*
3
))
result
=
result
.
reshape
(
3
,
4
,
1
,
2
,
3
)
self
.
outputs
=
{
'Out'
:
result
}
def
test_check_output
(
self
):
...
...
@@ -73,9 +76,9 @@ class TestMulOp2(OpTest):
class
TestFP16MulOp1
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"mul"
x
=
np
.
random
.
random
((
3
2
,
84
)).
astype
(
"float16"
)
y
=
np
.
random
.
random
((
84
,
100
)).
astype
(
"float16"
)
self
.
inputs
=
{
'X'
:
x
.
view
(
np
.
uint16
),
'Y'
:
y
.
view
(
np
.
uin
t16
)}
x
=
np
.
random
.
random
((
3
,
5
)).
astype
(
"float16"
)
y
=
np
.
random
.
random
((
5
,
4
)).
astype
(
"float16"
)
self
.
inputs
=
{
'X'
:
x
.
view
(
np
.
float16
),
'Y'
:
y
.
view
(
np
.
floa
t16
)}
self
.
outputs
=
{
'Out'
:
np
.
dot
(
x
,
y
)}
def
test_check_output
(
self
):
...
...
@@ -88,13 +91,15 @@ class TestFP16MulOp1(OpTest):
class
TestFP16MulOp2
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"mul"
x
=
np
.
random
.
random
((
15
,
4
,
12
,
10
)).
astype
(
"float16"
)
y
=
np
.
random
.
random
((
4
,
30
,
8
,
2
,
9
)).
astype
(
"float16"
)
self
.
inputs
=
{
'X'
:
x
.
view
(
np
.
uint16
),
'Y'
:
y
.
view
(
np
.
uint16
)}
self
.
attrs
=
{
'x_num_col_dims'
:
2
,
'y_num_col_dims'
:
2
}
result
=
np
.
dot
(
x
.
reshape
(
15
*
4
,
12
*
10
),
y
.
reshape
(
4
*
30
,
8
*
2
*
9
))
result
=
result
.
reshape
(
15
,
4
,
8
,
2
,
9
)
x
=
np
.
random
.
random
((
3
,
4
,
4
,
3
)).
astype
(
"float16"
)
y
=
np
.
random
.
random
((
2
,
6
,
1
,
2
,
3
)).
astype
(
"float16"
)
self
.
inputs
=
{
'X'
:
x
.
view
(
np
.
float16
),
'Y'
:
y
.
view
(
np
.
float16
)}
self
.
attrs
=
{
'x_num_col_dims'
:
2
,
'y_num_col_dims'
:
2
,
}
result
=
np
.
dot
(
x
.
reshape
(
3
*
4
,
4
*
3
),
y
.
reshape
(
2
*
6
,
1
*
2
*
3
))
result
=
result
.
reshape
(
3
,
4
,
1
,
2
,
3
)
self
.
outputs
=
{
'Out'
:
result
}
def
test_check_output
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录