Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
1483ea23
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1483ea23
编写于
9月 14, 2020
作者:
J
joanna.wozna.intel
提交者:
GitHub
9月 14, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add bfloat16 passes (#26999)
上级
6947a58a
变更
14
显示空白变更内容
内联
并排
Showing
14 changed file
with
744 addition
and
2 deletion
+744
-2
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+4
-0
paddle/fluid/framework/ir/graph_pattern_detector.cc
paddle/fluid/framework/ir/graph_pattern_detector.cc
+76
-0
paddle/fluid/framework/ir/graph_pattern_detector.h
paddle/fluid/framework/ir/graph_pattern_detector.h
+41
-0
paddle/fluid/framework/ir/mkldnn/cpu_bfloat16_pass.cc
paddle/fluid/framework/ir/mkldnn/cpu_bfloat16_pass.cc
+159
-0
paddle/fluid/framework/ir/mkldnn/cpu_bfloat16_pass.h
paddle/fluid/framework/ir/mkldnn/cpu_bfloat16_pass.h
+34
-0
paddle/fluid/framework/ir/mkldnn/cpu_bfloat16_pass_tester.cc
paddle/fluid/framework/ir/mkldnn/cpu_bfloat16_pass_tester.cc
+145
-0
paddle/fluid/framework/ir/mkldnn/cpu_bfloat16_placement_pass.cc
.../fluid/framework/ir/mkldnn/cpu_bfloat16_placement_pass.cc
+91
-0
paddle/fluid/framework/ir/mkldnn/cpu_bfloat16_placement_pass.h
...e/fluid/framework/ir/mkldnn/cpu_bfloat16_placement_pass.h
+38
-0
paddle/fluid/framework/ir/mkldnn/cpu_bfloat16_placement_pass_tester.cc
...framework/ir/mkldnn/cpu_bfloat16_placement_pass_tester.cc
+132
-0
paddle/fluid/inference/api/paddle_pass_builder.cc
paddle/fluid/inference/api/paddle_pass_builder.cc
+4
-0
paddle/fluid/operators/mkldnn/quantize_mkldnn_op.cc
paddle/fluid/operators/mkldnn/quantize_mkldnn_op.cc
+10
-2
paddle/fluid/operators/quantize_op.cc
paddle/fluid/operators/quantize_op.cc
+2
-0
paddle/fluid/platform/mkldnn_helper.h
paddle/fluid/platform/mkldnn_helper.h
+7
-0
paddle/fluid/pybind/protobuf.cc
paddle/fluid/pybind/protobuf.cc
+1
-0
未找到文件。
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
1483ea23
...
...
@@ -102,6 +102,8 @@ if(WITH_MKLDNN)
pass_library
(
conv_concat_relu_mkldnn_fuse_pass inference DIR mkldnn
)
pass_library
(
conv_elementwise_add_mkldnn_fuse_pass inference DIR mkldnn
)
pass_library
(
scale_matmul_fuse_pass inference DIR mkldnn
)
pass_library
(
cpu_bfloat16_placement_pass inference DIR mkldnn
)
pass_library
(
cpu_bfloat16_pass inference DIR mkldnn
)
pass_library
(
fc_mkldnn_pass inference DIR mkldnn
)
pass_library
(
cpu_quantize_placement_pass base DIR mkldnn
)
pass_library
(
cpu_quantize_pass inference DIR mkldnn
)
...
...
@@ -162,4 +164,6 @@ endif()
cc_test
(
test_cpu_quantize_squash_pass SRCS mkldnn/cpu_quantize_squash_pass_tester.cc DEPS cpu_quantize_squash_pass naive_executor
)
cc_test
(
test_reshape_transpose_matmul_mkldnn_fuse_pass SRCS mkldnn/reshape_transpose_matmul_mkldnn_fuse_pass_tester.cc DEPS reshape_transpose_matmul_mkldnn_fuse_pass
)
cc_test
(
test_matmul_transpose_reshape_fuse_pass SRCS mkldnn/matmul_transpose_reshape_fuse_pass_tester.cc DEPS matmul_transpose_reshape_fuse_pass
)
cc_test
(
test_cpu_bfloat16_placement_pass SRCS mkldnn/cpu_bfloat16_placement_pass_tester.cc DEPS cpu_bfloat16_placement_pass
)
cc_test
(
test_cpu_bfloat16_pass SRCS mkldnn/cpu_bfloat16_pass_tester.cc DEPS cpu_bfloat16_pass
)
endif
()
paddle/fluid/framework/ir/graph_pattern_detector.cc
浏览文件 @
1483ea23
...
...
@@ -1892,6 +1892,82 @@ PDNode *patterns::QuantizePlacement::operator()(
return
op
;
}
PDNode
*
patterns
::
Bfloat16Placement
::
operator
()(
const
std
::
unordered_set
<
std
::
string
>
&
bfloat16_enabled_op_types
)
{
std
::
unordered_set
<
std
::
string
>
supported_op_types
=
std
::
unordered_set
<
std
::
string
>
();
if
(
!
bfloat16_enabled_op_types
.
empty
())
{
supported_op_types
=
bfloat16_enabled_op_types
;
}
auto
*
op
=
pattern
->
NewNode
(
op_repr
())
->
assert_is_ops
(
supported_op_types
);
return
op
;
}
PDNode
*
patterns
::
OrphanedBfloat16
::
operator
()()
{
auto
*
prev_op
=
pattern
->
NewNode
(
prev_op_repr
())
->
assert_is_op
();
prev_op
->
assert_more
([
&
](
Node
*
node
)
{
return
node
->
Op
()
->
GetAttrIfExists
<
std
::
string
>
(
"mkldnn_data_type"
)
==
"float32"
;
});
auto
*
prev_out
=
pattern
->
NewNode
(
prev_out_repr
())
->
AsOutput
();
auto
*
op
=
pattern
->
NewNode
(
op_repr
())
->
assert_is_op
();
op
->
assert_more
([
&
](
Node
*
node
)
{
return
node
->
Op
()
->
GetAttrIfExists
<
std
::
string
>
(
"mkldnn_data_type"
)
==
"bfloat16"
;
});
auto
*
op_out
=
pattern
->
NewNode
(
op_out_repr
())
->
AsOutput
();
auto
*
next_op
=
pattern
->
NewNode
(
next_op_repr
())
->
assert_is_op
();
next_op
->
assert_more
([
&
](
Node
*
node
)
{
return
node
->
Op
()
->
GetAttrIfExists
<
std
::
string
>
(
"mkldnn_data_type"
)
==
"float32"
;
});
prev_op
->
LinksTo
({
prev_out
});
op
->
LinksFrom
({
prev_out
}).
LinksTo
({
op_out
});
next_op
->
LinksFrom
({
op_out
});
return
next_op
;
}
PDNode
*
patterns
::
LastBfloat16Ops
::
operator
()()
{
auto
*
op
=
pattern
->
NewNode
(
op_repr
())
->
assert_is_op
();
op
->
assert_more
([
&
](
Node
*
node
)
{
return
node
->
Op
()
->
GetAttrIfExists
<
std
::
string
>
(
"mkldnn_data_type"
)
==
"bfloat16"
;
});
auto
*
op_out
=
pattern
->
NewNode
(
op_out_repr
())
->
AsOutput
();
auto
*
next_op
=
pattern
->
NewNode
(
next_op_repr
())
->
assert_is_op
();
next_op
->
assert_more
([
&
](
Node
*
node
)
{
return
node
->
Op
()
->
GetAttrIfExists
<
std
::
string
>
(
"mkldnn_data_type"
)
!=
"bfloat16"
;
});
op
->
LinksTo
({
op_out
});
next_op
->
LinksFrom
({
op_out
});
return
next_op
;
}
PDNode
*
patterns
::
FirstBfloat16Ops
::
operator
()()
{
auto
*
prev_op
=
pattern
->
NewNode
(
prev_op_repr
())
->
assert_is_op
();
prev_op
->
assert_more
([
&
](
Node
*
node
)
{
return
node
->
Op
()
->
GetAttrIfExists
<
std
::
string
>
(
"mkldnn_data_type"
)
!=
"bfloat16"
;
});
auto
*
op_in
=
pattern
->
NewNode
(
op_in_repr
())
->
AsOutput
();
auto
*
op
=
pattern
->
NewNode
(
op_repr
())
->
assert_is_op
();
op
->
assert_more
([
&
](
Node
*
node
)
{
return
node
->
Op
()
->
GetAttrIfExists
<
std
::
string
>
(
"mkldnn_data_type"
)
==
"bfloat16"
;
});
prev_op
->
LinksTo
({
op_in
});
op
->
LinksFrom
({
op_in
});
return
op
;
}
PDNode
*
patterns
::
MKLDNNInPlace
::
operator
()()
{
const
std
::
unordered_set
<
std
::
string
>
&
supported_op_types
=
{
"abs"
,
...
...
paddle/fluid/framework/ir/graph_pattern_detector.h
浏览文件 @
1483ea23
...
...
@@ -1129,6 +1129,47 @@ struct QuantizePlacement : public PatternBase {
PATTERN_DECL_NODE
(
op
);
};
struct
Bfloat16Placement
:
public
PatternBase
{
Bfloat16Placement
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"bfloat16_placement"
)
{}
PDNode
*
operator
()(
const
std
::
unordered_set
<
std
::
string
>&
bfloat16_enabled_op_types
);
PATTERN_DECL_NODE
(
op
);
};
struct
OrphanedBfloat16
:
public
PatternBase
{
OrphanedBfloat16
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"orphaned_bfloat16"
)
{}
PDNode
*
operator
()();
PATTERN_DECL_NODE
(
prev_op
);
PATTERN_DECL_NODE
(
prev_out
);
PATTERN_DECL_NODE
(
op
);
PATTERN_DECL_NODE
(
op_out
);
PATTERN_DECL_NODE
(
next_op
);
};
struct
LastBfloat16Ops
:
public
PatternBase
{
LastBfloat16Ops
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"last_bfloat16_ops"
)
{}
PDNode
*
operator
()();
PATTERN_DECL_NODE
(
op
);
PATTERN_DECL_NODE
(
op_out
);
PATTERN_DECL_NODE
(
next_op
);
};
struct
FirstBfloat16Ops
:
public
PatternBase
{
FirstBfloat16Ops
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"first_bfloat16_ops"
)
{}
PDNode
*
operator
()();
PATTERN_DECL_NODE
(
prev_op
);
PATTERN_DECL_NODE
(
op_in
);
PATTERN_DECL_NODE
(
op
);
};
// Pattern used for enforcing inplace computation for in-place computation
// supporting DNNL ops. softmax, batch_norm and layer_norm
struct
MKLDNNInPlace
:
public
PatternBase
{
...
...
paddle/fluid/framework/ir/mkldnn/cpu_bfloat16_pass.cc
0 → 100644
浏览文件 @
1483ea23
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/ir/mkldnn/cpu_bfloat16_pass.h"
#include <string>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/string/pretty_log.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
using
string
::
PrettyLogDetail
;
void
UnlinkNodes
(
ir
::
Node
*
a
,
ir
::
Node
*
b
)
{
a
->
outputs
.
erase
(
std
::
remove
(
a
->
outputs
.
begin
(),
a
->
outputs
.
end
(),
b
),
a
->
outputs
.
end
());
b
->
inputs
.
erase
(
std
::
remove
(
b
->
inputs
.
begin
(),
b
->
inputs
.
end
(),
a
),
b
->
inputs
.
end
());
}
void
CPUBFloat16Pass
::
SetInputDataType
(
ir
::
Graph
*
graph
)
const
{
GraphPatternDetector
gpd
;
patterns
::
FirstBfloat16Ops
bfloat16_ops
{
gpd
.
mutable_pattern
(),
"first_bfloat16_ops"
};
bfloat16_ops
();
int
quantize_counter
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
GET_IR_NODE_FROM_SUBGRAPH
(
prev_op
,
prev_op
,
bfloat16_ops
);
GET_IR_NODE_FROM_SUBGRAPH
(
op_in
,
op_in
,
bfloat16_ops
);
GET_IR_NODE_FROM_SUBGRAPH
(
op
,
op
,
bfloat16_ops
);
if
(
op
->
Op
()
->
Type
()
!=
"conv2d"
&&
prev_op
->
Op
()
->
Type
()
!=
"quantize"
)
{
VarDesc
quantize_out_desc
(
patterns
::
PDNodeName
(
"quantize"
,
"out"
));
auto
*
quantize_out_node
=
g
->
CreateVarNode
(
&
quantize_out_desc
);
// create a quantize op node
OpDesc
q_desc
;
q_desc
.
SetType
(
"quantize"
);
q_desc
.
SetInput
(
"Input"
,
std
::
vector
<
std
::
string
>
({
op_in
->
Name
()}));
q_desc
.
SetOutput
(
"Output"
,
std
::
vector
<
std
::
string
>
({
quantize_out_node
->
Name
()}));
q_desc
.
SetAttr
(
"Scale"
,
1.
f
);
q_desc
.
SetAttr
(
"bfloat16"
,
true
);
q_desc
.
SetAttr
(
"output_format"
,
Has
(
"data_layout"
)
?
Get
<
std
::
string
>
(
"data_layout"
)
:
"NCHW"
);
auto
quantize_op
=
g
->
CreateOpNode
(
&
q_desc
);
// OpDesc will be copied.
std
::
string
op_input_name
;
for
(
auto
name
:
op
->
Op
()
->
InputNames
())
{
for
(
auto
input_name
:
op
->
Op
()
->
Input
(
name
))
{
if
(
input_name
==
op_in
->
Name
())
op_input_name
=
name
;
}
}
PADDLE_ENFORCE_NE
(
op_input_name
.
empty
(),
true
,
platform
::
errors
::
NotFound
(
"Operator before operator should have input as op output"
));
op
->
Op
()
->
SetInput
(
op_input_name
,
std
::
vector
<
std
::
string
>
({
quantize_out_node
->
Name
()}));
UnlinkNodes
(
op_in
,
op
);
IR_NODE_LINK_TO
(
op_in
,
quantize_op
);
IR_NODE_LINK_TO
(
quantize_op
,
quantize_out_node
);
IR_NODE_LINK_TO
(
quantize_out_node
,
op
);
quantize_counter
++
;
}
};
gpd
(
graph
,
handler
);
PrettyLogDetail
(
"--- added %d quantize op before bfloat16 op"
,
quantize_counter
);
}
void
CPUBFloat16Pass
::
SetOutputDataType
(
ir
::
Graph
*
graph
)
const
{
GraphPatternDetector
gpd
;
patterns
::
LastBfloat16Ops
bfloat16_ops
{
gpd
.
mutable_pattern
(),
"last_bfloat16_ops"
};
bfloat16_ops
();
int
force_fp32_counter
=
0
,
dequantize_counter
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
GET_IR_NODE_FROM_SUBGRAPH
(
op
,
op
,
bfloat16_ops
);
GET_IR_NODE_FROM_SUBGRAPH
(
op_out
,
op_out
,
bfloat16_ops
);
GET_IR_NODE_FROM_SUBGRAPH
(
next_op
,
next_op
,
bfloat16_ops
);
if
((
op
->
Op
()
->
HasAttr
(
"force_fp32_output"
)
||
op
->
Op
()
->
HasProtoAttr
(
"force_fp32_output"
))
&&
!
op
->
Op
()
->
GetAttrIfExists
<
bool
>
(
"fuse_residual_connection"
))
{
op
->
Op
()
->
SetAttr
(
"force_fp32_output"
,
true
);
force_fp32_counter
++
;
}
else
if
(
op
->
Op
()
->
Type
()
!=
"prior_box"
)
{
// Create dequantize input variable
VarDesc
dequantize_in_desc
(
patterns
::
PDNodeName
(
"dequantize"
,
"in"
));
auto
*
dequantize_in_node
=
g
->
CreateVarNode
(
&
dequantize_in_desc
);
// create a dequantize op node for output.
OpDesc
deq_desc
;
deq_desc
.
SetType
(
"dequantize"
);
deq_desc
.
SetInput
(
"Input"
,
std
::
vector
<
std
::
string
>
({
dequantize_in_node
->
Name
()}));
deq_desc
.
SetOutput
(
"Output"
,
std
::
vector
<
std
::
string
>
({
op_out
->
Name
()}));
deq_desc
.
SetAttr
(
"Scale"
,
1.0
f
);
auto
dequantize_op
=
g
->
CreateOpNode
(
&
deq_desc
);
std
::
string
op_output_name
;
for
(
auto
name
:
op
->
Op
()
->
OutputNames
())
{
for
(
auto
output_name
:
op
->
Op
()
->
Output
(
name
))
{
if
(
output_name
==
op_out
->
Name
())
op_output_name
=
name
;
}
}
PADDLE_ENFORCE_NE
(
op_output_name
.
empty
(),
true
,
platform
::
errors
::
NotFound
(
"Operator after operator should have input as op output"
));
op
->
Op
()
->
SetOutput
(
op_output_name
,
std
::
vector
<
std
::
string
>
(
{
dequantize_in_node
->
Name
()}));
UnlinkNodes
(
op
,
op_out
);
IR_NODE_LINK_TO
(
op
,
dequantize_in_node
);
IR_NODE_LINK_TO
(
dequantize_in_node
,
dequantize_op
);
IR_NODE_LINK_TO
(
dequantize_op
,
op_out
);
dequantize_counter
++
;
}
};
gpd
(
graph
,
handler
);
PrettyLogDetail
(
"--- added %d dequantize op and used %d force_fp32_output"
,
dequantize_counter
,
force_fp32_counter
);
}
void
CPUBFloat16Pass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
SetInputDataType
(
graph
);
SetOutputDataType
(
graph
);
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
cpu_bfloat16_pass
,
paddle
::
framework
::
ir
::
CPUBFloat16Pass
);
paddle/fluid/framework/ir/mkldnn/cpu_bfloat16_pass.h
0 → 100644
浏览文件 @
1483ea23
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <memory>
#include "paddle/fluid/framework/ir/pass.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
class
CPUBFloat16Pass
:
public
Pass
{
protected:
void
SetInputDataType
(
ir
::
Graph
*
graph
)
const
;
void
SetOutputDataType
(
ir
::
Graph
*
graph
)
const
;
void
ApplyImpl
(
ir
::
Graph
*
graph
)
const
override
;
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/mkldnn/cpu_bfloat16_pass_tester.cc
0 → 100644
浏览文件 @
1483ea23
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include "paddle/fluid/framework/ir/mkldnn/cpu_bfloat16_pass.h"
#include "paddle/fluid/framework/naive_executor.h"
#include "paddle/fluid/imperative/type_defs.h"
#include "paddle/fluid/platform/place.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
void
SetOp
(
ProgramDesc
*
prog
,
const
std
::
string
&
type
,
const
std
::
string
&
name
,
const
std
::
vector
<
std
::
string
>&
inputs
,
const
std
::
vector
<
std
::
string
>&
outputs
,
bool
use_mkldnn
,
const
std
::
string
&
mkldnn_data_type
=
"float32"
,
const
bool
force_fp32_output
=
false
)
{
auto
*
op
=
prog
->
MutableBlock
(
0
)
->
AppendOp
();
op
->
SetType
(
type
);
op
->
SetAttr
(
"use_mkldnn"
,
use_mkldnn
);
op
->
SetAttr
(
"name"
,
name
);
if
(
type
==
"conv2d"
)
{
op
->
SetInput
(
"Input"
,
{
inputs
[
0
]});
op
->
SetOutput
(
"Output"
,
{
outputs
[
0
]});
op
->
SetAttr
(
"mkldnn_data_type"
,
mkldnn_data_type
);
op
->
SetAttr
(
"force_fp32_output"
,
force_fp32_output
);
}
else
if
(
type
==
"pool2d"
||
type
==
"transpose2"
||
type
==
"reshape2"
||
type
==
"dropout"
)
{
op
->
SetInput
(
"X"
,
{
inputs
[
0
]});
op
->
SetOutput
(
"Out"
,
{
outputs
[
0
]});
op
->
SetAttr
(
"mkldnn_data_type"
,
mkldnn_data_type
);
}
else
if
(
type
==
"fc"
)
{
op
->
SetInput
(
"Input"
,
{
inputs
[
0
]});
op
->
SetOutput
(
"Out"
,
{
outputs
[
0
]});
op
->
SetAttr
(
"mkldnn_data_type"
,
mkldnn_data_type
);
}
else
if
(
type
==
"concat"
)
{
op
->
SetInput
(
"X"
,
inputs
);
op
->
SetOutput
(
"Out"
,
outputs
);
op
->
SetAttr
(
"mkldnn_data_type"
,
mkldnn_data_type
);
}
else
if
(
type
==
"matmul"
||
type
==
"elementwise_add"
)
{
op
->
SetInput
(
"X"
,
{
inputs
[
0
]});
if
(
inputs
.
size
()
>
1
)
op
->
SetInput
(
"Y"
,
{
inputs
[
1
]});
op
->
SetOutput
(
"Out"
,
{
outputs
[
0
]});
op
->
SetAttr
(
"mkldnn_data_type"
,
mkldnn_data_type
);
}
}
void
PreparePass
(
std
::
unique_ptr
<
ir
::
Graph
>*
graph
,
const
ProgramDesc
&
prog
,
const
std
::
initializer_list
<
std
::
string
>
variable_names
,
int
*
original_nodes_num
,
int
*
current_nodes_num
)
{
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"cpu_bfloat16_pass"
);
graph
->
reset
(
pass
->
Apply
(
graph
->
release
()));
*
original_nodes_num
=
(
*
graph
)
->
Nodes
().
size
();
(
*
graph
).
reset
(
pass
->
Apply
((
*
graph
).
release
()));
*
current_nodes_num
=
(
*
graph
)
->
Nodes
().
size
();
}
static
const
std
::
initializer_list
<
std
::
string
>
variable_names
{
"z"
,
"a"
,
"b"
,
"c"
,
"d"
,
"e"
,
"f"
,
"g"
,
"h"
,
"i"
};
ProgramDesc
BuildProgramDesc
(
bool
use_mkldnn
)
{
ProgramDesc
prog
;
for
(
auto
&
v
:
variable_names
)
{
prog
.
MutableBlock
(
0
)
->
Var
(
v
);
}
SetOp
(
&
prog
,
"dropout"
,
"Dropout1"
,
{
"z"
},
{
"a"
},
use_mkldnn
,
"float32"
);
SetOp
(
&
prog
,
"conv2d"
,
"Conv1"
,
{
"a"
},
{
"b"
},
use_mkldnn
,
"bfloat16"
);
SetOp
(
&
prog
,
"pool2d"
,
"Pool1"
,
{
"b"
},
{
"c"
},
use_mkldnn
,
"bfloat16"
);
SetOp
(
&
prog
,
"conv2d"
,
"Conv1"
,
{
"c"
},
{
"d"
},
use_mkldnn
,
"bfloat16"
);
SetOp
(
&
prog
,
"dropout"
,
"Dropout2"
,
{
"d"
},
{
"e"
},
use_mkldnn
,
"float32"
);
SetOp
(
&
prog
,
"transpose2"
,
"Transpose1"
,
{
"e"
},
{
"f"
},
use_mkldnn
,
"bfloat16"
);
SetOp
(
&
prog
,
"reshape2"
,
"Reshape1"
,
{
"f"
},
{
"g"
},
use_mkldnn
,
"bfloat16"
);
SetOp
(
&
prog
,
"concat"
,
"Concat1"
,
{
"g"
},
{
"h"
},
use_mkldnn
,
"bfloat16"
);
SetOp
(
&
prog
,
"dropout"
,
"Dropout3"
,
{
"h"
},
{
"i"
},
use_mkldnn
,
"float32"
);
return
prog
;
}
void
MainTest
(
const
ProgramDesc
&
prog
,
int
conv_count
,
int
pool_count
,
int
transpose_count
,
int
quant_count
,
int
dequant_count
,
int
added_nodes_count
)
{
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
prog
));
int
original_nodes_num
,
current_nodes_num
;
PreparePass
(
&
graph
,
prog
,
variable_names
,
&
original_nodes_num
,
&
current_nodes_num
);
int
quantize_nodes_count
=
0
;
int
dequantize_nodes_count
=
0
;
int
conv2d_nodes_count
=
0
;
int
pool2d_nodes_count
=
0
;
int
transpose2_nodes_count
=
0
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
())
{
auto
*
op
=
node
->
Op
();
if
(
op
->
Type
()
==
"conv2d"
)
{
conv2d_nodes_count
++
;
}
else
if
(
op
->
Type
()
==
"pool2d"
)
{
pool2d_nodes_count
++
;
}
else
if
(
op
->
Type
()
==
"transpose2"
)
{
transpose2_nodes_count
++
;
}
else
if
(
op
->
Type
()
==
"quantize"
)
{
quantize_nodes_count
++
;
}
else
if
(
op
->
Type
()
==
"dequantize"
)
{
dequantize_nodes_count
++
;
}
}
}
EXPECT_EQ
(
conv2d_nodes_count
,
conv_count
);
EXPECT_EQ
(
pool2d_nodes_count
,
pool_count
);
EXPECT_EQ
(
transpose2_nodes_count
,
transpose_count
);
EXPECT_EQ
(
quantize_nodes_count
,
quant_count
);
EXPECT_EQ
(
dequantize_nodes_count
,
dequant_count
);
EXPECT_EQ
(
original_nodes_num
+
added_nodes_count
,
current_nodes_num
);
}
TEST
(
CpuQuantizePass
,
quantize
)
{
bool
use_mkldnn
=
true
;
// 1 quantize + 1 dequantize
int
added_nodes
=
2
;
MainTest
(
BuildProgramDesc
(
use_mkldnn
),
2
,
1
,
1
,
1
,
2
,
added_nodes
);
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
USE_PASS
(
cpu_bfloat16_pass
);
paddle/fluid/framework/ir/mkldnn/cpu_bfloat16_placement_pass.cc
0 → 100644
浏览文件 @
1483ea23
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/ir/mkldnn/cpu_bfloat16_placement_pass.h"
#include <string>
#include <unordered_set>
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/string/pretty_log.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
using
string
::
PrettyLogDetail
;
void
CPUBfloat16PlacementPass
::
SetMkldnnDataType
(
ir
::
Graph
*
graph
,
int
*
bfloat16_operators
)
const
{
const
auto
&
op_types_list
=
Get
<
std
::
unordered_set
<
std
::
string
>>
(
"bfloat16_enabled_op_types"
);
// set mkldnn_data_type to bfloat16 to all operators that are in
// bfloat16_enabled_op_types vector or they are included to Bfloat16Placement
// pattern
GraphPatternDetector
gpd
;
patterns
::
Bfloat16Placement
bfloat16_placement_pattern
{
gpd
.
mutable_pattern
(),
"bfloat16_placement"
};
bfloat16_placement_pattern
(
op_types_list
);
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
GET_IR_NODE_FROM_SUBGRAPH
(
op
,
op
,
bfloat16_placement_pattern
);
if
((
op
->
Op
()
->
HasAttr
(
"mkldnn_data_type"
)
||
op
->
Op
()
->
HasProtoAttr
(
"mkldnn_data_type"
))
&&
!
platform
::
HasOpINT8DataType
(
op
->
Op
()))
{
op
->
Op
()
->
SetAttr
(
"mkldnn_data_type"
,
std
::
string
(
"bfloat16"
));
(
*
bfloat16_operators
)
++
;
}
};
gpd
(
graph
,
handler
);
}
void
CPUBfloat16PlacementPass
::
RemoveOrhanedOperators
(
ir
::
Graph
*
graph
,
int
*
bfloat16_operators
)
const
{
// find orphaned bfloat16 operator that is between two float32 operators
// revert mkldnn_data_type attr to float32
GraphPatternDetector
gpd
;
patterns
::
OrphanedBfloat16
orphaned_bfloat16_pattern
{
gpd
.
mutable_pattern
(),
"orphaned_bfloat16"
};
orphaned_bfloat16_pattern
();
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
GET_IR_NODE_FROM_SUBGRAPH
(
op
,
op
,
orphaned_bfloat16_pattern
);
op
->
Op
()
->
SetAttr
(
"mkldnn_data_type"
,
std
::
string
(
"float32"
));
bfloat16_operators
--
;
};
gpd
(
graph
,
handler
);
}
void
CPUBfloat16PlacementPass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
int
bfloat16_operators
=
0
;
SetMkldnnDataType
(
graph
,
&
bfloat16_operators
);
RemoveOrhanedOperators
(
graph
,
&
bfloat16_operators
);
PrettyLogDetail
(
"--- marked %d operators to bfloat16 "
,
bfloat16_operators
);
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
cpu_bfloat16_placement_pass
,
paddle
::
framework
::
ir
::
CPUBfloat16PlacementPass
)
// a vector of operator type names with bfloat16 support ("conv2d" etc.)
// the second param is the default value for this vector
.
DefaultPassAttr
(
"bfloat16_enabled_op_types"
,
new
std
::
unordered_set
<
std
::
string
>
());
paddle/fluid/framework/ir/mkldnn/cpu_bfloat16_placement_pass.h
0 → 100644
浏览文件 @
1483ea23
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <memory>
#include "paddle/fluid/framework/ir/pass.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
/*
* Specifies which operators should be run on bfloat16.
*/
class
CPUBfloat16PlacementPass
:
public
Pass
{
protected:
void
SetMkldnnDataType
(
ir
::
Graph
*
graph
,
int
*
bfloat16_operators
)
const
;
void
RemoveOrhanedOperators
(
ir
::
Graph
*
graph
,
int
*
bfloat16_operators
)
const
;
void
ApplyImpl
(
ir
::
Graph
*
graph
)
const
override
;
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/mkldnn/cpu_bfloat16_placement_pass_tester.cc
0 → 100644
浏览文件 @
1483ea23
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include "paddle/fluid/framework/ir/mkldnn/cpu_bfloat16_placement_pass.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
void
SetOp
(
ProgramDesc
*
prog
,
const
std
::
string
&
type
,
const
std
::
string
&
name
,
const
std
::
vector
<
std
::
string
>&
inputs
,
const
std
::
vector
<
std
::
string
>&
outputs
,
const
std
::
string
&
mkldnn_data_type
=
"float32"
)
{
auto
*
op
=
prog
->
MutableBlock
(
0
)
->
AppendOp
();
op
->
SetType
(
type
);
op
->
SetAttr
(
"mkldnn_data_type"
,
mkldnn_data_type
);
if
(
type
==
"conv2d"
)
{
op
->
SetAttr
(
"name"
,
name
);
op
->
SetInput
(
"Input"
,
{
inputs
[
0
]});
}
else
if
(
type
==
"relu"
)
{
op
->
SetInput
(
"X"
,
inputs
);
}
else
if
(
type
==
"concat"
)
{
op
->
SetAttr
(
"axis"
,
1
);
op
->
SetInput
(
"X"
,
{
inputs
[
0
],
inputs
[
1
]});
}
else
if
(
type
==
"pool2d"
)
{
op
->
SetInput
(
"X"
,
{
inputs
[
0
]});
}
else
{
FAIL
()
<<
"Unexpected operator type."
;
}
op
->
SetOutput
(
"Out"
,
{
outputs
[
0
]});
}
// operator mkldnn_data_type
// ---------------------------------------
// (a,b)->concat->c float32
// c->conv->f float32
// f->relu->g float32
// g->pool->h float32
// h->conv->k float32
// k->pool->l float32
ProgramDesc
BuildProgramDesc
()
{
ProgramDesc
prog
;
for
(
auto
&
v
:
std
::
vector
<
std
::
string
>
({
"a"
,
"b"
,
"c"
,
"f"
,
"g"
,
"h"
,
"k"
,
"l"
}))
{
prog
.
MutableBlock
(
0
)
->
Var
(
v
);
}
SetOp
(
&
prog
,
"concat"
,
"concat1"
,
{
"a"
,
"b"
},
{
"c"
});
SetOp
(
&
prog
,
"conv2d"
,
"conv1"
,
{
"c"
},
{
"f"
});
SetOp
(
&
prog
,
"relu"
,
"relu1"
,
{
"f"
},
{
"g"
});
SetOp
(
&
prog
,
"pool2d"
,
"pool1"
,
{
"g"
},
{
"h"
});
SetOp
(
&
prog
,
"conv2d"
,
"conv2"
,
{
"h"
},
{
"k"
});
SetOp
(
&
prog
,
"pool2d"
,
"pool2"
,
{
"k"
},
{
"l"
});
return
prog
;
}
void
MainTest
(
std
::
initializer_list
<
std
::
string
>
bfloat16_enabled_op_types
,
unsigned
expected_bfloat16_data_type_count
)
{
auto
prog
=
BuildProgramDesc
();
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
prog
));
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"cpu_bfloat16_placement_pass"
);
pass
->
Set
(
"bfloat16_enabled_op_types"
,
new
std
::
unordered_set
<
std
::
string
>
(
bfloat16_enabled_op_types
));
graph
.
reset
(
pass
->
Apply
(
graph
.
release
()));
unsigned
bfloat16_data_type_count
=
0
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
())
{
if
(
platform
::
HasOpBFLOAT16DataType
(
node
->
Op
()))
{
++
bfloat16_data_type_count
;
}
}
}
EXPECT_EQ
(
bfloat16_data_type_count
,
expected_bfloat16_data_type_count
);
}
void
DefaultAttrTest
(
unsigned
expected_bfloat16_data_type_count
)
{
auto
prog
=
BuildProgramDesc
();
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
prog
));
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"cpu_bfloat16_placement_pass"
);
graph
.
reset
(
pass
->
Apply
(
graph
.
release
()));
unsigned
bfloat16_data_type_count
=
0
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
())
{
if
(
platform
::
HasOpBFLOAT16DataType
(
node
->
Op
()))
{
++
bfloat16_data_type_count
;
}
}
}
EXPECT_EQ
(
bfloat16_data_type_count
,
expected_bfloat16_data_type_count
);
}
TEST
(
Bfloat16PlacementPass
,
enable_all
)
{
MainTest
({
"conv2d"
,
"pool2d"
,
"relu"
,
"concat"
},
6
);
}
TEST
(
Bfloat16PlacementPass
,
enabled_conv_and_pool
)
{
// 2 conv2d + 2 pool2 - 1 orphaned conv2d
MainTest
({
"conv2d"
,
"pool2d"
},
3
);
}
TEST
(
Bfloat16PlacementPass
,
default_attr_value
)
{
DefaultAttrTest
(
0
);
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
USE_PASS
(
cpu_bfloat16_placement_pass
);
paddle/fluid/inference/api/paddle_pass_builder.cc
浏览文件 @
1483ea23
...
...
@@ -231,6 +231,10 @@ void CpuPassStrategy::EnableMkldnnQuantizer() {
void
CpuPassStrategy
::
EnableMkldnnBfloat16
()
{
#ifdef PADDLE_WITH_MKLDNN
if
(
!
use_mkldnn_bfloat16_
)
{
passes_
.
push_back
(
"cpu_bfloat16_placement_pass"
);
passes_
.
push_back
(
"cpu_bfloat16_pass"
);
}
use_mkldnn_bfloat16_
=
true
;
#else
use_mkldnn_bfloat16_
=
false
;
...
...
paddle/fluid/operators/mkldnn/quantize_mkldnn_op.cc
浏览文件 @
1483ea23
...
...
@@ -48,6 +48,7 @@ class QuantOpKernel : public framework::OpKernel<T> {
const
T
*
input_data
=
input
->
data
<
T
>
();
bool
is_negative
=
ctx
.
Attr
<
bool
>
(
"is_negative_input"
);
bool
bfloat16
=
ctx
.
Attr
<
bool
>
(
"bfloat16"
);
std
::
string
key
=
platform
::
CreateKey
(
platform
::
ThreadIDasStr
(),
src_tz
,
scale_data
,
is_negative
,
ctx
.
OutputName
(
"Output"
));
...
...
@@ -74,7 +75,10 @@ class QuantOpKernel : public framework::OpKernel<T> {
src_md
,
engine
,
to_void_cast
<
T
>
(
input_data
));
std
::
shared_ptr
<
mkldnn
::
memory
::
desc
>
dst_md
;
if
(
is_negative
)
{
if
(
bfloat16
)
{
platform
::
SetDstMemoryQuantized
<
paddle
::
platform
::
bfloat16
>
(
ctx
,
output
,
dst_tz
,
engine
,
dst_md
,
dst_memory
,
out_format
);
}
else
if
(
is_negative
)
{
platform
::
SetDstMemoryQuantized
<
int8_t
>
(
ctx
,
output
,
dst_tz
,
engine
,
dst_md
,
dst_memory
,
out_format
);
}
else
{
...
...
@@ -96,7 +100,11 @@ class QuantOpKernel : public framework::OpKernel<T> {
dst_memory
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx
.
GetBlob
(
key_dst_mem
));
auto
place
=
ctx
.
GetPlace
();
if
(
is_negative
)
{
if
(
bfloat16
)
{
dst_memory
->
set_data_handle
(
output
->
mutable_data
<
paddle
::
platform
::
bfloat16
>
(
place
));
}
else
if
(
is_negative
)
{
dst_memory
->
set_data_handle
(
output
->
mutable_data
<
int8_t
>
(
place
));
}
else
{
dst_memory
->
set_data_handle
(
output
->
mutable_data
<
uint8_t
>
(
place
));
...
...
paddle/fluid/operators/quantize_op.cc
浏览文件 @
1483ea23
...
...
@@ -40,6 +40,8 @@ void QuantOpMaker::Make() {
AddAttr
<
std
::
string
>
(
"output_format"
,
"Convert format to NHWC or NCHW during quantization."
)
.
SetDefault
(
"NHWC"
);
AddAttr
<
bool
>
(
"bfloat16"
,
"(bool, default false) Convert to bfloat16"
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(This op will quantize data from FP32 to INT8)DOC"
);
}
...
...
paddle/fluid/platform/mkldnn_helper.h
浏览文件 @
1483ea23
...
...
@@ -443,6 +443,13 @@ inline bool HasOpINT8DataType(const paddle::framework::OpDesc* op) {
op
->
GetAttrIfExists
<
bool
>
(
"use_quantizer"
));
}
inline
bool
HasOpBFLOAT16DataType
(
const
paddle
::
framework
::
OpDesc
*
op
)
{
return
op
->
GetAttrIfExists
<
std
::
string
>
(
"mkldnn_data_type"
)
==
"bfloat16"
;
}
inline
bool
HasOpFLOAT32DataType
(
const
paddle
::
framework
::
OpDesc
*
op
)
{
return
op
->
GetAttrIfExists
<
std
::
string
>
(
"mkldnn_data_type"
)
==
"float32"
;
}
enum
class
RNNReorderType
{
PP_NTC
,
PP_TNC
,
NTC_PP
,
TNC_PP
};
}
// namespace platform
...
...
paddle/fluid/pybind/protobuf.cc
浏览文件 @
1483ea23
...
...
@@ -184,6 +184,7 @@ void BindVarDsec(pybind11::module *m) {
.
value
(
"FP16"
,
pd
::
proto
::
VarType
::
FP16
)
.
value
(
"FP32"
,
pd
::
proto
::
VarType
::
FP32
)
.
value
(
"FP64"
,
pd
::
proto
::
VarType
::
FP64
)
.
value
(
"BF16"
,
pd
::
proto
::
VarType
::
BF16
)
.
value
(
"LOD_TENSOR"
,
pd
::
proto
::
VarType
::
LOD_TENSOR
)
.
value
(
"SELECTED_ROWS"
,
pd
::
proto
::
VarType
::
SELECTED_ROWS
)
.
value
(
"FEED_MINIBATCH"
,
pd
::
proto
::
VarType
::
FEED_MINIBATCH
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录