Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
12bcd023
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
12bcd023
编写于
8月 15, 2021
作者:
H
HydrogenSulfate
提交者:
chajchaj
8月 27, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix weighted CE loss's bug
上级
1506d266
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
377 addition
and
76 deletion
+377
-76
python/paddle/fluid/tests/unittests/test_cross_entropy_loss.py
...n/paddle/fluid/tests/unittests/test_cross_entropy_loss.py
+252
-12
python/paddle/nn/functional/loss.py
python/paddle/nn/functional/loss.py
+125
-64
未找到文件。
python/paddle/fluid/tests/unittests/test_cross_entropy_loss.py
浏览文件 @
12bcd023
...
...
@@ -841,6 +841,55 @@ class CrossEntropyLoss(unittest.TestCase):
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
expected
))
self
.
assertTrue
(
np
.
allclose
(
dy_ret_value
,
expected
))
def
test_cross_entropy_loss_1d_with_weight_mean_ignore_exceedlabel
(
self
):
N
=
100
C
=
200
input_np
=
np
.
random
.
random
([
N
,
C
]).
astype
(
self
.
dtype
)
label_np
=
np
.
random
.
randint
(
0
,
C
,
size
=
(
N
)).
astype
(
np
.
int64
)
label_np
[
0
]
=
255
weight_np
=
np
.
random
.
random
([
C
]).
astype
(
self
.
dtype
)
paddle
.
enable_static
()
prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
place
=
fluid
.
CUDAPlace
(
0
)
if
fluid
.
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
with
fluid
.
program_guard
(
prog
,
startup_prog
):
input
=
fluid
.
data
(
name
=
'input'
,
shape
=
[
N
,
C
],
dtype
=
self
.
dtype
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
N
],
dtype
=
'int64'
)
weight
=
fluid
.
data
(
name
=
'weight'
,
shape
=
[
C
],
dtype
=
self
.
dtype
)
#weight for each class
cross_entropy_loss
=
paddle
.
nn
.
loss
.
CrossEntropyLoss
(
weight
=
weight
,
ignore_index
=
255
)
ret
=
cross_entropy_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
static_ret
=
exe
.
run
(
prog
,
feed
=
{
'input'
:
input_np
,
'label'
:
label_np
,
"weight"
:
weight_np
},
fetch_list
=
[
ret
])
self
.
assertIsNotNone
(
static_ret
)
with
fluid
.
dygraph
.
guard
():
cross_entropy_loss
=
paddle
.
nn
.
loss
.
CrossEntropyLoss
(
weight
=
fluid
.
dygraph
.
to_variable
(
weight_np
),
axis
=
1
,
ignore_index
=
255
)
dy_ret
=
cross_entropy_loss
(
fluid
.
dygraph
.
to_variable
(
input_np
),
fluid
.
dygraph
.
to_variable
(
label_np
))
dy_ret_value
=
dy_ret
.
numpy
()
self
.
assertIsNotNone
(
dy_ret_value
)
expected
=
cross_entropy_loss_1d
(
input_np
,
label_np
,
weight
=
weight_np
,
ignore_index
=
255
)[
0
]
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
dy_ret_value
))
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
expected
))
self
.
assertTrue
(
np
.
allclose
(
dy_ret_value
,
expected
))
def
test_cross_entropy_loss_1d_with_weight_mean
(
self
):
input_np
=
np
.
random
.
random
([
2
,
4
]).
astype
(
self
.
dtype
)
label_np
=
np
.
random
.
randint
(
0
,
4
,
size
=
(
2
)).
astype
(
np
.
int64
)
...
...
@@ -1013,7 +1062,7 @@ class CrossEntropyLoss(unittest.TestCase):
def
test_cross_entropy_loss_1d_mean
(
self
):
input_np
=
np
.
random
.
random
([
100
,
200
]).
astype
(
self
.
dtype
)
#N,C
label_np
=
np
.
random
.
randint
(
0
,
100
,
size
=
(
100
)).
astype
(
np
.
int64
)
#N,1
weight_np
=
np
.
random
.
random
([
200
]).
astype
(
self
.
dtype
)
#C
#
weight_np = np.random.random([200]).astype(self.dtype) #C
paddle
.
enable_static
()
prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
...
...
@@ -1022,7 +1071,7 @@ class CrossEntropyLoss(unittest.TestCase):
with
fluid
.
program_guard
(
prog
,
startup_prog
):
input
=
fluid
.
data
(
name
=
'input'
,
shape
=
[
100
,
200
],
dtype
=
self
.
dtype
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
100
],
dtype
=
'int64'
)
weight
=
fluid
.
data
(
name
=
'weight'
,
shape
=
[
100
],
dtype
=
self
.
dtype
)
#
weight = fluid.data(name='weight', shape=[100], dtype=self.dtype)
cross_entropy_loss
=
paddle
.
nn
.
loss
.
CrossEntropyLoss
()
ret
=
cross_entropy_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
...
...
@@ -1156,6 +1205,58 @@ class CrossEntropyLoss(unittest.TestCase):
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
expected
))
self
.
assertTrue
(
np
.
allclose
(
dy_ret_value
,
expected
))
def
test_cross_entropy_loss_2d_with_weight_mean_ignore_exceedlabel
(
self
):
N
=
4
C
=
3
H
=
512
W
=
512
input_np
=
np
.
random
.
random
([
N
,
H
,
W
,
C
]).
astype
(
self
.
dtype
)
label_np
=
np
.
random
.
randint
(
0
,
C
,
size
=
(
N
,
H
,
W
)).
astype
(
np
.
int64
)
label_np
[
0
,
0
,
0
]
=
255
weight_np
=
np
.
random
.
random
([
C
]).
astype
(
self
.
dtype
)
paddle
.
enable_static
()
prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
place
=
fluid
.
CUDAPlace
(
0
)
if
fluid
.
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
with
fluid
.
program_guard
(
prog
,
startup_prog
):
input
=
fluid
.
data
(
name
=
'input'
,
shape
=
[
N
,
H
,
W
,
C
],
dtype
=
self
.
dtype
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
N
,
H
,
W
],
dtype
=
'int64'
)
weight
=
fluid
.
data
(
name
=
'weight'
,
shape
=
[
C
],
dtype
=
self
.
dtype
)
#weight for each class
cross_entropy_loss
=
paddle
.
nn
.
loss
.
CrossEntropyLoss
(
weight
=
weight
,
ignore_index
=
255
)
ret
=
cross_entropy_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
static_ret
=
exe
.
run
(
prog
,
feed
=
{
'input'
:
input_np
,
'label'
:
label_np
,
"weight"
:
weight_np
},
fetch_list
=
[
ret
])
self
.
assertIsNotNone
(
static_ret
)
with
fluid
.
dygraph
.
guard
():
cross_entropy_loss
=
paddle
.
nn
.
loss
.
CrossEntropyLoss
(
weight
=
fluid
.
dygraph
.
to_variable
(
weight_np
),
axis
=
1
,
ignore_index
=
255
)
dy_ret
=
cross_entropy_loss
(
fluid
.
dygraph
.
to_variable
(
input_np
),
fluid
.
dygraph
.
to_variable
(
label_np
))
dy_ret_value
=
dy_ret
.
numpy
()
self
.
assertIsNotNone
(
dy_ret_value
)
expected
=
cross_entropy_loss_2d
(
input_np
,
label_np
,
weight
=
weight_np
,
ignore_index
=
255
)[
0
]
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
dy_ret_value
))
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
expected
))
self
.
assertTrue
(
np
.
allclose
(
dy_ret_value
,
expected
))
def
test_cross_entropy_loss_2d_with_weight_mean
(
self
):
input_np
=
np
.
random
.
random
(
size
=
(
2
,
2
,
2
,
3
)).
astype
(
self
.
dtype
)
#NHWC
label_np
=
np
.
random
.
randint
(
...
...
@@ -1362,21 +1463,62 @@ class TestCrossEntropyFAPIError(unittest.TestCase):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
def
test_LabelValue
():
# def test_LabelValue():
# input_data = paddle.rand(shape=[20, 100])
# label_data = paddle.randint(
# 0, 100, shape=[20, 1], dtype="int64")
# label_data[0] = 255
# weight_data = paddle.rand([100])
# paddle.nn.functional.cross_entropy(
# input=input_data,
# label=label_data,
# weight=weight_data,
# ignore_index=255)
# self.assertRaises(ValueError, test_LabelValue)
# def test_LabelValueNeg():
# input_data = paddle.rand(shape=[20, 100])
# label_data = paddle.randint(
# 0, 100, shape=[20, 1], dtype="int64")
# label_data[0] = -1
# weight_data = paddle.rand([100])
# paddle.nn.functional.cross_entropy(
# input=input_data,
# label=label_data,
# weight=weight_data,
# ignore_index=-1)
# self.assertRaises(ValueError, test_LabelValueNeg)
def
test_WeightLength_NotEqual
():
input_data
=
paddle
.
rand
(
shape
=
[
20
,
100
])
label_data
=
paddle
.
randint
(
0
,
100
,
shape
=
[
20
,
1
],
dtype
=
"int64"
)
label_data
[
0
]
=
255
weight_data
=
paddle
.
rand
([
100
+
1
])
paddle
.
nn
.
functional
.
cross_entropy
(
input
=
input_data
,
label
=
label_data
,
weight
=
weight_data
,
ignore_index
=-
100
)
self
.
assertRaises
(
ValueError
,
test_WeightLength_NotEqual
)
def
test_LabelValue_ExceedMax
():
input_data
=
paddle
.
rand
(
shape
=
[
20
,
100
])
label_data
=
paddle
.
randint
(
0
,
100
,
shape
=
[
20
,
1
],
dtype
=
"int64"
)
label_data
[
0
]
=
100
weight_data
=
paddle
.
rand
([
100
])
paddle
.
nn
.
functional
.
cross_entropy
(
input
=
input_data
,
label
=
label_data
,
weight
=
weight_data
,
ignore_index
=
255
)
ignore_index
=
-
100
)
self
.
assertRaises
(
ValueError
,
test_LabelValue
)
self
.
assertRaises
(
ValueError
,
test_LabelValue
_ExceedMax
)
def
test_LabelValue
Neg
():
def
test_LabelValue
_ExceedMin
():
input_data
=
paddle
.
rand
(
shape
=
[
20
,
100
])
label_data
=
paddle
.
randint
(
0
,
100
,
shape
=
[
20
,
1
],
dtype
=
"int64"
)
...
...
@@ -1386,9 +1528,107 @@ class TestCrossEntropyFAPIError(unittest.TestCase):
input
=
input_data
,
label
=
label_data
,
weight
=
weight_data
,
ignore_index
=-
1
)
ignore_index
=-
100
)
self
.
assertRaises
(
ValueError
,
test_LabelValue_ExceedMin
)
def
static_test_WeightLength_NotEqual
():
input_np
=
np
.
random
.
random
([
2
,
4
]).
astype
(
self
.
dtype
)
label_np
=
np
.
random
.
randint
(
0
,
4
,
size
=
(
2
)).
astype
(
np
.
int64
)
weight_np
=
np
.
random
.
random
([
3
]).
astype
(
self
.
dtype
)
#shape:C
paddle
.
enable_static
()
prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
place
=
fluid
.
CUDAPlace
(
0
)
if
fluid
.
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
with
fluid
.
program_guard
(
prog
,
startup_prog
):
input
=
fluid
.
data
(
name
=
'input'
,
shape
=
[
2
,
4
],
dtype
=
self
.
dtype
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
2
],
dtype
=
'int64'
)
weight
=
fluid
.
data
(
name
=
'weight'
,
shape
=
[
3
],
dtype
=
self
.
dtype
)
#weight for each class
cross_entropy_loss
=
paddle
.
nn
.
loss
.
CrossEntropyLoss
(
weight
=
weight
)
ret
=
cross_entropy_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
static_ret
=
exe
.
run
(
prog
,
feed
=
{
'input'
:
input_np
,
'label'
:
label_np
,
"weight"
:
weight_np
},
fetch_list
=
[
ret
])
self
.
assertIsNotNone
(
static_ret
)
self
.
assertRaises
(
ValueError
,
static_test_WeightLength_NotEqual
)
def
static_test_LabelValue_ExceedMax
():
input_np
=
np
.
random
.
random
([
2
,
4
]).
astype
(
self
.
dtype
)
label_np
=
np
.
random
.
randint
(
0
,
4
,
size
=
(
2
)).
astype
(
np
.
int64
)
label_np
[
0
]
=
255
weight_np
=
np
.
random
.
random
([
4
]).
astype
(
self
.
dtype
)
#shape:C
paddle
.
enable_static
()
prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
place
=
fluid
.
CUDAPlace
(
0
)
if
fluid
.
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
with
fluid
.
program_guard
(
prog
,
startup_prog
):
input
=
fluid
.
data
(
name
=
'input'
,
shape
=
[
2
,
4
],
dtype
=
self
.
dtype
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
2
],
dtype
=
'int64'
)
weight
=
fluid
.
data
(
name
=
'weight'
,
shape
=
[
4
],
dtype
=
self
.
dtype
)
#weight for each class
cross_entropy_loss
=
paddle
.
nn
.
loss
.
CrossEntropyLoss
(
weight
=
weight
)
ret
=
cross_entropy_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
static_ret
=
exe
.
run
(
prog
,
feed
=
{
'input'
:
input_np
,
'label'
:
label_np
,
"weight"
:
weight_np
},
fetch_list
=
[
ret
])
self
.
assertIsNotNone
(
static_ret
)
self
.
assertRaises
(
ValueError
,
static_test_LabelValue_ExceedMax
)
def
static_test_LabelValue_ExceedMin
():
input_np
=
np
.
random
.
random
([
2
,
4
]).
astype
(
self
.
dtype
)
label_np
=
np
.
random
.
randint
(
0
,
4
,
size
=
(
2
)).
astype
(
np
.
int64
)
label_np
[
0
]
=
-
1
weight_np
=
np
.
random
.
random
([
4
]).
astype
(
self
.
dtype
)
#shape:C
paddle
.
enable_static
()
prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
place
=
fluid
.
CUDAPlace
(
0
)
if
fluid
.
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
with
fluid
.
program_guard
(
prog
,
startup_prog
):
input
=
fluid
.
data
(
name
=
'input'
,
shape
=
[
2
,
4
],
dtype
=
self
.
dtype
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
2
],
dtype
=
'int64'
)
weight
=
fluid
.
data
(
name
=
'weight'
,
shape
=
[
4
],
dtype
=
self
.
dtype
)
#weight for each class
cross_entropy_loss
=
paddle
.
nn
.
loss
.
CrossEntropyLoss
(
weight
=
weight
)
ret
=
cross_entropy_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
static_ret
=
exe
.
run
(
prog
,
feed
=
{
'input'
:
input_np
,
'label'
:
label_np
,
"weight"
:
weight_np
},
fetch_list
=
[
ret
])
self
.
assertIsNotNone
(
static_ret
)
self
.
assertRaises
(
ValueError
,
test_LabelValueNeg
)
self
.
assertRaises
(
ValueError
,
static_test_LabelValue_ExceedMin
)
if
__name__
==
"__main__"
:
...
...
python/paddle/nn/functional/loss.py
浏览文件 @
12bcd023
...
...
@@ -1657,7 +1657,7 @@ def cross_entropy(input,
if
weight
is
not
None
:
#trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
#
trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
if
soft_label
==
True
:
# chajchaj:
# weight's shape is C, where C is class num.
...
...
@@ -1675,14 +1675,43 @@ def cross_entropy(input,
out
=
_C_ops
.
elementwise_mul
(
out
,
weight_gather_reshape
)
else
:
label_min
=
paddle
.
min
(
label
)
label_max
=
paddle
.
max
(
label
)
if
label_min
<
0
or
label_max
>=
input
.
shape
[
-
1
]:
if
input
.
shape
[
-
1
]
!=
weight
.
shape
[
-
1
]:
raise
ValueError
(
'Expected 0 <= label_value < class_dimension({}), but got {} <= label_value <= {} '
.
format
(
input
.
shape
[
-
1
],
label_min
.
numpy
(),
label_max
.
numpy
()))
weight_gather
=
_C_ops
.
gather_nd
(
weight
,
label
)
"input's class_dimension({}) must equal to
\
weight's class_dimension({})
\
when weight is provided"
.
format
(
input
.
shape
[
-
1
],
weight
.
shape
[
-
1
]))
valid_label
=
paddle
.
where
(
label
==
ignore_index
,
paddle
.
to_tensor
(
0
,
dtype
=
label
.
dtype
),
label
)
if
(
len
(
paddle
.
nonzero
(
valid_label
<
0
))
>
0
)
or
(
len
(
paddle
.
nonzero
(
valid_label
>=
input
.
shape
[
-
1
]))
>
0
):
invalid_label
=
paddle
.
gather_nd
(
input
,
paddle
.
nonzero
(
valid_label
<
0
))
if
invalid_label
.
numel
()
>
0
:
raise
ValueError
(
"Target({}) is out of class_dimension's lower bound({})"
.
format
(
invalid_label
[
0
],
0
))
invalid_label
=
paddle
.
gather_nd
(
input
,
paddle
.
nonzero
(
valid_label
>=
input
.
shape
[
-
1
]))
if
invalid_label
.
numel
()
>
0
:
raise
ValueError
(
"Target({}) is out of class_dimension's upper bound({})"
.
format
(
invalid_label
[
0
],
input
.
shape
[
-
1
]))
ignore_weight_mask
=
paddle
.
cast
((
label
!=
ignore_index
),
out
.
dtype
)
if
ignore_weight_mask
.
ndim
>
1
and
ignore_weight_mask
.
shape
[
-
1
]
==
1
:
ignore_weight_mask
.
squeeze_
(
-
1
)
weight_gather
=
_C_ops
.
gather_nd
(
weight
,
valid_label
)
# ignore的位置暂时用label0的权重代替
weight_gather
=
_C_ops
.
elementwise_mul
(
weight_gather
,
ignore_weight_mask
)
input_shape
=
list
(
label
.
shape
)
weight_gather_reshape
=
reshape
(
weight_gather
,
shape
=
input_shape
)
...
...
@@ -1695,17 +1724,17 @@ def cross_entropy(input,
# so, reduce_sum all directly is ok
return
_C_ops
.
reduce_sum
(
out
,
'reduce_all'
,
True
)
elif
reduction
==
"mean"
:
#
1. if weight==none,
#
1. if weight==none,
# numerator: reduce_sum all loss directly is ok causeof fluid_softmax_with_cross_entropy's inner logic
# denominator: count sample num with class_index!=ignore_index
#2. else
#
2. else
# numerator: loss's weighted sum
# denominator: cal the sum of weight where the sample's class_index!=ignore_index
if
ignore_index
!=
-
100
:
out_sum
=
_C_ops
.
reduce_sum
(
out
,
'reduce_all'
,
True
)
#for each label[i],set 1 or 0, according to ignore_index
#mask[i]=0, if label[i]==ignore_index
#
mask[i]=1, otherwise
#
for each label[i],set 1 or 0, according to ignore_index
#
mask[i]=0, if label[i]==ignore_index
#
mask[i]=1, otherwise
mask
=
(
label
!=
ignore_index
)
if
weight
is
None
:
mask
=
paddle
.
cast
(
mask
,
dtype
=
out_sum
.
dtype
)
...
...
@@ -1761,7 +1790,7 @@ def cross_entropy(input,
weight_name
=
name
if
reduction
==
'none'
else
None
if
soft_label
==
True
:
# chajchaj:
#trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
#
trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
# weight's shape is C, where C is class num.
# for 1d case: label's shape is [N,C], weight_gather's shape is N.
# for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
...
...
@@ -1775,8 +1804,40 @@ def cross_entropy(input,
weight_gather_reshape
=
reshape
(
weight_gather
,
shape
=
out_shape
)
out
=
paddle
.
cast
(
out
,
weight_gather_reshape
.
dtype
)
else
:
if
input
.
shape
[
-
1
]
!=
weight
.
shape
[
-
1
]:
raise
ValueError
(
"input's class_dimension({}) must equal to
\
weight's class_dimension({})
\
when weight is provided"
.
format
(
input
.
shape
[
-
1
],
weight
.
shape
[
-
1
]))
valid_label
=
paddle
.
where
(
label
==
ignore_index
,
paddle
.
to_tensor
(
0
,
dtype
=
label
.
dtype
),
label
)
if
(
len
(
paddle
.
nonzero
(
valid_label
<
0
))
>
0
)
or
(
len
(
paddle
.
nonzero
(
valid_label
>=
input
.
shape
[
-
1
]))
>
0
):
invalid_label
=
paddle
.
gather_nd
(
input
,
paddle
.
nonzero
(
valid_label
<
0
))
if
invalid_label
.
numel
()
>
0
:
raise
ValueError
(
"Target({}) is out of class_dimension's lower bound({})"
.
format
(
invalid_label
[
0
],
0
))
invalid_label
=
paddle
.
gather_nd
(
input
,
paddle
.
nonzero
(
valid_label
>=
input
.
shape
[
-
1
]))
if
invalid_label
.
numel
()
>
0
:
raise
ValueError
(
"Target({}) is out of class_dimension's upper bound({})"
.
format
(
invalid_label
[
0
],
input
.
shape
[
-
1
]))
ignore_weight_mask
=
paddle
.
cast
((
label
!=
ignore_index
),
out
.
dtype
)
if
ignore_weight_mask
.
ndim
>
1
and
ignore_weight_mask
.
shape
[
-
1
]
==
1
:
ignore_weight_mask
=
paddle
.
squeeze
(
ignore_weight_mask
,
-
1
)
weight_gather
=
paddle
.
gather_nd
(
weight
,
label
)
#trans weight from class to sample, shape:N
weight
,
valid_label
)
#trans weight from class to sample, shape:N
weight_gather
=
paddle
.
multiply
(
weight_gather
,
ignore_weight_mask
)
input_shape
=
list
(
label
.
shape
)
weight_gather_reshape
=
reshape
(
weight_gather
,
shape
=
input_shape
)
out
=
paddle
.
multiply
(
out
,
weight_gather_reshape
,
name
=
weight_name
)
...
...
@@ -1786,9 +1847,9 @@ def cross_entropy(input,
elif
reduction
==
"mean"
:
if
ignore_index
!=
-
100
:
out_sum
=
paddle
.
sum
(
out
,
name
=
name
)
#for each label[i],set 1 or 0, according to ignore_index
#mask[i]=0, if label[i]==ignore_index
#
mask[i]=1, otherwise
#
for each label[i],set 1 or 0, according to ignore_index
#
mask[i]=0, if label[i]==ignore_index
#
mask[i]=1, otherwise
mask
=
(
label
!=
ignore_index
)
if
(
weight
is
None
):
mask
=
paddle
.
cast
(
mask
,
dtype
=
out_sum
.
dtype
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录