Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
1127fecb
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1127fecb
编写于
11月 25, 2021
作者:
F
furnace
提交者:
GitHub
11月 25, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[NPU] add NPU kernel for prior_box op (#37519)
* [NPU] add NPU kernel for prior_box op * [NPU] delete debug codes
上级
65056742
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
310 addition
and
1 deletion
+310
-1
paddle/fluid/operators/detection/CMakeLists.txt
paddle/fluid/operators/detection/CMakeLists.txt
+2
-1
paddle/fluid/operators/detection/prior_box_op_npu.cc
paddle/fluid/operators/detection/prior_box_op_npu.cc
+102
-0
python/paddle/fluid/tests/unittests/npu/test_prior_box_op_npu.py
...paddle/fluid/tests/unittests/npu/test_prior_box_op_npu.py
+206
-0
未找到文件。
paddle/fluid/operators/detection/CMakeLists.txt
浏览文件 @
1127fecb
...
@@ -18,14 +18,15 @@ endfunction()
...
@@ -18,14 +18,15 @@ endfunction()
if
(
WITH_ASCEND_CL
)
if
(
WITH_ASCEND_CL
)
detection_library
(
box_coder_op SRCS box_coder_op.cc box_coder_op.cu box_coder_op_npu.cc
)
detection_library
(
box_coder_op SRCS box_coder_op.cc box_coder_op.cu box_coder_op_npu.cc
)
detection_library
(
density_prior_box_op SRCS density_prior_box_op.cc density_prior_box_op.cu density_prior_box_op_npu.cc
)
detection_library
(
density_prior_box_op SRCS density_prior_box_op.cc density_prior_box_op.cu density_prior_box_op_npu.cc
)
detection_library
(
prior_box_op SRCS prior_box_op.cc prior_box_op.cu prior_box_op_npu.cc
)
else
()
else
()
detection_library
(
box_coder_op SRCS box_coder_op.cc box_coder_op.cu
)
detection_library
(
box_coder_op SRCS box_coder_op.cc box_coder_op.cu
)
detection_library
(
density_prior_box_op SRCS density_prior_box_op.cc density_prior_box_op.cu
)
detection_library
(
density_prior_box_op SRCS density_prior_box_op.cc density_prior_box_op.cu
)
detection_library
(
prior_box_op SRCS prior_box_op.cc prior_box_op.cu
)
endif
()
endif
()
detection_library
(
bipartite_match_op SRCS bipartite_match_op.cc
)
detection_library
(
bipartite_match_op SRCS bipartite_match_op.cc
)
detection_library
(
mine_hard_examples_op SRCS mine_hard_examples_op.cc
)
detection_library
(
mine_hard_examples_op SRCS mine_hard_examples_op.cc
)
detection_library
(
prior_box_op SRCS prior_box_op.cc prior_box_op.cu
)
detection_library
(
anchor_generator_op SRCS anchor_generator_op.cc
detection_library
(
anchor_generator_op SRCS anchor_generator_op.cc
anchor_generator_op.cu
)
anchor_generator_op.cu
)
detection_library
(
target_assign_op SRCS target_assign_op.cc
detection_library
(
target_assign_op SRCS target_assign_op.cc
...
...
paddle/fluid/operators/detection/prior_box_op_npu.cc
0 → 100644
浏览文件 @
1127fecb
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/detection/prior_box_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
DeviceContext
,
typename
T
>
class
PriorBoxNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
*
image
=
ctx
.
Input
<
Tensor
>
(
"Image"
);
auto
*
boxes
=
ctx
.
Output
<
Tensor
>
(
"Boxes"
);
auto
*
variances
=
ctx
.
Output
<
Tensor
>
(
"Variances"
);
PADDLE_ENFORCE_EQ
(
boxes
->
dims
(),
variances
->
dims
(),
platform
::
errors
::
Unimplemented
(
"the shape of boxes and variances must be same in "
"the npu kernel of prior_box, but got boxes->dims() "
"= [%s], variances->dims() = [%s]"
,
boxes
->
dims
(),
variances
->
dims
()));
auto
min_sizes
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"min_sizes"
);
auto
max_sizes
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"max_sizes"
);
auto
aspect_ratios
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"aspect_ratios"
);
auto
variances_attr
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"variances"
);
bool
flip
=
ctx
.
Attr
<
bool
>
(
"flip"
);
bool
clip
=
ctx
.
Attr
<
bool
>
(
"clip"
);
float
step_w
=
ctx
.
Attr
<
float
>
(
"step_w"
);
float
step_h
=
ctx
.
Attr
<
float
>
(
"step_h"
);
float
offset
=
ctx
.
Attr
<
float
>
(
"offset"
);
auto
place
=
ctx
.
GetPlace
();
Tensor
out
(
input
->
type
());
auto
out_dims
=
framework
::
vectorize
(
boxes
->
dims
());
out_dims
.
insert
(
out_dims
.
begin
(),
2
);
out
.
Resize
(
framework
::
make_ddim
(
out_dims
));
out
.
mutable_data
<
T
>
(
place
);
framework
::
NPUAttributeMap
attr_input
=
{{
"min_size"
,
min_sizes
},
{
"max_size"
,
max_sizes
},
{
"aspect_ratio"
,
aspect_ratios
},
{
"step_h"
,
step_h
},
{
"step_w"
,
step_w
},
{
"flip"
,
flip
},
{
"clip"
,
clip
},
{
"offset"
,
offset
},
{
"variance"
,
variances_attr
}};
auto
stream
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
const
auto
&
runner
=
NpuOpRunner
(
"PriorBox"
,
{
*
input
,
*
image
},
{
out
},
attr_input
);
runner
.
Run
(
stream
);
out
.
Resize
(
framework
::
make_ddim
({
out
.
numel
()}));
Tensor
out_boxes
=
out
.
Slice
(
0
,
boxes
->
numel
());
Tensor
out_variances
=
out
.
Slice
(
boxes
->
numel
(),
out
.
numel
());
out_boxes
.
Resize
(
boxes
->
dims
());
out_variances
.
Resize
(
variances
->
dims
());
boxes
->
mutable_data
<
T
>
(
place
);
variances
->
mutable_data
<
T
>
(
place
);
framework
::
TensorCopy
(
out_boxes
,
place
,
ctx
.
template
device_context
<
platform
::
NPUDeviceContext
>(),
boxes
);
framework
::
TensorCopy
(
out_variances
,
place
,
ctx
.
template
device_context
<
platform
::
NPUDeviceContext
>(),
variances
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_NPU_KERNEL
(
prior_box
,
ops
::
PriorBoxNPUKernel
<
plat
::
NPUDeviceContext
,
float
>
,
ops
::
PriorBoxNPUKernel
<
plat
::
NPUDeviceContext
,
plat
::
float16
>
);
python/paddle/fluid/tests/unittests/npu/test_prior_box_op_npu.py
0 → 100644
浏览文件 @
1127fecb
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
import
sys
import
math
from
paddle.fluid.tests.unittests.op_test
import
OpTest
,
_set_use_system_allocator
paddle
.
enable_static
()
class
TestNPUPriorBox
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"prior_box"
self
.
set_npu
()
self
.
init_dtype
()
self
.
set_data
()
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
atol
=
self
.
atol
)
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
self
.
place
=
paddle
.
NPUPlace
(
0
)
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
set_data
(
self
):
self
.
init_test_params
()
self
.
init_test_input
()
self
.
init_test_output
()
self
.
inputs
=
{
'Input'
:
self
.
input
,
'Image'
:
self
.
image
}
self
.
attrs
=
{
'min_sizes'
:
self
.
min_sizes
,
'aspect_ratios'
:
self
.
aspect_ratios
,
'variances'
:
self
.
variances
,
'flip'
:
self
.
flip
,
'clip'
:
self
.
clip
,
'min_max_aspect_ratios_order'
:
self
.
min_max_aspect_ratios_order
,
'step_w'
:
self
.
step_w
,
'step_h'
:
self
.
step_h
,
'offset'
:
self
.
offset
}
if
len
(
self
.
max_sizes
)
>
0
:
self
.
attrs
[
'max_sizes'
]
=
self
.
max_sizes
self
.
outputs
=
{
'Boxes'
:
self
.
out_boxes
,
'Variances'
:
self
.
out_var
}
def
set_max_sizes
(
self
):
max_sizes
=
[
5
,
10
]
self
.
max_sizes
=
np
.
array
(
max_sizes
).
astype
(
'float32'
).
tolist
()
def
set_min_max_aspect_ratios_order
(
self
):
self
.
min_max_aspect_ratios_order
=
True
self
.
atol
=
1e-3
def
init_test_params
(
self
):
self
.
layer_w
=
32
self
.
layer_h
=
32
self
.
image_w
=
40
self
.
image_h
=
40
self
.
step_w
=
float
(
self
.
image_w
)
/
float
(
self
.
layer_w
)
self
.
step_h
=
float
(
self
.
image_h
)
/
float
(
self
.
layer_h
)
self
.
input_channels
=
2
self
.
image_channels
=
3
self
.
batch_size
=
10
self
.
min_sizes
=
[
2
,
4
]
self
.
min_sizes
=
np
.
array
(
self
.
min_sizes
).
astype
(
'float32'
).
tolist
()
self
.
set_max_sizes
()
self
.
aspect_ratios
=
[
2.0
,
3.0
]
self
.
flip
=
True
self
.
set_min_max_aspect_ratios_order
()
self
.
real_aspect_ratios
=
[
1
,
2.0
,
1.0
/
2.0
,
3.0
,
1.0
/
3.0
]
self
.
aspect_ratios
=
np
.
array
(
self
.
aspect_ratios
,
dtype
=
np
.
float
).
flatten
()
self
.
variances
=
[
0.1
,
0.1
,
0.2
,
0.2
]
self
.
variances
=
np
.
array
(
self
.
variances
,
dtype
=
np
.
float
).
flatten
()
self
.
clip
=
True
self
.
num_priors
=
len
(
self
.
real_aspect_ratios
)
*
len
(
self
.
min_sizes
)
if
len
(
self
.
max_sizes
)
>
0
:
self
.
num_priors
+=
len
(
self
.
max_sizes
)
self
.
offset
=
0.5
def
init_test_input
(
self
):
self
.
image
=
np
.
random
.
random
(
(
self
.
batch_size
,
self
.
image_channels
,
self
.
image_w
,
self
.
image_h
)).
astype
(
'float32'
)
self
.
input
=
np
.
random
.
random
(
(
self
.
batch_size
,
self
.
input_channels
,
self
.
layer_w
,
self
.
layer_h
)).
astype
(
'float32'
)
def
init_test_output
(
self
):
out_dim
=
(
self
.
layer_h
,
self
.
layer_w
,
self
.
num_priors
,
4
)
out_boxes
=
np
.
zeros
(
out_dim
).
astype
(
'float32'
)
out_var
=
np
.
zeros
(
out_dim
).
astype
(
'float32'
)
idx
=
0
for
h
in
range
(
self
.
layer_h
):
for
w
in
range
(
self
.
layer_w
):
c_x
=
(
w
+
self
.
offset
)
*
self
.
step_w
c_y
=
(
h
+
self
.
offset
)
*
self
.
step_h
idx
=
0
for
s
in
range
(
len
(
self
.
min_sizes
)):
min_size
=
self
.
min_sizes
[
s
]
if
not
self
.
min_max_aspect_ratios_order
:
# rest of priors
for
r
in
range
(
len
(
self
.
real_aspect_ratios
)):
ar
=
self
.
real_aspect_ratios
[
r
]
c_w
=
min_size
*
math
.
sqrt
(
ar
)
/
2
c_h
=
(
min_size
/
math
.
sqrt
(
ar
))
/
2
out_boxes
[
h
,
w
,
idx
,
:]
=
[
(
c_x
-
c_w
)
/
self
.
image_w
,
(
c_y
-
c_h
)
/
self
.
image_h
,
(
c_x
+
c_w
)
/
self
.
image_w
,
(
c_y
+
c_h
)
/
self
.
image_h
]
idx
+=
1
if
len
(
self
.
max_sizes
)
>
0
:
max_size
=
self
.
max_sizes
[
s
]
# second prior: aspect_ratio = 1,
c_w
=
c_h
=
math
.
sqrt
(
min_size
*
max_size
)
/
2
out_boxes
[
h
,
w
,
idx
,
:]
=
[
(
c_x
-
c_w
)
/
self
.
image_w
,
(
c_y
-
c_h
)
/
self
.
image_h
,
(
c_x
+
c_w
)
/
self
.
image_w
,
(
c_y
+
c_h
)
/
self
.
image_h
]
idx
+=
1
else
:
c_w
=
c_h
=
min_size
/
2.
out_boxes
[
h
,
w
,
idx
,
:]
=
[(
c_x
-
c_w
)
/
self
.
image_w
,
(
c_y
-
c_h
)
/
self
.
image_h
,
(
c_x
+
c_w
)
/
self
.
image_w
,
(
c_y
+
c_h
)
/
self
.
image_h
]
idx
+=
1
if
len
(
self
.
max_sizes
)
>
0
:
max_size
=
self
.
max_sizes
[
s
]
# second prior: aspect_ratio = 1,
c_w
=
c_h
=
math
.
sqrt
(
min_size
*
max_size
)
/
2
out_boxes
[
h
,
w
,
idx
,
:]
=
[
(
c_x
-
c_w
)
/
self
.
image_w
,
(
c_y
-
c_h
)
/
self
.
image_h
,
(
c_x
+
c_w
)
/
self
.
image_w
,
(
c_y
+
c_h
)
/
self
.
image_h
]
idx
+=
1
# rest of priors
for
r
in
range
(
len
(
self
.
real_aspect_ratios
)):
ar
=
self
.
real_aspect_ratios
[
r
]
if
abs
(
ar
-
1.
)
<
1e-6
:
continue
c_w
=
min_size
*
math
.
sqrt
(
ar
)
/
2
c_h
=
(
min_size
/
math
.
sqrt
(
ar
))
/
2
out_boxes
[
h
,
w
,
idx
,
:]
=
[
(
c_x
-
c_w
)
/
self
.
image_w
,
(
c_y
-
c_h
)
/
self
.
image_h
,
(
c_x
+
c_w
)
/
self
.
image_w
,
(
c_y
+
c_h
)
/
self
.
image_h
]
idx
+=
1
# clip the prior's coordidate such that it is within[0, 1]
if
self
.
clip
:
out_boxes
=
np
.
clip
(
out_boxes
,
0.0
,
1.0
)
# set the variance.
out_var
=
np
.
tile
(
self
.
variances
,
(
self
.
layer_h
,
self
.
layer_w
,
self
.
num_priors
,
1
))
self
.
out_boxes
=
out_boxes
.
astype
(
'float32'
)
self
.
out_var
=
out_var
.
astype
(
'float32'
)
class
TestNPUPriorBoxWithoutMaxSize
(
TestNPUPriorBox
):
def
set_max_sizes
(
self
):
self
.
max_sizes
=
[]
class
TestNPUPriorBoxWithoutSpecifiedOutOrder
(
TestNPUPriorBox
):
def
set_min_max_aspect_ratios_order
(
self
):
self
.
min_max_aspect_ratios_order
=
False
self
.
atol
=
1e-1
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录