Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
0fbe0a7a
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0fbe0a7a
编写于
8月 31, 2018
作者:
L
luotao1
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add multi-thread ut for ditu-rnn
上级
d0c65bff
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
119 addition
and
86 deletion
+119
-86
paddle/fluid/framework/ir/attention_lstm_fuse_pass.cc
paddle/fluid/framework/ir/attention_lstm_fuse_pass.cc
+1
-1
paddle/fluid/framework/ir/fc_lstm_fuse_pass.cc
paddle/fluid/framework/ir/fc_lstm_fuse_pass.cc
+4
-4
paddle/fluid/framework/ir/graph_pattern_detector.cc
paddle/fluid/framework/ir/graph_pattern_detector.cc
+1
-1
paddle/fluid/inference/analysis/analyzer_tester.cc
paddle/fluid/inference/analysis/analyzer_tester.cc
+69
-76
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+3
-4
paddle/fluid/inference/api/helper.h
paddle/fluid/inference/api/helper.h
+41
-0
未找到文件。
paddle/fluid/framework/ir/attention_lstm_fuse_pass.cc
浏览文件 @
0fbe0a7a
...
...
@@ -13,10 +13,10 @@
// limitations under the License.
#include "paddle/fluid/framework/ir/attention_lstm_fuse_pass.h"
#include <string>
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/inference/api/helper.h"
namespace
paddle
{
namespace
framework
{
...
...
paddle/fluid/framework/ir/fc_lstm_fuse_pass.cc
浏览文件 @
0fbe0a7a
...
...
@@ -35,7 +35,6 @@ std::unique_ptr<ir::Graph> FCLstmFusePass::ApplyImpl(
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
auto
*
id
=
subgraph
.
at
(
gpd
.
pattern
().
RetrieveNode
(
"any_node"
));
marked_nodes
.
insert
(
id
);
};
...
...
@@ -89,7 +88,6 @@ std::unique_ptr<ir::Graph> FCLstmFusePass::ApplyImpl(
LINK_TO
(
op
,
hidden_n
);
#undef LINK_TO
return
op
;
};
lstm_creator
(
16
,
12
,
14
,
18
,
17
,
22
,
21
,
19
);
...
...
@@ -105,16 +103,18 @@ std::unique_ptr<ir::Graph> FCLstmFusePass::ApplyImpl(
for
(
auto
it
=
node
->
inputs
.
begin
();
it
!=
node
->
inputs
.
end
();)
{
if
(
marked_nodes
.
count
(
*
it
))
{
it
=
const_cast
<
Node
*>
(
node
)
->
inputs
.
erase
(
it
);
}
else
}
else
{
it
++
;
}
}
for
(
auto
it
=
node
->
outputs
.
begin
();
it
!=
node
->
outputs
.
end
();)
{
if
(
marked_nodes
.
count
(
*
it
))
{
it
=
const_cast
<
Node
*>
(
node
)
->
outputs
.
erase
(
it
);
}
else
}
else
{
it
++
;
}
}
}
return
graph
;
}
...
...
paddle/fluid/framework/ir/graph_pattern_detector.cc
浏览文件 @
0fbe0a7a
...
...
@@ -81,7 +81,7 @@ void GraphPatternDetector::operator()(Graph* graph,
LOG
(
INFO
)
<<
"detect "
<<
subgraphs
.
size
()
<<
" subgraph matches the pattern"
;
int
id
=
0
;
for
(
auto
&
g
:
subgraphs
)
{
LOG
(
INFO
)
<<
"optimizing #"
<<
id
++
<<
" subgraph"
;
VLOG
(
3
)
<<
"optimizing #"
<<
id
++
<<
" subgraph"
;
handler
(
g
,
graph
);
}
}
...
...
paddle/fluid/inference/analysis/analyzer_tester.cc
浏览文件 @
0fbe0a7a
...
...
@@ -16,6 +16,7 @@
#include <google/protobuf/text_format.h>
#include <gtest/gtest.h>
#include <thread> // NOLINT
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
...
...
@@ -23,19 +24,17 @@
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/inference/utils/singleton.h"
#include "paddle/fluid/platform/profiler.h"
DEFINE_string
(
infer_ditu_rnn_model
,
""
,
"model path for ditu RNN"
);
DEFINE_string
(
infer_ditu_rnn_data
,
""
,
"data path for ditu RNN"
);
DEFINE_int32
(
batch_size
,
10
,
"batch size."
);
DEFINE_int32
(
repeat
,
1
,
"Running the inference program repeat times."
);
DEFINE_int32
(
num_threads
,
1
,
"Running the inference program in multi-threads."
);
namespace
paddle
{
namespace
inference
{
namespace
analysis
{
using
namespace
framework
;
TEST
(
Analyzer
,
analysis_without_tensorrt
)
{
FLAGS_IA_enable_tensorrt_subgraph_engine
=
false
;
Argument
argument
;
...
...
@@ -219,39 +218,6 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
}
}
std
::
string
DescribeTensor
(
const
PaddleTensor
&
tensor
)
{
std
::
stringstream
os
;
os
<<
"Tensor ["
<<
tensor
.
name
<<
"]
\n
"
;
os
<<
" - type: "
;
switch
(
tensor
.
dtype
)
{
case
PaddleDType
::
FLOAT32
:
os
<<
"float32"
;
break
;
case
PaddleDType
::
INT64
:
os
<<
"int64"
;
break
;
default:
os
<<
"unset"
;
}
os
<<
'\n'
;
os
<<
" - shape: "
<<
to_string
(
tensor
.
shape
)
<<
'\n'
;
os
<<
" - lod: "
;
for
(
auto
&
l
:
tensor
.
lod
)
{
os
<<
to_string
(
l
)
<<
"; "
;
}
os
<<
"
\n
"
;
os
<<
" - data: "
;
int
dim
=
std
::
accumulate
(
tensor
.
shape
.
begin
(),
tensor
.
shape
.
end
(),
1
,
[](
int
a
,
int
b
)
{
return
a
*
b
;
});
for
(
int
i
=
0
;
i
<
dim
;
i
++
)
{
os
<<
static_cast
<
float
*>
(
tensor
.
data
.
data
())[
i
]
<<
" "
;
}
os
<<
'\n'
;
return
os
.
str
();
}
}
// namespace
const
float
ditu_rnn_target_data
[]
=
{
...
...
@@ -266,39 +232,71 @@ const float ditu_rnn_target_data[] = {
93.5771
,
3.84641
,
0
,
0
,
0
,
0
,
0
,
0
,
169.426
,
0
,
0
,
0
,
0
,
0
,
0
,
0
};
// Test with a really complicate model.
void
TestDituRNNPrediction
(
const
std
::
string
&
model_path
,
const
std
::
string
&
data_path
,
int
batch_size
,
bool
use_analysis
,
bool
activate_ir
,
int
num_times
=
1
)
{
void
TestDituRNNPrediction
(
bool
use_analysis_and_activate_ir
=
false
,
int
num_threads
=
FLAGS_num_threads
)
{
NativeConfig
config
;
config
.
prog_file
=
FLAGS_infer_ditu_rnn_model
+
"/__model__"
;
config
.
param_file
=
FLAGS_infer_ditu_rnn_model
+
"/param"
;
config
.
use_gpu
=
false
;
config
.
device
=
0
;
config
.
specify_input_name
=
true
;
int
batch_size
=
FLAGS_batch_size
;
int
num_times
=
FLAGS_repeat
;
auto
base_predictor
=
CreatePaddlePredictor
<
NativeConfig
,
PaddleEngineKind
::
kNative
>
(
config
);
auto
predictor
=
CreatePaddlePredictor
<
NativeConfig
,
PaddleEngineKind
::
kAnalysis
>
(
config
);
std
::
vector
<
PaddleTensor
>
input_slots
;
DataRecord
data
(
data_path
,
batch_size
);
DataRecord
data
(
FLAGS_infer_ditu_rnn_data
,
batch_size
);
// Prepare inputs.
PrepareInputs
(
&
input_slots
,
&
data
,
batch_size
);
std
::
vector
<
PaddleTensor
>
outputs
,
base_outputs
;
base_predictor
->
Run
(
input_slots
,
&
base_outputs
);
LOG
(
INFO
)
<<
"===========profile result==========="
;
if
(
num_threads
==
1
)
{
std
::
vector
<
PaddleTensor
>
input_slots
;
// Prepare inputs.
DataRecord
data
(
FLAGS_infer_ditu_rnn_data
,
batch_size
);
PrepareInputs
(
&
input_slots
,
&
data
,
batch_size
);
Timer
timer
;
timer
.
tic
();
for
(
int
i
=
0
;
i
<
num_times
;
i
++
)
{
predictor
->
Run
(
input_slots
,
&
outputs
);
}
LOG
(
INFO
)
<<
"===========profile result==========="
;
LOG
(
INFO
)
<<
"batch_size: "
<<
batch_size
<<
", repeat: "
<<
num_times
<<
", latency: "
<<
timer
.
toc
()
/
num_times
<<
"ms"
;
print_time
(
batch_size
,
num_times
,
1
,
0
,
timer
.
toc
()
/
num_times
);
}
else
{
std
::
vector
<
std
::
thread
>
threads
;
std
::
vector
<
PaddleTensor
>
input_slots
;
// Prepare inputs.
PrepareInputs
(
&
input_slots
,
&
data
,
batch_size
);
std
::
vector
<
PaddleTensor
>
outputs
;
for
(
int
tid
=
0
;
tid
<
num_threads
;
++
tid
)
{
threads
.
emplace_back
([
&
,
tid
]()
{
auto
predictor_tid
=
CreatePaddlePredictor
<
NativeConfig
,
PaddleEngineKind
::
kAnalysis
>
(
config
);
DataRecord
data
(
FLAGS_infer_ditu_rnn_data
,
batch_size
);
Timer
timer
;
timer
.
tic
();
for
(
int
i
=
0
;
i
<
num_times
;
i
++
)
{
predictor_tid
->
Run
(
input_slots
,
&
outputs
);
}
print_time
(
batch_size
,
num_times
,
num_threads
,
tid
,
timer
.
toc
()
/
num_times
);
});
}
for
(
int
i
=
0
;
i
<
num_threads
;
++
i
)
{
threads
[
i
].
join
();
}
}
LOG
(
INFO
)
<<
"====================================="
;
if
(
num_threads
==
1
)
{
PADDLE_ENFORCE_GT
(
outputs
.
size
(),
0
);
PADDLE_ENFORCE_EQ
(
outputs
.
size
(),
base_outputs
.
size
());
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
i
++
)
{
...
...
@@ -306,8 +304,9 @@ void TestDituRNNPrediction(const std::string &model_path,
auto
&
base_out
=
base_outputs
[
i
];
size_t
size
=
std
::
accumulate
(
out
.
shape
.
begin
(),
out
.
shape
.
end
(),
1
,
[](
int
a
,
int
b
)
{
return
a
*
b
;
});
size_t
size1
=
std
::
accumulate
(
base_out
.
shape
.
begin
(),
base_out
.
shape
.
end
(),
1
,
[](
int
a
,
int
b
)
{
return
a
*
b
;
});
size_t
size1
=
std
::
accumulate
(
base_out
.
shape
.
begin
(),
base_out
.
shape
.
end
(),
1
,
[](
int
a
,
int
b
)
{
return
a
*
b
;
});
PADDLE_ENFORCE_EQ
(
size
,
size1
);
PADDLE_ENFORCE_GT
(
size
,
0
);
float
*
data
=
static_cast
<
float
*>
(
out
.
data
.
data
());
...
...
@@ -316,8 +315,9 @@ void TestDituRNNPrediction(const std::string &model_path,
EXPECT_NEAR
(
data
[
i
],
base_data
[
i
],
1e-3
);
}
}
}
if
(
use_analysis
&&
activate_ir
)
{
if
(
use_analysis
_and_
activate_ir
)
{
AnalysisPredictor
*
analysis_predictor
=
dynamic_cast
<
AnalysisPredictor
*>
(
predictor
.
get
());
auto
&
fuse_statis
=
analysis_predictor
->
analysis_argument
()
...
...
@@ -334,23 +334,16 @@ void TestDituRNNPrediction(const std::string &model_path,
// Directly infer with the original model.
TEST
(
Analyzer
,
DituRNN_without_analysis
)
{
TestDituRNNPrediction
(
FLAGS_infer_ditu_rnn_model
,
FLAGS_infer_ditu_rnn_data
,
FLAGS_batch_size
,
false
,
false
,
FLAGS_repeat
);
}
// Inference with the original model with the analysis turned on, the analysis
// module will transform the program to a data flow graph.
TEST
(
Analyzer
,
DituRNN_with_analysis
)
{
LOG
(
INFO
)
<<
"ditu rnn with analysis"
;
TestDituRNNPrediction
(
FLAGS_infer_ditu_rnn_model
,
FLAGS_infer_ditu_rnn_data
,
FLAGS_batch_size
,
true
,
false
,
FLAGS_repeat
);
LOG
(
INFO
)
<<
"ditu rnn without analysis"
;
TestDituRNNPrediction
(
false
,
1
);
TestDituRNNPrediction
(
false
,
4
);
// multi-threads
}
// Inference with analysis and IR. The IR module will fuse some large kernels.
TEST
(
Analyzer
,
DituRNN_with_analysis_with_IR
)
{
LOG
(
INFO
)
<<
"ditu rnn with analysis and IR fuse"
;
TestDituRNNPrediction
(
FLAGS_infer_ditu_rnn_model
,
FLAGS_infer_ditu_rnn_data
,
FLAGS_batch_size
,
true
,
true
,
FLAGS_repeat
);
TestDituRNNPrediction
(
true
,
1
);
TestDituRNNPrediction
(
true
,
4
);
// multi-threads
}
}
// namespace analysis
...
...
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
0fbe0a7a
...
...
@@ -14,6 +14,8 @@
#include "paddle/fluid/inference/api/analysis_predictor.h"
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/framework/scope.h"
...
...
@@ -30,7 +32,6 @@ bool AnalysisPredictor::Init(
}
else
{
place_
=
paddle
::
platform
::
CPUPlace
();
}
PADDLE_ENFORCE
(
!
parent_scope
);
if
(
parent_scope
)
{
scope_
=
parent_scope
;
sub_scope_
=
&
(
parent_scope
->
NewScope
());
...
...
@@ -92,8 +93,6 @@ void AnalysisPredictor::OptimizeInferenceProgram() {
Analyzer
().
Run
(
&
argument_
);
CHECK
(
argument_
.
transformed_program_desc
);
VLOG
(
5
)
<<
"to prepare executor"
;
// LOG(INFO) << "transformed_parogram_desc " <<
// argument.transformed_program_desc->DebugString();
inference_program_
.
reset
(
new
framework
::
ProgramDesc
(
*
argument_
.
transformed_program_desc
));
PADDLE_ENFORCE
(
argument_
.
Has
(
framework
::
ir
::
kParamScopeAttr
));
...
...
@@ -106,7 +105,7 @@ void AnalysisPredictor::OptimizeInferenceProgram() {
template
<
>
std
::
unique_ptr
<
PaddlePredictor
>
CreatePaddlePredictor
<
NativeConfig
,
PaddleEngineKind
::
kAnalysis
>
(
const
NativeConfig
&
config
)
{
VLOG
(
3
)
<<
"create
Native
Predictor"
;
VLOG
(
3
)
<<
"create
Analysis
Predictor"
;
if
(
config
.
use_gpu
)
{
// 1. GPU memeroy
PADDLE_ENFORCE_GT
(
...
...
paddle/fluid/inference/api/helper.h
浏览文件 @
0fbe0a7a
...
...
@@ -14,6 +14,7 @@
#pragma once
#include <glog/logging.h>
#include <sys/time.h>
#include <algorithm>
#include <sstream>
...
...
@@ -106,5 +107,45 @@ static void TensorAssignData(PaddleTensor *tensor,
}
}
std
::
string
DescribeTensor
(
const
PaddleTensor
&
tensor
)
{
std
::
stringstream
os
;
os
<<
"Tensor ["
<<
tensor
.
name
<<
"]
\n
"
;
os
<<
" - type: "
;
switch
(
tensor
.
dtype
)
{
case
PaddleDType
::
FLOAT32
:
os
<<
"float32"
;
break
;
case
PaddleDType
::
INT64
:
os
<<
"int64"
;
break
;
default:
os
<<
"unset"
;
}
os
<<
'\n'
;
os
<<
" - shape: "
<<
to_string
(
tensor
.
shape
)
<<
'\n'
;
os
<<
" - lod: "
;
for
(
auto
&
l
:
tensor
.
lod
)
{
os
<<
to_string
(
l
)
<<
"; "
;
}
os
<<
"
\n
"
;
os
<<
" - data: "
;
int
dim
=
std
::
accumulate
(
tensor
.
shape
.
begin
(),
tensor
.
shape
.
end
(),
1
,
[](
int
a
,
int
b
)
{
return
a
*
b
;
});
for
(
int
i
=
0
;
i
<
dim
;
i
++
)
{
os
<<
static_cast
<
float
*>
(
tensor
.
data
.
data
())[
i
]
<<
" "
;
}
os
<<
'\n'
;
return
os
.
str
();
}
void
print_time
(
int
batch_size
,
int
repeat
,
int
num_threads
,
int
tid
,
double
latency
)
{
LOG
(
INFO
)
<<
"batch_size: "
<<
batch_size
<<
", repeat: "
<<
repeat
<<
", threads: "
<<
num_threads
<<
", thread id: "
<<
tid
<<
", latency: "
<<
latency
<<
"ms"
;
}
}
// namespace inference
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录