提交 0f6be415 编写于 作者: W Wei Liu

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into develop

...@@ -128,7 +128,7 @@ Please install pre-commit, which automatically reformat the changes to C/C++ and ...@@ -128,7 +128,7 @@ Please install pre-commit, which automatically reformat the changes to C/C++ and
Please remember to add related unit tests. Please remember to add related unit tests.
- For C/C++ code, please follow [`google-test` Primer](https://github.com/google/googletest/blob/master/googletest/docs/Primer.md). - For C/C++ code, please follow [`google-test` Primer](https://github.com/google/googletest/blob/master/googletest/docs/primer.md) .
- For Python code, please use [Python's standard `unittest` package](http://pythontesting.net/framework/unittest/unittest-introduction/). - For Python code, please use [Python's standard `unittest` package](http://pythontesting.net/framework/unittest/unittest-introduction/).
......
...@@ -304,7 +304,7 @@ function(cc_library TARGET_NAME) ...@@ -304,7 +304,7 @@ function(cc_library TARGET_NAME)
if(cc_library_DEPS) if(cc_library_DEPS)
merge_static_libs(${TARGET_NAME} ${cc_library_DEPS}) merge_static_libs(${TARGET_NAME} ${cc_library_DEPS})
else() else()
message(FATAL "Please specify source file or library in cc_library.") message(FATAL_ERROR "Please specify source files or libraries in cc_library(${TARGET_NAME} ...).")
endif() endif()
endif(cc_library_SRCS) endif(cc_library_SRCS)
endfunction(cc_library) endfunction(cc_library)
......
add_custom_target(paddle_apis ALL
DEPENDS paddle_v2_apis)
add_custom_target(paddle_docs ALL
DEPENDS paddle_v2_docs paddle_v2_docs_cn
paddle_mobile_docs paddle_mobile_docs_cn)
add_subdirectory(v2)
add_subdirectory(mobile)
=========
关于我们
=========
什么是PaddlePaddle
--------------------
- PaddlePaddle是百度自主研发并开源的深度学习框架,它能够让开发者和企业安全、快速地实现自己的AI想法
- 项目团队汇聚了全球顶级的深度学习科学家,致力于为开发者和企业提供最好的深度学习研发体验
- 框架具有易学、易用、安全、高效四大特性,是最适合中国开发者和企业的深度学习工具
PaddlePaddle的技术特色
-------------------------
- 新一代深度学习框架: PaddlePaddle是基于“深度学习编程语言”的新一代深度学习框架,在保证性能的同时,极大的提升了框架对模型的表达能力,能够描述任意潜在可能出现的模型
- 对大规模计算更加友好:经过百度内多种大规模计算业务的打磨,PaddlePaddle在分布式计算上表现优异,基于EDL技术能够节约大量计算资源,同时也能支持大规模稀疏模型的训练
- 提供可视化的深度学习:通过Visual DL可以帮助开发者方便的观测训练整体趋势、数据样本质量和中间结果、参数分布和变化趋势、以及模型的结构,帮助开发者更便捷的完成编程过程
提供基于PaddlePaddle的教育体系
--------------------------------
- 深度学习课程:百度与中国市场顶级的教育、培训机构共同开发了深度学习精品课程以及学习教材,帮助开发者从零掌握深度学习
- 深度学习实训:对于目的是科研和学习的用户,PaddlePaddle提供了无需安装、线上运行的开发环境,并提供算法、算力、数据支持
- 线下培训:提供丰富、高质量的线下教育活动,如青年教师培训、线下实战营、沙龙等多种形式的培训和交流
提供基于PaddlePaddle的AI服务
------------------------------
- EadyDL:可以帮助零算法基础的企业快速完成一个深度学习任务,只需少量的数据即可得到优质的模型
- AI市场:提供标准化的AI 能力、产品的交易机制,帮助企业快速找到所需,有效开展AI业务
- 深度学习竞赛: PaddlePaddle汇聚顶尖深度学习开发者,企业可以发布自己的商业问题,通过竞赛方式快速找到最优的解决方案
你对PaddlePaddle有任何的问题都可以通过以下方式联系到我们
-----------------------------------------------------------
- 学习/使用问题:可以在 `PaddlePaddle开源社区 <https://github.com/PaddlePaddle/Paddle/issues>`_,以及 `PaddlePaddle中文社区 <http://ai.baidu.com/forum/topic/list/168>`_ 向我们反馈
- 对PaddlePaddle框架发展的建议:可发送邮件至Paddle-better@baidu.com
我们期待与你一起打造世界顶级深度学习框架,共同推动AI技术的进步
PaddlePaddle团队
if(NOT DEFINED SPHINX_THEME)
set(SPHINX_THEME default)
endif()
if(NOT DEFINED SPHINX_THEME_DIR)
set(SPHINX_THEME_DIR)
endif()
# configured documentation tools and intermediate build results
set(BINARY_BUILD_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/_build")
# Sphinx cache with pickled ReST documents
set(SPHINX_CACHE_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/_doctrees")
# HTML output director
set(SPHINX_HTML_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/html")
set(IMPORT_PADDLE_STRING "")
set(IMPORT_PADDLEV2_STRING "")
configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/../templates/conf.py.en.in"
"${BINARY_BUILD_DIR_EN}/conf.py"
@ONLY)
sphinx_add_target(paddle_mobile_docs
html
${BINARY_BUILD_DIR_EN}
${SPHINX_CACHE_DIR_EN}
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_EN})
# configured documentation tools and intermediate build results
set(BINARY_BUILD_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/_build")
# Sphinx cache with pickled ReST documents
set(SPHINX_CACHE_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/_doctrees")
# HTML output director
set(SPHINX_HTML_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/html")
configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/../templates/conf.py.cn.in"
"${BINARY_BUILD_DIR_CN}/conf.py"
@ONLY)
sphinx_add_target(paddle_mobile_docs_cn
html
${BINARY_BUILD_DIR_CN}
${SPHINX_CACHE_DIR_CN}
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_CN})
# Android平台编译指南
用户可通过如下两种方式,交叉编译Android平台上适用的PaddlePaddle库:
- [基于Docker容器的编译方式](#基于docker容器的编译方式)
- [基于Linux交叉编译环境的编译方式](#基于linux交叉编译环境的编译方式)
## 基于Docker容器的编译方式
Docker能在所有主要操作系统(包括Linux,Mac OS X和Windows)上运行,因此,使用基于Docker容器的编译方式,用户可在自己熟悉的开发平台上编译Android平台上适用的PaddlePaddle库。
### 构建PaddlePaddle的Android开发镜像
我们把PaddlePaddle的交叉编译环境打包成一个镜像,称为开发镜像,里面涵盖了交叉编译Android版PaddlePaddle库需要的所有编译工具。
```bash
$ git clone https://github.com/PaddlePaddle/Paddle.git
$ cd Paddle
$ docker build -t username/paddle-android:dev . -f Dockerfile.android
```
用户也可以使用PaddlePaddle提供的官方开发镜像:
```bash
$ docker pull paddlepaddle/paddle:latest-dev-android
```
对于国内用户,我们提供了加速访问的镜像源:
```bash
$ docker pull docker.paddlepaddlehub.com/paddle:latest-dev-android
```
### 编译PaddlePaddle C-API库
构建好开发镜像后,即可使用开发镜像来编译Android版PaddlePaddle C-API库。
Android的Docker开发镜像向用户提供两个可配置的参数:
<table class="docutils">
<colgroup>
<col width="25%" />
<col width="50%" />
<col width="25%" />
</colgroup>
<thead valign="bottom">
<tr class="row-odd">
<th class="head">Argument</th>
<th class="head">Optional Values</th>
<th class="head">Default</th>
</tr>
</thead>
<tbody valign="top">
<tr class="row-even">
<td>ANDROID_ABI</td>
<td>armeabi-v7a, arm64-v8a</td>
<td>armeabi-v7a</td>
</tr>
<tr class="row-odd">
<td>ANDROID_API</td>
<td>>= 16</td>
<td>21</td>
</tr>
</tbody>
</table>
- 编译`armeabi-v7a``Android API 21`的PaddlePaddle库
```bash
$ docker run -it --rm -v $PWD:/paddle -w /paddle -e "ANDROID_ABI=armeabi-v7a" -e "ANDROID_API=21" username/paddle-android:dev ./paddle/scripts/paddle_build.sh build_android
```
- 编译`arm64-v8a``Android API 21`的PaddlePaddle库
```bash
$ docker run -it --rm -v $PWD:/paddle -w /paddle -e "ANDROID_ABI=arm64-v8a" -e "ANDROID_API=21" username/paddle-android:dev ./paddle/scripts/paddle_build.sh build_android
```
执行上述`docker run`命令时,容器执行[paddle/scripts/paddle_build.sh build_android](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/paddle_build.sh)脚本。该脚本中记录了交叉编译Android版PaddlePaddle库常用的CMake配置,并且会根据`ANDROID_ABI``ANDROID_API`自动构建独立工具链、进行编译和安装。由于arm64架构要求Android API不小于21。因此当`ANDROID_ABI=arm64-v8a``ANDROID_API<21`时,Docker容器中将默认使用`Android API 21`的编译工具链。用户可以参考下文[配置交叉编译参数](#配置交叉编译参数)章节,根据个人的需求修改定制Docker容器所执行的脚本。编译安装结束之后,PaddlePaddle的C-API库将被安装到`$PWD/install_android`目录,所依赖的第三方库同时也被安装到`$PWD/install_android/third_party`目录。
## 基于Linux交叉编译环境的编译方式
本文档将以Linux x86-64平台为例,介绍交叉编译Android平台上适用的PaddlePaddle库的方法和步骤。
### 准备交叉编译环境
从源码交叉编译PaddlePaddle,用户需要提前准备好交叉编译环境。Android平台上使用的C/C++交叉编译工具链为[Android NDK](https://developer.android.com/ndk/downloads/index.html?hl=zh-cn),用户可自行前往下载预编译好的版本,也可通过以下命令获取:
```bash
wget -q https://dl.google.com/android/repository/android-ndk-r14b-linux-x86_64.zip
unzip -q android-ndk-r14b-linux-x86_64.zip
```
Android NDK中包含了所有Android API级别、所有架构(arm/arm64/x86/mips)需要用到的编译工具和系统库。用户可根据自己的编译目标架构、所需支持的最低Android API级别,构建[独立工具链](https://developer.android.google.cn/ndk/guides/standalone_toolchain.html?hl=zh-cn)
- 构建`armeabi-v7a``Android API 21`的独立工具链:
```bash
your/path/to/android-ndk-r14b-linux-x86_64/build/tools/make-standalone-toolchain.sh \
--arch=arm --platform=android-21 --install-dir=your/path/to/arm_standalone_toolchain
```
此命令将在`your/path/to/arm_standalone_toolchain`目录生成一套独立编译工具链,面向架构为32位ARM架构,支持的最小的Android API级别为21,支持编译器`arm-linux-androideabi-gcc (GCC) 4.9``clang 3.8`
- 构建`arm64-v8a``Android API 21`的独立工具链:
```bash
your/path/to/android-ndk-r14b-linux-x86_64/build/tools/make-standalone-toolchain.sh \
--arch=arm64 --platform=android-21 --install-dir=your/path/to/arm64_standalone_toolchain
```
此命令将在`your/path/to/arm64_standalone_toolchain`目录生成一套独立编译工具链,面向架构为64位ARM64架构,支持的最小Android API级别为21,支持编译器`arm-linux-androideabi-gcc (GCC) 4.9``clang 3.8`
### 配置交叉编译参数
CMake系统对交叉编译提供了支持[cmake-toolchains](https://cmake.org/cmake/help/v3.0/manual/cmake-toolchains.7.html#cross-compiling)。为了简化cmake配置,PaddlePaddle为交叉编译提供了工具链配置文档[cmake/cross_compiling/android.cmake](https://github.com/PaddlePaddle/Paddle/blob/develop/cmake/cross_compiling/android.cmake),以提供一些默认的编译器和编译参数相关配置。注意,从CMake 3.7版本开始,CMake官方对Android平台的交叉编译提供了通用的支持。PaddlePaddle若检测到用户使用的CMake版本不低于3.7时,将会将用户传进来的配置参数传递CMake系统,交由CMake系统本身来处理。有关参数配置的详细说明见[cmake-toolchains](https://cmake.org/cmake/help/v3.7/manual/cmake-toolchains.7.html#cross-compiling)
交叉编译Android版本的PaddlePaddle库时,有一些必须配置的参数:
- `CMAKE_SYSTEM_NAME`,CMake编译的目标平台,必须设置为`Android`。在设置`CMAKE_SYSTEM_NAME=Android`后,PaddlePaddle的CMake系统才认为是在交叉编译Android系统的版本,并自动编译PaddlePaddle所需的所有第三方库。此外,还会强制设置一些PaddlePaddle参数的值(`WITH_GPU=OFF``WITH_AVX=OFF``WITH_PYTHON=OFF``WITH_RDMA=OFF``WITH_MKL=OFF``WITH_GOLANG=OFF`)。
- `WITH_C_API`,必须设置为`ON`。在Android平台上只支持使用C-API来预测。
- `WITH_SWIG_PY`,必须设置为`OFF`。在Android平台上不支持通过swig调用来训练或者预测。
Android平台可选配置参数:
- `ANDROID_STANDALONE_TOOLCHAIN`,独立工具链所在的绝对路径,或者相对于构建目录的相对路径。PaddlePaddle的CMake系统将根据该值自动推导和设置需要使用的交叉编译器、sysroot、以及Android API级别;否则,用户需要在cmake时手动设置这些值。无默认值。
- `ANDROID_TOOLCHAIN`,目标工具链。可设置`gcc/clang`,默认值为`clang`
- CMake 3.7以上,将会始终使用`clang`工具链;CMake 3.7以下,可设置`ANDROID_TOOLCHAIN=gcc`以使用`gcc`工具链。
- Android官方提供的`clang`编译器要求系统支持`GLIBC 2.15`以上。
- `ANDROID_ABI`,目标架构ABI。目前支持`armeabi-v7a``arm64-v8a`,默认值为`armeabi-v7a`
- `ANDROID_NATIVE_API_LEVEL`,工具链的Android API级别。若没有显式设置,PaddlePaddle将根据`ANDROID_STANDALONE_TOOLCHAIN`的值自动推导得到。
- `ANROID_ARM_MODE`,是否使用ARM模式。
- `ANDROID_ABI=armeabi-v7a`时,可设置`ON/OFF`,默认值为`ON`
- `ANDROID_ABI=arm64-v8a`时,不需要设置。
- `ANDROID_ARM_NEON`,是否使用NEON指令。
- `ANDROID_ABI=armeabi-v7a`时,可设置`ON/OFF`,默认值为`ON`
- `ANDROID_ABI=arm64-v8a`时,不需要设置。
其他配置参数:
- `USE_EIGEN_FOR_BLAS`,是否使用Eigen库进行矩阵计算。可设置`ON/OFF`,默认值为`OFF`
- `HOST_C/CXX_COMPILER`,宿主机的C/C++编译器。在编译宿主机版protoc可执行文件和目标机版OpenBLAS库时需要用到。默认设置成环境变量`CC/CXX`的值;若环境变量`CC/CXX`没有设置,则设置成`cc/c++`编译器。
常用的cmake配置如下:
```bash
cmake -DCMAKE_SYSTEM_NAME=Android \
-DANDROID_STANDALONE_TOOLCHAIN=your/path/to/arm_standalone_toolchain \
-DANDROID_ABI=armeabi-v7a \
-DANDROID_ARM_NEON=ON \
-DANDROID_ARM_MODE=ON \
-DUSE_EIGEN_FOR_BLAS=ON \
-DCMAKE_INSTALL_PREFIX=your/path/to/install \
-DWITH_C_API=ON \
-DWITH_SWIG_PY=OFF \
..
```
```
cmake -DCMAKE_SYSTEM_NAME=Android \
-DANDROID_STANDALONE_TOOLCHAIN=your/path/to/arm64_standalone_toolchain \
-DANDROID_ABI=arm64-v8a \
-DUSE_EIGEN_FOR_BLAS=OFF \
-DCMAKE_INSTALL_PREFIX=your/path/to/install \
-DWITH_C_API=ON \
-DWITH_SWIG_PY=OFF \
..
```
用户还可根据自己的需求设置其他编译参数。
- 设置`CMAKE_BUILD_TYPE``MinSizeRel`,最小化生成的库的大小。
- 设置`CMAKE_BUILD_TYPE``Release`,获得最快的执行速度,
- 用户亦可以通过手动设置`CMAKE_C/CXX_FLAGS`来影响PaddlePaddle的编译过程。
**性能TIPS**,为了达到最快的计算速度,在CMake参数配置上,有以下建议:
- 设置`CMAKE_BUILD_TYPE``Release`
- 使用`clang`编译工具链
- `armeabi-v7a`时,设置`USE_EIGEN_BLAS=ON`,使用Eigen进行矩阵计算;`arm64-v8a`时,设置`USE_EIGEN_FOR_BLAS=OFF`,使用OpenBLAS进行矩阵计算
### 编译和安装
CMake配置完成后,执行以下命令,PaddlePaddle将自动下载和编译所有第三方依赖库、编译和安装PaddlePaddle预测库。
```bash
make
make install
```
注意:如果你曾经在源码目录下编译过其他平台的PaddlePaddle库,请先使用`rm -rf`命令删除`third_party`目录和`build`目录,以确保所有的第三方依赖库和PaddlePaddle代码都是针对新的CMake配置重新编译的。
执行完安装命令后,`your/path/to/install`目录中会包含`include``lib``third_party`目录,其中`include`中包含C-API的头文件,`lib`中包含若干个不同Android ABI的PaddlePaddle库,`third_party`中包含所依赖的所有第三方库。自此,PaddlePaddle的已经安装完成,用户可将`your/path/to/install`目录下的生成文件用于深度学习相关Android App中,调用方法见C-API文档。
# Build PaddlePaddle for Android
There are two approaches to build PaddlePaddle for Android:
- [Cross-Compiling Using Docker](#cross-compiling-using-docker)
- [Cross-Compiling on Linux](#cross-compiling-on-linux)
## Cross-Compiling Using Docker
Docker-based cross-compiling is the recommended approach because Docker runs on all major operating systems, including Linux, Mac OS X, and Windows.
### Build the Docker Image
The following steps pack all the tools that we need to build PaddlePaddle into a Docker image.
```bash
$ git clone https://github.com/PaddlePaddle/Paddle.git
$ cd Paddle
$ docker build -t paddle:dev-android . -f Dockerfile.android
```
Users can directly use the published Docker image.
```bash
$ docker pull paddlepaddle/paddle:latest-dev-android
```
For users in China, we provide a faster mirror.
```bash
$ docker pull docker.paddlepaddlehub.com/paddle:latest-dev-android
```
### Build the Inference Library
We can run the Docker image we just created to build the inference library of PaddlePaddle for Android using the command below:
```bash
$ docker run -it --rm -v $PWD:/paddle -w /paddle -e "ANDROID_ABI=armeabi-v7a" -e "ANDROID_API=21" paddle:dev-android ./paddle/scripts/paddle_build.sh build_android
```
The Docker image accepts two arguments `ANDROID_ABI` and `ANDROID_API`:
<table class="docutils">
<colgroup>
<col width="25%" />
<col width="50%" />
<col width="25%" />
</colgroup>
<thead valign="bottom">
<tr class="row-odd">
<th class="head">Argument</th>
<th class="head">Optional Values</th>
<th class="head">Default</th>
</tr>
</thead>
<tbody valign="top">
<tr class="row-even">
<td>ANDROID_ABI</td>
<td>armeabi-v7a, arm64-v8a</td>
<td>armeabi-v7a</td>
</tr>
<tr class="row-odd">
<td>ANDROID_API</td>
<td>>= 16</td>
<td>21</td>
</tr>
</tbody>
</table>
The ARM-64 architecture (`arm64-v8a`) requires at least level 21 of Android API.
The build command, [`paddle/scripts/paddle_build.sh build_android`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/paddle_build.sh) generates the [Android cross-compiling standalone toolchain](https://developer.android.com/ndk/guides/standalone_toolchain.html) based on the argument: `ANDROID_ABI` or `ANDROID_API`. For information about other configuration arguments, please continue reading.
The above command generates and outputs the inference library in `$PWD/install_android` and puts third-party libraries in `$PWD/install_android/third_party`.
## Cross-Compiling on Linux
The Linux-base approach to cross-compile is to run steps in `Dockerfile.android` manually on a Linux x64 computer.
### Setup the Environment
To build for Android's, we need [Android NDK](
https://developer.android.com/ndk/downloads/index.html):
```bash
wget -q https://dl.google.com/android/repository/android-ndk-r14b-linux-x86_64.zip
unzip -q android-ndk-r14b-linux-x86_64.zip
```
Android NDK includes everything we need to build the [*standalone toolchain*](https://developer.android.com/ndk/guides/standalone_toolchain.html), which in then used to build PaddlePaddle for Android. (We plan to remove the intermediate stage of building the standalone toolchain in the near future.)
- To build the standalone toolchain for `armeabi-v7a` and Android API level 21:
```bash
your/path/to/android-ndk-r14b-linux-x86_64/build/tools/make-standalone-toolchain.sh \
--arch=arm --platform=android-21 --install-dir=your/path/to/arm_standalone_toolchain
```
The generated standalone toolchain will be in `your/path/to/arm_standalone_toolchain`.
- To build the standalone toolchain for `arm64-v8a` and Android API level 21:
```bash
your/path/to/android-ndk-r14b-linux-x86_64/build/tools/make-standalone-toolchain.sh \
--arch=arm64 --platform=android-21 --install-dir=your/path/to/arm64_standalone_toolchain
```
The generated standalone toolchain will be in `your/path/to/arm64_standalone_toolchain`.
### Cross-Compiling Arguments
CMake supports [choosing the toolchain](https://cmake.org/cmake/help/v3.0/manual/cmake-toolchains.7.html#cross-compiling). PaddlePaddle provides [`android.cmake`](https://github.com/PaddlePaddle/Paddle/blob/develop/cmake/cross_compiling/android.cmake), which configures the Android cross-compiling toolchain for CMake. `android.cmake` is not required for CMake >= 3.7, which support Android cross-compiling. PaddlePaddle detects the CMake version, for those newer than 3.7, it uses [the official version](https://cmake.org/cmake/help/v3.7/manual/cmake-toolchains.7.html#cross-compiling).
Some other CMake arguments you need to know:
- `CMAKE_SYSTEM_NAME` must be `Android`. This tells PaddlePaddle's CMake system to cross-compile third-party dependencies. This also changes some other CMake arguments like `WITH_GPU=OFF`, `WITH_AVX=OFF`, `WITH_PYTHON=OFF`, `WITH_RDMA=OFF`, `WITH_MKL=OFF` and `WITH_GOLANG=OFF`.
- `WITH_C_API` must be `ON`, to build the C-based inference library for Android.
- `WITH_SWIG_PY` must be `OFF` because the Android platform doesn't support SWIG-based API.
Some Android-specific arguments:
- `ANDROID_STANDALONE_TOOLCHAIN`: the absolute path of the Android standalone toolchain, or the path relative to the CMake build directory. PaddlePaddle's CMake extensions would derive the cross-compiler, sysroot and Android API level from this argument.
- `ANDROID_TOOLCHAIN`: could be `gcc` or `clang`. The default value is `clang`.
- For CMake >= 3.7, it should anyway be `clang`. For older versions, it could be `gcc`.
- Android's official `clang` requires `glibc` >= 2.15.
- `ANDROID_ABI`: could be `armeabi-v7a` or `arm64-v8a`. The default value is `armeabi-v7a`.
- `ANDROID_NATIVE_API_LEVEL`: could be derived from the value of `ANDROID_STANDALONE_TOOLCHAIN`.
- `ANROID_ARM_MODE`:
- could be `ON` or `OFF`, and defaults to `ON`, when `ANDROID_ABI=armeabi-v7a`;
- no need to specify when `ANDROID_ABI=arm64-v8a`.
- `ANDROID_ARM_NEON`: indicates if to use NEON instructions.
- could be `ON` or `OFF`, and defaults to `ON`, when `ANDROID_ABI=armeabi-v7a`;
- no need to specify when `ANDROID_ABI=arm64-v8a`.
Other useful arguments:
- `USE_EIGEN_FOR_BLAS`: indicates if using Eigen. Could be `ON` or `OFF`, defaults to `OFF`.
- `HOST_C/CXX_COMPILER`: specifies the host compiler, which is used to build the host-specific protoc and target-specific OpenBLAS. It defaults to the value of the environment variable `CC/C++`, or `cc/c++`.
Some frequent configurations for your reference:
```bash
cmake -DCMAKE_SYSTEM_NAME=Android \
-DANDROID_STANDALONE_TOOLCHAIN=your/path/to/arm_standalone_toolchain \
-DANDROID_ABI=armeabi-v7a \
-DANDROID_ARM_NEON=ON \
-DANDROID_ARM_MODE=ON \
-DUSE_EIGEN_FOR_BLAS=ON \
-DCMAKE_INSTALL_PREFIX=your/path/to/install \
-DWITH_C_API=ON \
-DWITH_SWIG_PY=OFF \
..
```
```
cmake -DCMAKE_SYSTEM_NAME=Android \
-DANDROID_STANDALONE_TOOLCHAIN=your/path/to/arm64_standalone_toolchain \
-DANDROID_ABI=arm64-v8a \
-DUSE_EIGEN_FOR_BLAS=OFF \
-DCMAKE_INSTALL_PREFIX=your/path/to/install \
-DWITH_C_API=ON \
-DWITH_SWIG_PY=OFF \
..
```
There are some other arguments you might want to configure.
- `CMAKE_BUILD_TYPE=MinSizeRel` minimizes the size of library.
- `CMAKE_BUILD_TYPE-Release` optimizes the runtime performance.
Our own tip for performance optimization to use clang and Eigen or OpenBLAS:
- `CMAKE_BUILD_TYPE=Release`
- `ANDROID_TOOLCHAIN=clang`
- `USE_EIGEN_BLAS=ON` for `armeabi-v7a`, or `USE_EIGEN_FOR_BLAS=OFF` for `arm64-v8a`.
### Build and Install
After running `cmake`, we can run `make; make install` to build and install.
Before building, you might want to remove the `third_party` and `build` directories including pre-built libraries for other architectures.
After building,in the directory `CMAKE_INSTALL_PREFIX`, you will find three sub-directories:
- `include`: the header file of the inference library,
- `lib`: the inference library built for various Android ABIs,
- `third_party`: dependent third-party libraries built for Android.
# iOS平台编译指南
交叉编译iOS平台上适用的PaddlePaddle库,需要在MacOS系统上进行。本文的将介绍在MacOS上,从源码交叉编译iOS平台上适用的PaddlePaddle库。
## 准备交叉编译环境
Apple官方为iOS开发提供了完整的交叉编译工具和集成开发环境,用户从App Store下载安装Xcode即可。也可自行前往官网下载,[Xcode](https://developer.apple.com/cn/xcode/)。安装完成之后,可在命令行执行`xcodebuild -version`,判断是否安装成功。
```bash
$ xcodebuild -version
Xcode 9.0
Build version 9A235
```
## 配置交叉编译参数
PaddlePaddle为交叉编译提供了工具链配置文档[cmake/cross_compiling/ios.cmake](https://github.com/PaddlePaddle/Paddle/blob/develop/cmake/cross_compiling/ios.cmake),以提供一些默认的编译器和编译参数配置。
交叉编译iOS版本的PaddlePaddle库时,有一些必须配置的参数:
- `CMAKE_SYSTEM_NAME`,CMake编译的目标平台,必须设置为`iOS`。在设置`CMAKE_SYSTEM_NAME=iOS`后,PaddlePaddle的CMake系统会自动编译所有的第三方依赖库,并且强制设置一些PaddlePaddle参数的值(`WITH_C_API=ON``WITH_GPU=OFF``WITH_AVX=OFF``WITH_PYTHON=OFF``WITH_RDMA=OFF`)。
- `WITH_C_API`,是否编译C-API预测库,必须设置为ON。在iOS平台上只支持使用C-API来预测。
- `WITH_SWIG_PY`,必须设置为`OFF`。在iOS平台上不支持通过swig调用来训练或者预测。
iOS平台可选配置参数:
- `IOS_PLATFORM`,可设置为`OS`(默认值)或`SIMULATOR`
- `OS`,构建目标为`arm`架构的iPhone或者iPad等物理设备。
- `SIMULATOR`,构建目标为`x86`架构的模拟器平台。
- `IOS_ARCH`,目标架构。针对不同的`IOS_PLATFORM`,可设置的目标架构如下表所示,默认编译所有架构:
<table class="docutils">
<colgroup>
<col width="35%" />
<col width="65%" />
</colgroup>
<thead valign="bottom">
<tr class="row-odd">
<th class="head">IOS_PLATFORM</th>
<th class="head">IOS_ARCH</th>
</tr>
</thead>
<tbody valign="top">
<tr class="row-even">
<td>OS</td>
<td>armv7, armv7s, arm64 </td>
</tr>
<tr class="row-odd">
<td>SIMULATOR</td>
<td>i386, x86_64 </td>
</tr>
</tbody>
</table>
- `IOS_DEPLOYMENT_TARGET`,最小的iOS部署版本,默认值为`7.0`
- `IOS_ENABLE_BITCODE`,是否使能[Bitcode](https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuide/AppThinning/AppThinning.html#//apple_ref/doc/uid/TP40012582-CH35-SW3),可设置`ON/OFF`,默认值为`ON`
- `IOS_USE_VECLIB_FOR_BLAS`,是否使用[vecLib](https://developer.apple.com/documentation/accelerate/veclib)框架进行BLAS矩阵计算,可设置`ON/OFF`,默认值为`OFF`
- `IOS_DEVELOPMENT_ROOT``Developer`目录,可显式指定为`/path/to/platform/Developer`。若未显式指定,PaddlePaddle将会根据`IOS_PLATFORM`自动选择`Xcode`对应`platform``Developer`目录。
- `IOS_SDK_ROOT`,所使用`SDK`的根目录,可显式指定为`/path/to/platform/Developer/SDKs/SDK`。若未显式指定,PaddlePaddle将会自动选择`IOS_DEVELOPMENT_ROOT`目录下最新的`SDK`版本。
其他配置参数:
- `USE_EIGEN_FOR_BLAS`,是否使用Eigen库进行矩阵计算,在`IOS_USE_VECLIB_FOR_BLAS=OFF`时有效。可设置`ON/OFF`,默认值为`OFF`
- `HOST_C/CXX_COMPILER`,宿主机的C/C++编译器。默认值为环境变量`CC/CXX`的值;若环境变量`CC/CXX`未设置,则使用`cc/c++`编译器。
常用的cmake配置如下:
```bash
cmake -DCMAKE_SYSTEM_NAME=iOS \
-DIOS_PLATFORM=OS \
-DIOS_ARCH="armv7;arm64" \
-DIOS_ENABLE_BITCODE=ON \
-DIOS_USE_VECLIB_FOR_BLAS=ON \
-DCMAKE_INSTALL_PREFIX=your/path/to/install \
-DWITH_C_API=ON \
-DWITH_TESTING=OFF \
-DWITH_SWIG_PY=OFF \
..
```
```bash
cmake -DCMAKE_SYSTEM_NAME=iOS \
-DIOS_PLATFORM=SIMULATOR \
-DIOS_ARCH="x86_64" \
-DIOS_USE_VECLIB_FOR_BLAS=ON \
-DCMAKE_INSTALL_PREFIX=your/path/to/install \
-DWITH_C_API=ON \
-DWITH_TESTING=OFF \
-DWITH_SWIG_PY=OFF \
..
```
用户还可根据自己的需求设置其他编译参数。比如希望最小化生成库的大小,可以设置`CMAKE_BUILD_TYPE``MinSizeRel`;若希望得到最快的执行速度,则可设置`CMAKE_BUILD_TYPE``Release`。亦可以通过手动设置`CMAKE_C/CXX_FLAGS`来影响PaddlePaddle的编译过程。
**性能TIPS**,为了达到最快的计算速度,在CMake参数配置上,有以下建议:
- 设置`CMAKE_BUILD_TYPE``Release`
- 设置`IOS_USE_VECLIB_FOR_BLAS=ON`,调用`vecLib`框架提供的BLAS函数进行矩阵计算。
## 编译和安装
CMake配置完成后,执行以下命令,PaddlePaddle将自动下载和编译所有第三方依赖库、编译和安装PaddlePaddle预测库。
```
$ make
$ make install
```
注意:如果你曾在源码目录下编译过其他平台的PaddlePaddle库,请先使用`rm -rf`命令删除`third_party`目录和`build`目录,以确保所有的第三方依赖库和PaddlePaddle代码都是针对新的CMake配置重新编译的。
执行完安装命令后,`your/path/to/install`目录中会包含以下内容:
- `include`目录,其中包含所有C-API的头文件
- `lib`目录,其中包含PaddlePaddle的C-API静态库
- `third_party`目录,其中包含所依赖的所有第三方库
注意,如果PaddlePaddle库需要同时支持真机和模拟器,则需要分别编译真机和模拟器版本,然后使用`lipo`工具合并fat库。
自此,PaddlePaddle库已经安装完成,用户可将合成的fat库用于深度学习相关的iOS App中,调用方法见C-API文档。
# Build PaddlePaddle for iOS
This tutorial will walk you through cross compiling the PaddlePaddle library for iOS from the source in MacOS.
## Preparation
Apple provides Xcode for cross-compiling and IDE for iOS development. Download from App store or [here](https://developer.apple.com/cn/xcode/). To verify your installation, run command as follows
```bash
$ xcodebuild -version
Xcode 9.0
Build version 9A235
```
## Cross-compiling configurations
PaddlePaddle provides cross-compiling toolchain configuration documentation [cmake/cross_compiling/ios.cmake](https://github.com/PaddlePaddle/Paddle/blob/develop/cmake/cross_compiling/ios.cmake), which has some default settings for frequently used compilers.
There are some mandatory environment variables need to be set before cross compiling PaddlePaddle for iOS:
- `CMAKE_SYSTEM_NAME`, CMake compiling target platform name, has to be `iOS`. PaddlePaddle CMake will compile all the third party dependencies and enforce some parameters (`WITH_C_API=ON`, `WITH_GPU=OFF`, `WITH_AVX=OFF`, `WITH_PYTHON=OFF`,`WITH_RDMA=OFF`) when this variable is set with value `iOS`.
- `WITH_C_API`, Whether to compile inference C-API library, has to be `ON`, since C-API is the only supported interface for inferencing in iOS.
- `WITH_SWIG_PY`, has to be `OFF`. It's not supported to inference or train via swig in iOS.
Optional environment variables for iOS are:
- `IOS_PLATFORM`, either `OS` (default) or `SIMULATOR`.
- `OS`, build targets ARM-based physical devices like iPhone or iPad.
- `SIMULATOR`, build targets x86 architecture simulators.
- `IOS_ARCH`, target architecture. By default, all architecture types will be compiled. If you need to specify the architecture to compile for, please find valid values for different `IOS_PLATFORM` settings from the table below:
<table class="docutils">
<colgroup>
<col width="35%" />
<col width="65%" />
</colgroup>
<thead valign="bottom">
<tr class="row-odd">
<th class="head">IOS_PLATFORM</th>
<th class="head">IOS_ARCH</th>
</tr>
</thead>
<tbody valign="top">
<tr class="row-even">
<td>OS</td>
<td>armv7, armv7s, arm64 </td>
</tr>
<tr class="row-odd">
<td>SIMULATOR</td>
<td>i386, x86_64 </td>
</tr>
</tbody>
</table>
- `IOS_DEPLOYMENT_TARGET`, minimum iOS version to deployment, `7.0` by default.
- `IOS_ENABLE_BITCODE`, whether to enable [Bitcode](https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuide/AppThinning/AppThinning.html#//apple_ref/doc/uid/TP40012582-CH35-SW3), values can be `ON/OFF`, `ON` by default.
- `IOS_USE_VECLIB_FOR_BLAS`, whether to use [vecLib](https://developer.apple.com/documentation/accelerate/veclib) framework for BLAS computing. values can be `ON/OFF`, `OFF` by default.
- `IOS_DEVELOPMENT_ROOT`, the path to `Developer` directory, can be explicitly set with your `/path/to/platform/Developer`. If left blank, PaddlePaddle will automatically pick the Xcode corresponding `platform`'s `Developer` directory based on your `IOS_PLATFORM` value.
- `IOS_SDK_ROOT`, the path to `SDK` root, can be explicitly set with your `/path/to/platform/Developer/SDKs/SDK`. if left black, PaddlePaddle will pick the latest SDK in the directory of `IOS_DEVELOPMENT_ROOT`.
other settings:
- `USE_EIGEN_FOR_BLAS`, whether to use Eigen for matrix computing. effective when `IOS_USE_VECLIB_FOR_BLAS=OFF`. Values can be `ON/OFF`, `OFF` by default.
- `HOST_C/CXX_COMPILER`, host C/C++ compiler. Uses value from environment variable `CC/CXX` by default or `cc/c++` if `CC/CXX` doesn't exist.
some typical cmake configurations:
```bash
cmake -DCMAKE_SYSTEM_NAME=iOS \
-DIOS_PLATFORM=OS \
-DIOS_ARCH="armv7;arm64" \
-DIOS_ENABLE_BITCODE=ON \
-DIOS_USE_VECLIB_FOR_BLAS=ON \
-DCMAKE_INSTALL_PREFIX=your/path/to/install \
-DWITH_C_API=ON \
-DWITH_TESTING=OFF \
-DWITH_SWIG_PY=OFF \
..
```
```bash
cmake -DCMAKE_SYSTEM_NAME=iOS \
-DIOS_PLATFORM=SIMULATOR \
-DIOS_ARCH="x86_64" \
-DIOS_USE_VECLIB_FOR_BLAS=ON \
-DCMAKE_INSTALL_PREFIX=your/path/to/install \
-DWITH_C_API=ON \
-DWITH_TESTING=OFF \
-DWITH_SWIG_PY=OFF \
..
```
You can set other compiling parameters for your own need. I.E. if you are trying to minimize the library size, set `CMAKE_BUILD_TYPE` with `MinSizeRel`; or if the performance is your concern, set `CMAKE_BUILD_TYPE` with `Release`. You can even manipulate the PaddlePaddle compiling procedure by manually set `CMAKE_C/CXX_FLAGS` values.
**TIPS for a better performance**:
- set `CMAKE_BUILD_TYPE` with `Release`
- set `IOS_USE_VECLIB_FOR_BLAS` with `ON`
## Build and install
After CMake, run following commands, PaddlePaddle will download the compile 3rd party dependencies, compile and install PaddlePaddle inference library.
```
$ make
$ make install
```
Please Note: if you compiled PaddlePaddle in the source directory for other platforms, do remove `third_party` and `build` directory within the source with `rm -rf` to ensure that all the 3rd party libraries dependencies and PaddlePaddle is newly compiled with current CMake configuration.
`your/path/to/install` directory will have following directories after `make install`:
- `include`, contains all the C-API header files.
- `lib`, contains PaddlePaddle C-API static library.
- `third_party` contains all the 3rd party libraries.
Please note: if PaddlePaddle library need to support both physical devices and simulators, you will need to compile correspondingly, then merge fat library with `lipo`.
Now you will have PaddlePaddle library compiled and installed, the fat library can be used in deep learning related iOS APPs. Please refer to C-API documentation for usage guides.
# Raspberry Pi平台编译指南
通常有两个方法来构建基于 Rasspberry Pi 的版本:
1. 通过ssh等方式登录到Raspberry Pi系统上来构建。所需的开发工具和第三方库可以参考 [`/Dockerfile`](https://github.com/PaddlePaddle/Paddle/blob/develop/Dockerfile)
1. 另一个方法是交叉编译。这篇文档介绍在 Linux/x64 上交叉编译Raspberry Pi平台上适用的PaddlePaddle的方法和步骤。
## 安装交叉编译器
克隆下面 Github repo
```bash
git clone https://github.com/raspberrypi/tools.git
```
即可在 `./tools/tree/master/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-raspbian-x64` 目录里找到交叉编译器 arm-linux-gnueabihf-gcc 4.8.3。运行该编译工具链需要一台 Linux x64 机器上以及 2.14版本以上的 glibc。
## 配置交叉编译参数
CMake[支持交叉编译](https://cmake.org/cmake/help/v3.0/manual/cmake-toolchains.7.html#cross-compiling)。PaddlePaddle for Raspberry Pi的配置信息在[cmake/cross_compiling/raspberry_pi.cmake](https://github.com/PaddlePaddle/Paddle/blob/develop/cmake/cross_compiling/raspberry_pi.cmake)
交叉编译Raspberry Pi版本PaddlePaddle库时,有一些必须配置的参数:
- `CMAKE_SYSTEM_NAME`:CMake编译的目标平台,必须配置为`RPi`。在设置`CMAKE_SYSTEM_NAME=RPi`后,PaddlePaddle的CMake系统才认为在是在交叉编译Raspberry Pi系统的版本,并自动编译宿主机版protoc可执行文件、目标机版protobuf库、以及目标机版OpenBLAS库。
- `RPI_TOOLCHAIN`:编译工具链所在的绝对路径,或者相对于构建目录的相对路径。PaddlePaddle的CMake系统将根据该值自动设置需要使用的交叉编译器;否则,用户需要在cmake时手动设置这些值。无默认值。
- `RPI_ARM_NEON`:是否使用NEON指令。目前必须设置成`ON`,默认值为`ON`
- `HOST_C/CXX_COMPILER`,宿主机的C/C++编译器。在编译宿主机版protoc可执行文件和目标机版OpenBLAS库时需要用到。默认设置成环境变量`CC`的值;若环境变量`CC`没有设置,则设置成`cc`编译器。
一个常用的CMake配置如下:
```
cmake -DCMAKE_SYSTEM_NAME=RPi \
-DRPI_TOOLCHAIN=your/path/to/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-raspbian-x64 \
-DRPI_ARM_NEON=ON \
-DCMAKE_INSTALL_PREFIX=your/path/to/install \
-DWITH_GPU=OFF \
-DWITH_C_API=ON \
-DWITH_PYTHON=OFF \
-DWITH_SWIG_PY=OFF \
..
```
其中`WITH_C_API=ON`表示需要构建推理库。
用户还可根据自己的需求设置其他编译参数。比如希望最小化生成的库的大小,可以设置`CMAKE_BUILD_TYPE``MinSizeRel`;若希望最快的执行速度,则可设置`CMAKE_BUILD_TYPE``Release`
## 编译和安装
CMake配置完成后,执行以下命令,PaddlePaddle将自动下载和编译所有第三方依赖库、编译和安装PaddlePaddle。
```bash
make
make install
```
注意:如果你曾经在源码目录下编译过其他平台的PaddlePaddle库,请先使用`rm -rf`命令删除`third_party`目录和`build`目录,以确保所有的第三方依赖库和PaddlePaddle代码都是针对新的CMake配置重新编译的。
执行完安装命令后,`your/path/to/install`目录中会包含`include``lib`目录,其中`include`中包含C-API的头文件,`lib`中包含一个Raspberry Pi版本的库。
# Build PaddlePaddle for Raspberry Pi
You may use any of the following two approaches to build the inference library of PaddlePaddle for Raspberry Pi:
1. Build using SSH: Log in to a Raspberry Pi using SSH and build the library. The required development tools and third-party dependencies are listed in here: [`/Dockerfile`](https://github.com/PaddlePaddle/Paddle/blob/develop/Dockerfile).
1. Cross-compile: We talk about how to cross-compile PaddlePaddle for Raspberry Pi on a Linux/x64 machine, in more detail in this article.
## The Cross-Compiling Toolchain
Step 1. Clone the Github repo by running the following command.
```bash
git clone https://github.com/raspberrypi/tools.git
```
Step 2. Use the pre-built cross-compiler found in `./tools/tree/master/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-raspbian-x64`. To run it on a Linux computer, glibc version >= 2.14 is needed.
## CMake Arguments
CMake supports [cross-compiling](https://cmake.org/cmake/help/v3.0/manual/cmake-toolchains.7.html#cross-compiling). All CMake configuration arguments required for the cross-compilation for Raspberry Pi can be found in [`cmake/cross_compiling/raspberry_pi.cmake`](https://github.com/PaddlePaddle/Paddle/blob/develop/cmake/cross_compiling/raspberry_pi.cmake).
Some important arguments that need to be set:
- `CMAKE_SYSTEM_NAME`: The target platform. Must be `RPi`.
- `RPI_TOOLCHAIN`: The absolute path of the cross-compiling toolchain.
- `RPI_ARM_NEON`: Use ARM NEON Intrinsics. This is a required argument and set default to `ON`.
- `HOST_C/CXX_COMPILER`: The C/C++ compiler for the host. It is used to build building tools running on the host, for example, protoc.
A commonly-used CMake configuration is as follows:
```
cmake -DCMAKE_SYSTEM_NAME=RPi \
-DRPI_TOOLCHAIN=your/path/to/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-raspbian-x64 \
-DRPI_ARM_NEON=ON \
-DCMAKE_INSTALL_PREFIX=your/path/to/install \
-DWITH_GPU=OFF \
-DWITH_C_API=ON \
-DWITH_PYTHON=OFF \
-DWITH_SWIG_PY=OFF \
..
```
To build the inference library, please set the argument WITH\_C\_API to ON: `WITH_C_API=ON`.
You can add more arguments. For example, to minimize the size of the generated inference library, you may use `CMAKE_BUILD_TYPE=MinSizeRel`. For performance optimization, you may use `CMAKE_BUILD_TYPE=Release`.
## Build and Install
The following commands build the inference library of PaddlePaddle for Raspberry Pi and third-party dependencies.
```bash
make
make install
```
The intermediate files will be stored in `build`. Third-party libraries will be located in `build/third_party`. If you have already built it for other platforms like Android or iOS, you may want to clear these directories by running the command: `rm -rf build`.
The infernece library will be in `your/path/to/install/lib`, with related header files in `your/path/to/install/include`.
移动端
======
.. toctree::
:maxdepth: 1
cross_compiling_for_android_cn.md
cross_compiling_for_ios_cn.md
cross_compiling_for_raspberry_cn.md
Mobile
======
.. toctree::
:maxdepth: 1
cross_compiling_for_android_en.md
cross_compiling_for_ios_en.md
cross_compiling_for_raspberry_en.md
# Cluster bootstrapping tool survey
## Abstract
In order to bring up a cluster from bare metal machine to a fully functional kubernetes cluster for Paddlepaddle to run, we need to utilize some tools. Here we are going to compare [Sextant](https://github.com/k8sp/sextant) and [Tectonic installer](https://github.com/coreos/tectonic-installer)
## Basic assumptions
Here are some basic assumptions before we move on to details
1. You are an administrator of a bare metal machine cluster, which means:
* you have full control to each of the machines.
* you have full control to the network which machines are connected to.
2. Machines can be booted from network with PEX or iPXE
3. You understand the [general procedure to bring up a cluster](#appendix-general-procedure-to-bring-up-a-cluster)
if your cluster is able to mark above items with checkmarks, then keep reading.
## Comparing Sextant and Tectonic installer
### Sextant
Sextant is an end2end solution to bring up a bare metal cluster to a fully functional k8s cluster, it integrates DHCP, name service, PEX, cloud-config-service, docker registry services altogether.
#### Pros
1. End2End: basically all admin need to do is to config the cluster.yaml and power on the cluster.
2. Offline cluster configuration: Sextant has 2 phases during working with it, config time and deploy time. when admin is configuring, it requires admin's machine has internet connectivity, which will download some images, etc. But in deploy time, it's completely OK to go offline since all dependencies are ready during config time.
3. docker registry integrated.
4. GPU machine took care of.
### Cons
1. k8s API server is not deployed with high availability in considering by default.
2. No grouping support.
3. No API interface, a one-off service.
### Tectonic installer
First of all, Tectonic is not free, it requires coreos.com account as a step of installation, and free user can only create less than 10 nodes.
Tectonic is a suite of software which wraps around k8s and providing more utility regarding dev ops, ie,
Tectonic installer as it's named, it installs Tectonic to a bare metal cluster which means it's not totally an equivalent of Sextant. At the "booting a cluster" part, it mostly utilizes [Matchbox](https://github.com/coreos/matchbox), which is a general cluster bootstrapper.
Matchbox's Approach is similar to Sexstant.
### Pros
1. supports grouping machines.
2. supports running provisioning service in rtk. (not a big deal though).
3. supports http/gRPC API interface.
4. supports multi-template.
### Cons
1. Not an e2e solution to bring up a cluster, need a lot of extra work and other software.
2. [Not fully supporting](https://github.com/coreos/matchbox/issues/550) centOS deployment yet.
## Conclusion
Sextant is a better solution overall for paddle cloud deploying to a bare metal cluster. It would be great if Sextant can also 1) deploy k8s api server with high availability by default; 2) not designed as a one-off service.
## Appendix: General procedure to bring up a cluster
It's physically impossible for a cluster admin to manually install OS and applications into cluster nodes one by one, here is what an admin would do in cloud industry:
1. setup a bootstrap machine with static IP in the cluster, which has following services:
* DHCP: assigns ip address for rest of the nodes.
* name service: to map node name to a IP
* PXE related services: the booting related info will be delivered to newly booted machines as their IP is assigned via DHCP service, PXE service will provide further booting and installing info and image with TFTP and http protocol.
* cluster config service: this is for providing cluster node with OS config via http
* optional docker registry: a built-in docker registry makes the whole cluster independent from connecting internet, and speeds up software distribution.
2. New node powers on, it will
* broadcast the request for an IP address
* DHCP server assigns the IP address, and deliver the PXE booting related info to the node.
* cluster node will request config files with booting info delivered with DHCP via the TFTP service, and in most of the cases, the config file will point to a http service for the booting image.
* Since PXE is configured with initrd, it will utilize the cloud config service and do further installations like coreOS or K8s installations.
* then restart the node.
For further understanding, following 2 links from Matchbox are some good readings:
* [Machine lifecycle](https://github.com/coreos/matchbox/blob/master/Documentation/machine-lifecycle.md)
* [PXE booting](https://github.com/coreos/matchbox/blob/master/Documentation/network-booting.md)
# Automatic Differentiation with the Tape
## Automatic Differentiation
A key challenge in deep learning is to automatically derive the backward pass given the forward pass as a program, which has been long studied in the field of [automatic differentiation](https://arxiv.org/pdf/1502.05767.pdf), or autodiff, before the prosperity of deep learning.
## Program Transformation v.s. Backtracking
Given the forward pass program, there are two strategies to derive the backward pass:
1. by transforming the forward pass program without executing it, or
1. by backtracking the execution process of the forward pass program.
This article is about the latter strategy.
## The Tape and Dynamic Networks
We refer to the trace of the execution of the forward pass program as a *tape* [[1]](http://www.bcl.hamilton.ie/~barak/papers/toplas-reverse.pdf). When we train a deep learning model, the tape changes every iteration as the input data change, so we'd have to re-derive the backward pass, which is time-consuming, but also eases the case that the forward program includes control flows like if-else and for/while. With these control flows, the execution trace might change with iterations. Such changes are known as *dynamic networks* in the field of deep learning.
## Typical Systems
Deep learning systems that utilize the idea of dynamic networks gained their popularities in recent years. This article surveys the following typical systems:
- [DyNet](https://dynet.readthedocs.io/en/latest/)
- [PyTorch](https://pytorch.org/)
- Chainer
- Autograd from HIPS
Before diving into these systems, let us pose an example forward pass program:
```python
x = Variable(randn(20, 1)))
label = Variable(randint(1))
W_1, W_2 = Variable(randn(20, 20)), Variable(randn(10, 20))
h = matmul(W_1, x)
pred = matmul(W_2, h)
loss = softmax(pred, label)
loss.backward()
```
## The Representation of Tapes
### DyNet: the Tape as a List
DyNet uses a linear data structure, a list, to represent the tape. During the execution of the above example, it is a list of operators: `matmul`, `matmul`, and `softmax`. The list also includes information needed to do the backward pass, such as pointers to the inputs and outputs. Then the tape is played in reverse order at `loss.backward().`
<details>
<summary></summary>
digraph g {
graph [
rankdir = "LR"
];
node [
fontsize = "16"
shape = "ellipse"
];
edge [];
"node0" [
label = "<f0> type: matmul | <f1> input: W_1, x | <f2> output: h"
shape = "record"
];
"node1" [
label = "<f0> type: matmul | <f1> input: W_2, h | <f2> output: pred"
shape = "record"
];
"node2" [
label = "<f0> type: softmax | <f1> input: pred, label | <f2> output: loss"
shape = "record"
];
"node0":f0 -> "node1":f0 [];
"node1":f0 -> "node2":f0 [];
}
</details>
![Alt text](https://g.gravizo.com/svg?digraph%20g%20{%20graph%20[%20rankdir%20=%20%22LR%22%20];%20node%20[%20fontsize%20=%20%2216%22%20shape%20=%20%22ellipse%22%20];%20edge%20[];%20%22node0%22%20[%20label%20=%20%22%3Cf0%3E%20type:%20matmul%20|%20%3Cf1%3E%20input:%20W_1,%20x%20|%20%3Cf2%3E%20output:%20h%22%20shape%20=%20%22record%22%20];%20%22node1%22%20[%20label%20=%20%22%3Cf0%3E%20type:%20matmul%20|%20%3Cf1%3E%20input:%20W_2,%20h%20|%20%3Cf2%3E%20output:%20pred%22%20shape%20=%20%22record%22%20];%20%22node2%22%20[%20label%20=%20%22%3Cf0%3E%20type:%20softmax%20|%20%3Cf1%3E%20input:%20pred,%20label%20|%20%3Cf2%3E%20output:%20loss%22%20shape%20=%20%22record%22%20];%20%22node0%22:f0%20-%3E%20%22node1%22:f0%20[%20id%20=%200%20];%20%22node1%22:f0%20-%3E%20%22node2%22:f0%20[%20id%20=%201%20];%20})
### PyTorch: the Tape as a Graph
The graph is composed of `Variable`s and `Function`s. During the forward execution, a `Variable` records its creator function, e.g. `h.creator = matmul`. And a Function records its inputs' previous/dependent functions `prev_func` through `creator`, e.g. `matmul.prev_func = matmul1`. At `loss.backward()`, a topological sort is performed on all `prev_func`s. Then the grad op is performed by the sorted order. Please be aware that a `Function` might have more than one `prev_func`s.
<details>
<summary></summary>
digraph g {
graph [
rankdir = "LR"
];
subgraph function {
node [
fontsize = "16"
style = filled
shape = "record"
];
"matmul0" [ label = "<f0> type: matmul | prev_func: None" ];
"matmul1" [ label = "<f0> type: matmul | prev_func: matmul" ];
"softmax" [ label = "<f0> type: softmax | prev_func: matmul" ];
}
subgraph variable {
node [
fontsize = "16"
shape = "Mrecord"
style = filled
fillcolor = white
];
"x" [ label = "<f0> x | <f1> creator: None" ];
"label" [ label = "<f0> label | <f1> creator: None" ];
"W_1" [ label = "<f0> W_1 | <f1> creator: None" ];
"W_2" [ label = "<f0> W_2 | <f1> creator: None" ];
"h" [ label = "<f0> h | <f1> creator: None" ];
"pred" [ label = "<f0> pred | <f1> creator: matmul" ];
"loss" [ label = "<f0> loss | <f1> creator: softmax" ];
}
subgraph data_flow {
"x":f0 -> "matmul0":f0;
"W_1":f0 -> "matmul0":f0;
"matmul0":f0 -> "h":f0;
"h":f0 -> "matmul1":f0;
"W_2":f0 -> "matmul1":f0;
"matmul1":f0 -> "pred":f0;
"pred":f0 -> "softmax":f0;
"label":f0 -> "softmax":f0;
"softmax":f0 -> "loss":f0;
}
subgraph prev_func {
edge [color="red", arrowsize="0.6", penwidth="1", constraint=false];
"matmul1":f1 -> "matmul0":f0;
"softmax":f1 -> "matmul1":f0;
label = "prev_func";
}
}
</details>
![Alt text](https://g.gravizo.com/svg?digraph%20g%20{%20graph%20[%20rankdir%20=%20%22LR%22%20];%20subgraph%20function%20{%20node%20[%20fontsize%20=%20%2216%22%20style%20=%20filled%20shape%20=%20%22record%22%20];%20%22matmul0%22%20[%20label%20=%20%22%3Cf0%3E%20type:%20matmul%20|%20prev_func:%20None%22%20];%20%22matmul1%22%20[%20label%20=%20%22%3Cf0%3E%20type:%20matmul%20|%20prev_func:%20matmul%22%20];%20%22softmax%22%20[%20label%20=%20%22%3Cf0%3E%20type:%20softmax%20|%20prev_func:%20matmul%22%20];%20}%20subgraph%20variable%20{%20node%20[%20fontsize%20=%20%2216%22%20shape%20=%20%22Mrecord%22%20style%20=%20filled%20fillcolor%20=%20white%20];%20%22x%22%20[%20label%20=%20%22%3Cf0%3E%20x%20|%20%3Cf1%3E%20creator:%20None%22%20];%20%22label%22%20[%20label%20=%20%22%3Cf0%3E%20label%20|%20%3Cf1%3E%20creator:%20None%22%20];%20%22W_1%22%20[%20label%20=%20%22%3Cf0%3E%20W_1%20|%20%3Cf1%3E%20creator:%20None%22%20];%20%22W_2%22%20[%20label%20=%20%22%3Cf0%3E%20W_2%20|%20%3Cf1%3E%20creator:%20None%22%20];%20%22h%22%20[%20label%20=%20%22%3Cf0%3E%20h%20|%20%3Cf1%3E%20creator:%20None%22%20];%20%22pred%22%20[%20label%20=%20%22%3Cf0%3E%20pred%20|%20%3Cf1%3E%20creator:%20matmul%22%20];%20%22loss%22%20[%20label%20=%20%22%3Cf0%3E%20loss%20|%20%3Cf1%3E%20creator:%20softmax%22%20];%20}%20subgraph%20data_flow%20{%20%22x%22:f0%20-%3E%20%22matmul0%22:f0;%20%22W_1%22:f0%20-%3E%20%22matmul0%22:f0;%20%22matmul0%22:f0%20-%3E%20%22h%22:f0;%20%22h%22:f0%20-%3E%20%22matmul1%22:f0;%20%22W_2%22:f0%20-%3E%20%22matmul1%22:f0;%20%22matmul1%22:f0%20-%3E%20%22pred%22:f0;%20%22pred%22:f0%20-%3E%20%22softmax%22:f0;%20%22label%22:f0%20-%3E%20%22softmax%22:f0;%20%22softmax%22:f0%20-%3E%20%22loss%22:f0;%20}%20subgraph%20prev_func%20{%20edge%20[color=%22red%22,%20arrowsize=%220.6%22,%20penwidth=%221%22,%20constraint=false];%20%22matmul1%22:f1%20-%3E%20%22matmul0%22:f0;%20%22softmax%22:f1%20-%3E%20%22matmul1%22:f0;%20label%20=%20%22prev_func%22;%20}%20})
Chainer and Autograd use the similar techniques to record the forward pass. For details, please refer to the appendix.
## Comparison: List v.s. Graph
The list of DyNet could be considered the result of the topological sort of the graph of PyTorch. Or, the graph is the raw representation of the tape, which gives us the chance to *prune* part of the graph that is irrelevant with the backward pass before the topological sort [[2]](https://openreview.net/pdf?id=BJJsrmfCZ). Consider the following example, PyTorch only does backward on `SmallNet` while DyNet does both `SmallNet` and `BigNet`:
```python
result = BigNet(data)
loss = SmallNet(data)
loss.backward()
```
## Lazy v.s. Immediate Evaluation
Another difference between DyNet and PyTorch is that DyNet lazily evaluates the forward pass, whereas PyTorch executes it immediately. Consider the following example:
```python
for epoch in range(num_epochs):
for in_words, out_label in training_data:
dy.renew_cg()
W = dy.parameter(W_p)
b = dy.parameter(b_p)
score_sym = dy.softmax(W*dy.concatenate([E[in_words[0]],E[in_words[1]]])+b)
loss_sym = dy.pickneglogsoftmax(score_sym, out_label)
loss_val = loss_sym.value()
loss_sym.backward()
```
The computation of `lookup`, `concat`, `matmul` and `softmax` didn't happen until the call of `loss_sym.value()`. This defered execution is useful because it allows some graph-like optimization possible, e.g. kernel fusion.
PyTorch chooses immediate evaluation. It avoids ever materializing a "forward graph"/"tape" (no need to explicitly call `dy.renew_cg()` to reset the list), recording only what is necessary to differentiate the computation, i.e. `creator` and `prev_func`.
## Fluid: Learning the Lessons
Please refer to `paddle/contrib/dynamic/`.
## Appendix
### Overview
| Framework | Has Tape | Core in C++ | First Release Date |
|-----------|----------|-------------|--------------------|
| Autograd | No | No | Mar 5, 2015 |
| Chainer | No | No | Jun 5, 2015 |
| Pytorch | No | Yes | Aug 31, 2016 |
| Dynet | Yes | Yes | Oct 12, 2016 |
### Source Code
#### Autograd
[Backward code](https://github.com/HIPS/autograd/blob/442205dfefe407beffb33550846434baa90c4de7/autograd/core.py#L8-L40). In the forward pass, a graph of VJPNode is constructed.
```python
# User API
def make_grad(fun, x):
start_node = VJPNode.new_root()
end_value, end_node = trace(start_node, fun, x)
return backward_pass(g, end_node), end_value
# trace the forward pass by creating VJPNodes
def trace(start_node, fun, x):
with trace_stack.new_trace() as t:
start_box = new_box(x, t, start_node)
end_box = fun(start_box)
return end_box._value, end_box._node
def backward_pass(g, end_node):
outgrads = {end_node : (g, False)}
for node in toposort(end_node):
outgrad = outgrads.pop(node)
ingrads = node.vjp(outgrad[0])
for parent, ingrad in zip(node.parents, ingrads):
outgrads[parent] = add_outgrads(outgrads.get(parent), ingrad)
return outgrad[0]
# Every VJPNode corresponds to a op_grad
class VJPNode(Node):
__slots__ = ['parents', 'vjp']
def __init__(self, value, fun, args, kwargs, parent_argnums, parents):
self.parents = parents
vjpmaker = primitive_vjps[fun]
self.vjp = vjpmaker(parent_argnums, value, args, kwargs)
```
#### Chainer
Example Code
```python
# (1) Function Set definition, creates FunctionNode
model = FunctionSet(
l1=F.Linear(784, 100),
l2=F.Linear(100, 100),
l3=F.Linear(100, 10)).to_gpu()
# (2) Optimizer Setup
opt = optimizers.SGD()
opt.setup(model)
# (3) Forward computation
def forward(x, t):
h1 = F.relu(model.l1(x))
h2 = F.relu(model.l2(h1))
y = model.l3(h2)
return F.softmax_cross_entropy(y, t)
# (4) Training loop
for epoch in xrange(n_epoch):
for i in xrange(0, N, b_size):
x = Variable(to_gpu(...))
t = Variable(to_gpu(...))
opt.zero_grads()
loss = forward(x, t)
loss.backward()
opt.update()
```
In `forward(x, t)`, a graph of [`VariableNode`](https://github.com/chainer/chainer/blob/master/chainer/variable.py#L110) and [`FunctionNode`](https://github.com/chainer/chainer/blob/a69103a4aa59d5b318f39b01dbcb858d465b89cf/chainer/function_node.py#L19) is constructed. Every output's `VariableNode.creator` is pointed to the `FunctionNode`.
```python
class FunctionNode(object):
...
def apply(self, inputs):
outputs = self.forward(inputs)
ret = tuple([variable.Variable(y, requires_grad=requires_grad)
for y in outputs])
# Topological ordering
self.rank = max([x.rank for x in inputs]) if input_vars else 0
# Add backward edges
for y in ret:
y.creator_node = self
self.inputs = tuple([x.node for x in input_vars])
self.outputs = tuple([y.node for y in ret])
return ret
```
`loss.backward()` will calculate the accumulated gradient of all variables. All the backward of `FunctionNode`s will be called based on the topological order.
```python
class VariableNode(object):
...
def backward(self, retain_grad, loss_scale):
if self.creator_node is None:
return
cand_funcs = []
seen_set = set()
grads = {}
# Initialize error by 1, if this is a loss variable
if self.data.size == 1 and self._grad_var is None:
self.grad = numpy.ones_like(self.data)
grads[self._node] = self._grad_var
def add_cand(cand):
if cand not in seen_set:
# Negate since heapq is min-heap. This is a global variable
heapq.heappush(cand_funcs, (-cand.rank, len(seen_set), cand))
seen_set.add(cand)
add_cand(self.creator_node)
while cand_funcs:
_, _, func = heapq.heappop(cand_funcs)
gxs = func.backward_accumulate(func.inputs, func.outputs, func.outputs.grad)
for x, gx in enumerate(gxs):
if x in grads:
grads[x] += gx
else:
grads[x] = gx
if x.creator_node is not None:
add_cand(x.creator_node)
```
#### PyTorch
Example Code
```python
x = Variable(torch.ones(5, 5))
y = Variable(torch.ones(5, 5) * 4)
z = x ** 2 + x * 2 + x * y + y
z.backward(torch.ones(5, 5))
```
The trace is done by `Variable.creator` and `Function.previous_functions`.
```python
class Variable(object):
def __init__(self, tensor, creator=None, requires_grad=True):
if creator is None:
creator = Leaf(self, requires_grad)
self.data = tensor
self.creator = creator
self._grad = None
def backward(self, gradient=None):
if gradient is None:
if self.data.numel() != 1:
raise RuntimeError('backward should be called only on a scalar (i.e. 1-element tensor) or with gradient w.r.t. the variable')
gradient = self.data.new(1).fill_(1)
self._execution_engine.run_backward(self, gradient)
class Function(obejct):
# ...
def _do_forward(self, *input):
unpacked_input = tuple(arg.data for arg in input)
raw_output = self.forward(*unpacked_input)
# mark output.creator = self for backward trace
output = tuple(Variable(tensor, self) for tensor in raw_output)
self.previous_functions = [(arg.creator, id(arg)) for arg in input]
self.output_ids = {id(var): i for i, var in enumerate(output)}
return output
def _do_backward(self, grad_output):
return self.backwaerd(grad_output)
```
The [backward](https://github.com/pytorch/pytorch/blob/v0.1.1/torch/autograd/engine.py) is similar to Autograd.
#### DyNet
Example code
```python
model = dy.model()
W_p = model.add_parameters((20, 100))
b_p = model.add_parameters(20)
E = model.add_lookup_parameters((20000, 50))
for epoch in range(num_epochs):
for in_words, out_label in training_data:
dy.renew_cg() # init tape
W = dy.parameter(W_p)
b = dy.parameter(b_p)
score_sym = dy.softmax(W*dy.concatenate([E[in_words[0]],E[in_words[1]]])+b)
loss_sym = dy.pickneglogsoftmax(score_sym, out_label)
loss_val = loss_sym.value()
loss_sym.backward()
```
[forward](https://github.com/clab/dynet/blob/740a9626a13a2732544de142e256ad0d0a166658/dynet/exec.cc#L84-L158), [backward](https://github.com/clab/dynet/blob/740a9626a13a2732544de142e256ad0d0a166658/dynet/exec.cc#L166-L284). The trace is done by creating a tape of expressions in every iteration. Backward is done by traverse the tape in the reverse order.
```c++
void SimpleExecutionEngine::backward(VariableIndex from_where, bool full) {
...
for (int i = num_nodes - 1; i >= 0; --i) {
// each node corresponds to an op
node->backward(xs, node_fx, node_dEdfx, ai, node_dEdxai);
}
...
}
```
# Operator fusion
Fusing multiple operators together is an important method to optimize the program execution, particularly for GPU or other specialized accelerators. An obvious benefit is to avoid the overhead of saving the intermediate result back into global memory.
There are generally two ways to fuse operators, fusing directly connected operators and fusing non directly connected operators. The first method is mainly used by [NNVM Compiler](https://github.com/dmlc/tvm/) and [XLA](https://www.tensorflow.org/performance/xla/). The second method is mainly used by Dynet and TensorFlow Fold to do auto-batching. The principle of fusing operator is according to some rules to combine multiple operations into one, for example, `Y = X * W` and `Z = Y + B` can be fused to `Z = X * W + B`, and `Y1 = X1 * W` and `Y2 = X2 * W` can be fused to `[Y1;Y2] = [X1;X2] * W`. In order to get a short-term profit, we decided to try to manually specify these rules.
## Challenge
The challenge of fusing operators is:
- how to make the rules.
- how to implement these rules efficiently.
### How to make the rules?
The problem of determining the best single location for a fusion operator is an NP-hard combinatorial problem. After analysis the operators of the DL model, we found there are two group of operators can be fused explicitly, one is the simple and adjacent operations, for example, `tmp = x + y` and `z = Relu(tmp)`, and the other is the operators that have the same function, for example, a serials of `SGD` or `Momentum`. They usually appear in the model in a large number. So we should think about how to fuse them separately first.
### How to implement these rules efficiently?
#### How to fuse the adjacent operations efficiently?
Here we use a template function to represent the fused operations. The pros of using a template function are that it is simple and efficient, and the cons are that it is not easy to expand, and it can only be used to express some simple operations. So taking into account our current needs, the template function is more appropriate.
#### How to fuse the operators that have the same function efficiently?
We take SGD operator as an example, the training model may have hundreds of parameters and correspondingly have the same number of SGD operators. The expression(`w = w - lr*w_g`) of those operators is the same, so during of training, the executor will execute this expression hundreds time in CPU or other specialized accelerators. If we can fuse them and make the address of all `w` and all `w_g` continuous respectively, we only need execute one time. For some accelerators, the time of launching kernel is not neglected, so the time of hundreds of times of launching and executing kernel may be larger than launching and executing only once. There usually are many operators that similar to `SGD` in the DL model, such as `AllReduce` and `FC`.
# -*- coding: utf-8 -*-
#
# documentation build configuration file, created by
# sphinx-quickstart on Thu Jul 23 19:40:08 2015.
#
# This file is execfile()d with the current directory set to its
# containing dir.
#
# Note that not all possible configuration values are present in this
# autogenerated file.
#
# All configuration values have a default; values that are commented out
# serve to show the default.
import sys
import os, subprocess
sys.path.insert(0, os.path.abspath('@PADDLE_BINARY_DIR@/python'))
import shlex
from recommonmark import parser, transform
@IMPORT_PADDLE_STRING@
@IMPORT_PADDLEV2_STRING@
MarkdownParser = parser.CommonMarkParser
AutoStructify = transform.AutoStructify
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
templates_path = ["@PADDLE_SOURCE_DIR@/doc/templates"]
# -- General configuration ------------------------------------------------
# General information about the project.
project = u'PaddlePaddle'
author = u'%s developers' % project
copyright = u'2016, %s' % author
github_doc_root = ''
# add markdown parser
MarkdownParser.github_doc_root = github_doc_root
source_parsers = {
'.md': MarkdownParser,
'.Rmd': MarkdownParser,
}
os.environ['PADDLE_BUILD_DOC'] = '1'
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones
extensions = [
'sphinx.ext.autodoc',
'sphinx.ext.autosummary',
'sphinx.ext.mathjax',
'sphinx.ext.napoleon',
'sphinx.ext.graphviz'
]
mathjax_path="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"
table_styling_embed_css = True
autodoc_member_order = 'bysource'
# The suffix(es) of source filenames.
# You can specify multiple suffix as a list of string:
# source_suffix = ['.rst', '.md']
source_suffix = ['.rst', '.md', '.Rmd']
# The encoding of source files.
source_encoding = 'utf-8'
# The master toctree document.
master_doc = 'index_cn'
# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.
#
# This is also used if you do content translation via gettext catalogs.
# Usually you set "language" from the command line for these cases.
language = 'zh_CN'
# There are two options for replacing |today|: either, you set today to some
# non-false value, then it is used:
#today = ''
# Else, today_fmt is used as the format for a strftime call.
#today_fmt = '%B %d, %Y'
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
exclude_patterns = ['_build', '**/*_en*', '*_en*', 'api/*']
# The reST default role (used for this markup: `text`) to use for all
# documents.
#default_role = None
# If true, '()' will be appended to :func: etc. cross-reference text.
#add_function_parentheses = True
# If true, the current module name will be prepended to all description
# unit titles (such as .. function::).
#add_module_names = True
# If true, sectionauthor and moduleauthor directives will be shown in the
# output. They are ignored by default.
#show_authors = False
# The name of the Pygments (syntax highlighting) style to use.
pygments_style = 'sphinx'
# A list of ignored prefixes for module index sorting.
#modindex_common_prefix = []
# If true, keep warnings as "system message" paragraphs in the built documents.
#keep_warnings = False
# If true, `todo` and `todoList` produce output, else they produce nothing.
todo_include_todos = False
# -- Options for HTML output ----------------------------------------------
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
html_theme = 'sphinx_rtd_theme'
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
#html_static_path = []
# Output file base name for HTML help builder.
htmlhelp_basename = project + 'doc'
# -- Options for LaTeX output ---------------------------------------------
latex_elements = {
}
# Grouping the document tree into LaTeX files. List of tuples
# (source start file, target name, title,
# author, documentclass [howto, manual, or own class]).
latex_documents = [
(master_doc, '%s.tex' % project, project,
author, 'manual'),
]
# Use the .. admonition:: directive for Notes sections.
# False to use the .. rubric:: directive instead.
napoleon_use_admonition_for_notes = True
def setup(app):
# Add hook for building doxygen xml when needed
# no c++ API for now
app.add_config_value('recommonmark_config', {
'url_resolver': lambda url: github_doc_root + url,
}, True)
app.add_transform(AutoStructify)
# -*- coding: utf-8 -*-
#
# documentation build configuration file, created by
# sphinx-quickstart on Thu Jul 23 19:40:08 2015.
#
# This file is execfile()d with the current directory set to its
# containing dir.
#
# Note that not all possible configuration values are present in this
# autogenerated file.
#
# All configuration values have a default; values that are commented out
# serve to show the default.
import sys
import os, subprocess
sys.path.insert(0, os.path.abspath('@PADDLE_BINARY_DIR@/python'))
import shlex
from recommonmark import parser, transform
@IMPORT_PADDLE_STRING@
@IMPORT_PADDLEV2_STRING@
MarkdownParser = parser.CommonMarkParser
AutoStructify = transform.AutoStructify
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
templates_path = ["@PADDLE_SOURCE_DIR@/doc/templates"]
# -- General configuration ------------------------------------------------
# General information about the project.
project = u'PaddlePaddle'
author = u'%s developers' % project
copyright = u'2016, %s' % author
github_doc_root = ''
# add markdown parser
MarkdownParser.github_doc_root = github_doc_root
source_parsers = {
'.md': MarkdownParser,
'.Rmd': MarkdownParser,
}
os.environ['PADDLE_BUILD_DOC'] = '1'
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones
extensions = [
'sphinx.ext.autodoc',
'sphinx.ext.autosummary',
'sphinx.ext.mathjax',
'sphinx.ext.napoleon',
]
autodoc_member_order = 'bysource'
# The suffix(es) of source filenames.
# You can specify multiple suffix as a list of string:
# source_suffix = ['.rst', '.md']
source_suffix = ['.rst', '.md', '.Rmd']
# The encoding of source files.
source_encoding = 'utf-8'
# The master toctree document.
master_doc = 'index_en'
# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.
#
# This is also used if you do content translation via gettext catalogs.
# Usually you set "language" from the command line for these cases.
language = None
# There are two options for replacing |today|: either, you set today to some
# non-false value, then it is used:
#today = ''
# Else, today_fmt is used as the format for a strftime call.
#today_fmt = '%B %d, %Y'
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
exclude_patterns = ['_build', '**/*_cn*', '*_cn*', 'api/*']
# The reST default role (used for this markup: `text`) to use for all
# documents.
#default_role = None
# If true, '()' will be appended to :func: etc. cross-reference text.
#add_function_parentheses = True
# If true, the current module name will be prepended to all description
# unit titles (such as .. function::).
#add_module_names = True
# If true, sectionauthor and moduleauthor directives will be shown in the
# output. They are ignored by default.
#show_authors = False
# The name of the Pygments (syntax highlighting) style to use.
pygments_style = 'sphinx'
# A list of ignored prefixes for module index sorting.
#modindex_common_prefix = []
# If true, keep warnings as "system message" paragraphs in the built documents.
#keep_warnings = False
# If true, `todo` and `todoList` produce output, else they produce nothing.
todo_include_todos = False
# -- Options for HTML output ----------------------------------------------
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
html_theme = 'sphinx_rtd_theme'
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
#html_static_path = []
# Output file base name for HTML help builder.
htmlhelp_basename = project + 'doc'
# -- Options for LaTeX output ---------------------------------------------
latex_elements = {
}
# Grouping the document tree into LaTeX files. List of tuples
# (source start file, target name, title,
# author, documentclass [howto, manual, or own class]).
latex_documents = [
(master_doc, '%s.tex' % project, project,
author, 'manual'),
]
# Use the .. admonition:: directive for Notes sections.
# False to use the .. rubric:: directive instead.
napoleon_use_admonition_for_notes = True
def setup(app):
# Add hook for building doxygen xml when needed
# no c++ API for now
app.add_config_value('recommonmark_config', {
'url_resolver': lambda url: github_doc_root + url,
'enable_eval_rst': True,
}, True)
app.add_transform(AutoStructify)
{# layout.html #}
{# Import the theme's layout. #}
{% extends "!layout.html" %}
{# SIDE NAV, TOGGLES ON MOBILE #}
{% block menu %}
<nav class="doc-menu-vertical" role="navigation">
{% set toctree = toctree(maxdepth=-1, collapse=False,titles_only=True, includehidden=True) %}
{{ toctree }}
</nav>
{% endblock %}
{%- block extrahead %}
<script>
var _hmt = _hmt || [];
(function() {
var hm = document.createElement("script");
hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
var s = document.getElementsByTagName("script")[0];
s.parentNode.insertBefore(hm, s);
})();
</script>
{% endblock %}
if(NOT DEFINED SPHINX_THEME)
set(SPHINX_THEME default)
endif()
if(NOT DEFINED SPHINX_THEME_DIR)
set(SPHINX_THEME_DIR)
endif()
# configured documentation tools and intermediate build results
set(BINARY_BUILD_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/_build")
# Sphinx cache with pickled ReST documents
set(SPHINX_CACHE_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/_doctrees")
# HTML output director
set(SPHINX_HTML_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/html")
set(IMPORT_PADDLE_STRING "")
set(IMPORT_PADDLEV2_STRING "")
configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/../templates/conf.py.en.in"
"${BINARY_BUILD_DIR_EN}/conf.py"
@ONLY)
sphinx_add_target(paddle_v2_docs
html
${BINARY_BUILD_DIR_EN}
${SPHINX_CACHE_DIR_EN}
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_EN})
# configured documentation tools and intermediate build results
set(BINARY_BUILD_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/_build")
# Sphinx cache with pickled ReST documents
set(SPHINX_CACHE_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/_doctrees")
# HTML output directory
set(SPHINX_HTML_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/html")
configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/../templates/conf.py.cn.in"
"${BINARY_BUILD_DIR_CN}/conf.py"
@ONLY)
sphinx_add_target(paddle_v2_docs_cn
html
${BINARY_BUILD_DIR_CN}
${SPHINX_CACHE_DIR_CN}
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_CN})
add_subdirectory(api)
# configured documentation tools and intermediate build results
set(BINARY_BUILD_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/_build")
# Sphinx cache with pickled ReST documents
set(SPHINX_CACHE_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/_doctrees")
# HTML output director
set(SPHINX_HTML_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/html")
set(IMPORT_PADDLE_STRING "import paddle")
set(IMPORT_PADDLEV2_STRING "import paddle.v2")
configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/../../templates/conf.py.en.in"
"${BINARY_BUILD_DIR_EN}/conf.py"
@ONLY)
sphinx_add_target(paddle_v2_apis
html
${BINARY_BUILD_DIR_EN}
${SPHINX_CACHE_DIR_EN}
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_EN})
add_dependencies(paddle_v2_apis gen_proto_py framework_py_proto copy_paddle_pybind paddle_python)
===========
Activation
===========
Abs
===
.. automodule:: paddle.v2.activation
:members: Abs
:noindex:
Exp
===
.. automodule:: paddle.v2.activation
:members: Exp
:noindex:
Identity
========
.. automodule:: paddle.v2.activation
:members: Identity
:noindex:
Linear
======
.. automodule:: paddle.v2.activation
:members: Linear
:noindex:
Log
===
.. automodule:: paddle.v2.activation
:members: Log
:noindex:
Square
======
.. automodule:: paddle.v2.activation
:members: Square
:noindex:
Sigmoid
=======
.. automodule:: paddle.v2.activation
:members: Sigmoid
:noindex:
Softmax
=======
.. automodule:: paddle.v2.activation
:members: Softmax
:noindex:
SequenceSoftmax
===============
.. automodule:: paddle.v2.activation
:members: SequenceSoftmax
:noindex:
Relu
====
.. automodule:: paddle.v2.activation
:members: Relu
:noindex:
BRelu
=====
.. automodule:: paddle.v2.activation
:members: BRelu
:noindex:
SoftRelu
========
.. automodule:: paddle.v2.activation
:members: SoftRelu
:noindex:
Tanh
====
.. automodule:: paddle.v2.activation
:members: Tanh
:noindex:
STanh
=====
.. automodule:: paddle.v2.activation
:members: STanh
:noindex:
SoftSign
========
.. automodule:: paddle.v2.activation
:members: SoftSign
:noindex:
Parameter Attribute
===================
.. automodule:: paddle.v2.attr
:members:
:noindex:
.. _api_v2:
==========
Evaluators
==========
Classification
==============
classification_error
--------------------
.. automodule:: paddle.v2.evaluator
:members: classification_error
:noindex:
auc
---
.. automodule:: paddle.v2.evaluator
:members: auc
:noindex:
ctc_error
---------
.. automodule:: paddle.v2.evaluator
:members: ctc_error
:noindex:
chunk
-----
.. automodule:: paddle.v2.evaluator
:members: chunk
:noindex:
precision_recall
----------------
.. automodule:: paddle.v2.evaluator
:members: precision_recall
:noindex:
Rank
====
pnpair
------
.. automodule:: paddle.v2.evaluator
:members: pnpair
:noindex:
Utils
=====
sum
---
.. automodule:: paddle.v2.evaluator
:members: sum
:noindex:
column_sum
----------
.. automodule:: paddle.v2.evaluator
:members: column_sum
:noindex:
Print
=====
classification_error_printer
----------------------------
.. automodule:: paddle.v2.evaluator
:members: classification_error_printer
:noindex:
gradient_printer
----------------
.. automodule:: paddle.v2.evaluator
:members: gradient_printer
:noindex:
maxid_printer
-------------
.. automodule:: paddle.v2.evaluator
:members: maxid_printer
:noindex:
maxframe_printer
----------------
.. automodule:: paddle.v2.evaluator
:members: maxframe_printer
:noindex:
seqtext_printer
---------------
.. automodule:: paddle.v2.evaluator
:members: seqtext_printer
:noindex:
value_printer
-------------
.. automodule:: paddle.v2.evaluator
:members: value_printer
:noindex:
Detection
==========
detection_map
-------------
.. automodule:: paddle.v2.evaluator
:members: detection_map
:noindex:
.. _api_v2.layer:
======
Layers
======
Data layer
===========
.. _api_v2.layer_data:
data
----
.. autofunction:: paddle.v2.layer.data
:noindex:
Fully Connected Layers
======================
.. _api_v2.layer_fc:
fc
--
.. autofunction:: paddle.v2.layer.fc
:noindex:
selective_fc
------------
.. autofunction:: paddle.v2.layer.selective_fc
:noindex:
Conv Layers
===========
conv_operator
-------------
.. autofunction:: paddle.v2.layer.conv_operator
:noindex:
conv_projection
---------------
.. autofunction:: paddle.v2.layer.conv_projection
:noindex:
conv_shift
----------
.. autofunction:: paddle.v2.layer.conv_shift
:noindex:
img_conv
--------
.. autofunction:: paddle.v2.layer.img_conv
:noindex:
.. _api_v2.layer_context_projection:
context_projection
------------------
.. autofunction:: paddle.v2.layer.context_projection
:noindex:
row_conv
--------
.. autofunction:: paddle.v2.layer.row_conv
:noindex:
Image Pooling Layer
===================
img_pool
--------
.. autofunction:: paddle.v2.layer.img_pool
:noindex:
spp
---
.. autofunction:: paddle.v2.layer.spp
:noindex:
maxout
------
.. autofunction:: paddle.v2.layer.maxout
:noindex:
roi_pool
--------
.. autofunction:: paddle.v2.layer.roi_pool
:noindex:
pad
----
.. autofunction:: paddle.v2.layer.pad
:noindex:
Norm Layer
==========
img_cmrnorm
-----------
.. autofunction:: paddle.v2.layer.img_cmrnorm
:noindex:
batch_norm
----------
.. autofunction:: paddle.v2.layer.batch_norm
:noindex:
sum_to_one_norm
---------------
.. autofunction:: paddle.v2.layer.sum_to_one_norm
:noindex:
cross_channel_norm
------------------
.. autofunction:: paddle.v2.layer.cross_channel_norm
:noindex:
row_l2_norm
-----------
.. autofunction:: paddle.v2.layer.row_l2_norm
:noindex:
Recurrent Layers
================
recurrent
---------
.. autofunction:: paddle.v2.layer.recurrent
:noindex:
lstmemory
---------
.. autofunction:: paddle.v2.layer.lstmemory
:noindex:
grumemory
---------
.. autofunction:: paddle.v2.layer.grumemory
:noindex:
gated_unit
-----------
.. autofunction:: paddle.v2.layer.gated_unit
:noindex:
Recurrent Layer Group
=====================
memory
------
.. autofunction:: paddle.v2.layer.memory
:noindex:
recurrent_group
---------------
.. autofunction:: paddle.v2.layer.recurrent_group
:noindex:
lstm_step
---------
.. autofunction:: paddle.v2.layer.lstm_step
:noindex:
gru_step
--------
.. autofunction:: paddle.v2.layer.gru_step
:noindex:
beam_search
------------
.. autofunction:: paddle.v2.layer.beam_search
:noindex:
get_output
----------
.. autofunction:: paddle.v2.layer.get_output
:noindex:
Mixed Layer
===========
.. _api_v2.layer_mixed:
mixed
-----
.. autofunction:: paddle.v2.layer.mixed
:noindex:
.. _api_v2.layer_embedding:
embedding
---------
.. autofunction:: paddle.v2.layer.embedding
:noindex:
scaling_projection
------------------
.. autofunction:: paddle.v2.layer.scaling_projection
:noindex:
dotmul_projection
-----------------
.. autofunction:: paddle.v2.layer.dotmul_projection
:noindex:
dotmul_operator
---------------
.. autofunction:: paddle.v2.layer.dotmul_operator
:noindex:
full_matrix_projection
----------------------
.. autofunction:: paddle.v2.layer.full_matrix_projection
:noindex:
identity_projection
-------------------
.. autofunction:: paddle.v2.layer.identity_projection
:noindex:
slice_projection
-------------------
.. autofunction:: paddle.v2.layer.slice_projection
:noindex:
table_projection
----------------
.. autofunction:: paddle.v2.layer.table_projection
:noindex:
trans_full_matrix_projection
----------------------------
.. autofunction:: paddle.v2.layer.trans_full_matrix_projection
:noindex:
Aggregate Layers
================
AggregateLevel
--------------
.. autoclass:: paddle.v2.layer.AggregateLevel
:noindex:
.. _api_v2.layer_pooling:
pooling
-------
.. autofunction:: paddle.v2.layer.pooling
:noindex:
.. _api_v2.layer_last_seq:
last_seq
--------
.. autofunction:: paddle.v2.layer.last_seq
:noindex:
.. _api_v2.layer_first_seq:
first_seq
---------
.. autofunction:: paddle.v2.layer.first_seq
:noindex:
sub_seq
---------
.. autofunction:: paddle.v2.layer.sub_seq
:noindex:
concat
------
.. autofunction:: paddle.v2.layer.concat
:noindex:
seq_concat
----------
.. autofunction:: paddle.v2.layer.seq_concat
:noindex:
seq_slice
---------
.. autofunction:: paddle.v2.layer.seq_slice
:noindex:
sub_nested_seq
--------------
.. autofunction:: paddle.v2.layer.sub_nested_seq
:noindex:
Reshaping Layers
================
block_expand
------------
.. autofunction:: paddle.v2.layer.block_expand
:noindex:
.. _api_v2.layer_expand:
ExpandLevel
-----------
.. autoclass:: paddle.v2.layer.ExpandLevel
:noindex:
expand
------
.. autofunction:: paddle.v2.layer.expand
:noindex:
repeat
------
.. autofunction:: paddle.v2.layer.repeat
:noindex:
rotate
------
.. autofunction:: paddle.v2.layer.rotate
:noindex:
seq_reshape
-----------
.. autofunction:: paddle.v2.layer.seq_reshape
:noindex:
Math Layers
===========
addto
-----
.. autofunction:: paddle.v2.layer.addto
:noindex:
linear_comb
-----------
.. autofunction:: paddle.v2.layer.linear_comb
:noindex:
interpolation
-------------
.. autofunction:: paddle.v2.layer.interpolation
:noindex:
bilinear_interp
---------------
.. autofunction:: paddle.v2.layer.bilinear_interp
:noindex:
dropout
--------
.. autofunction:: paddle.v2.layer.dropout
:noindex:
dot_prod
---------
.. autofunction:: paddle.v2.layer.dot_prod
:noindex:
out_prod
--------
.. autofunction:: paddle.v2.layer.out_prod
:noindex:
power
-----
.. autofunction:: paddle.v2.layer.power
:noindex:
scaling
-------
.. autofunction:: paddle.v2.layer.scaling
:noindex:
clip
----
.. autofunction:: paddle.v2.layer.clip
:noindex:
resize
------
.. autofunction:: paddle.v2.layer.resize
:noindex:
slope_intercept
---------------
.. autofunction:: paddle.v2.layer.slope_intercept
:noindex:
tensor
------
.. autofunction:: paddle.v2.layer.tensor
:noindex:
.. _api_v2.layer_cos_sim:
cos_sim
-------
.. autofunction:: paddle.v2.layer.cos_sim
:noindex:
l2_distance
-----------
.. autofunction:: paddle.v2.layer.l2_distance
:noindex:
trans
-----
.. autofunction:: paddle.v2.layer.trans
:noindex:
scale_shift
-----------
.. autofunction:: paddle.v2.layer.scale_shift
:noindex:
factorization_machine
---------------------
.. autofunction:: paddle.v2.layer.factorization_machine
:noindex:
Sampling Layers
===============
maxid
-----
.. autofunction:: paddle.v2.layer.max_id
:noindex:
sampling_id
-----------
.. autofunction:: paddle.v2.layer.sampling_id
:noindex:
multiplex
---------
.. autofunction:: paddle.v2.layer.multiplex
:noindex:
.. _api_v2.layer_costs:
Cost Layers
===========
cross_entropy_cost
------------------
.. autofunction:: paddle.v2.layer.cross_entropy_cost
:noindex:
cross_entropy_with_selfnorm_cost
--------------------------------
.. autofunction:: paddle.v2.layer.cross_entropy_with_selfnorm_cost
:noindex:
multi_binary_label_cross_entropy_cost
-------------------------------------
.. autofunction:: paddle.v2.layer.multi_binary_label_cross_entropy_cost
:noindex:
classification_cost
-------------------
.. autofunction:: paddle.v2.layer.classification_cost
:noindex:
huber_regression_cost
-------------------------
.. autofunction:: paddle.v2.layer.huber_regression_cost
:noindex:
huber_classification_cost
-------------------------
.. autofunction:: paddle.v2.layer.huber_classification_cost
:noindex:
lambda_cost
-----------
.. autofunction:: paddle.v2.layer.lambda_cost
:noindex:
square_error_cost
-----------------
.. autofunction:: paddle.v2.layer.square_error_cost
:noindex:
rank_cost
---------
.. autofunction:: paddle.v2.layer.rank_cost
:noindex:
sum_cost
---------
.. autofunction:: paddle.v2.layer.sum_cost
:noindex:
crf
---
.. autofunction:: paddle.v2.layer.crf
:noindex:
crf_decoding
------------
.. autofunction:: paddle.v2.layer.crf_decoding
:noindex:
ctc
---
.. autofunction:: paddle.v2.layer.ctc
:noindex:
warp_ctc
--------
.. autofunction:: paddle.v2.layer.warp_ctc
:noindex:
nce
---
.. autofunction:: paddle.v2.layer.nce
:noindex:
hsigmoid
---------
.. autofunction:: paddle.v2.layer.hsigmoid
:noindex:
smooth_l1_cost
--------------
.. autofunction:: paddle.v2.layer.smooth_l1_cost
:noindex:
multibox_loss
--------------
.. autofunction:: paddle.v2.layer.multibox_loss
:noindex:
detection_output
----------------
.. autofunction:: paddle.v2.layer.detection_output
:noindex:
Check Layer
============
eos
---
.. autofunction:: paddle.v2.layer.eos
:noindex:
Activation
==========
prelu
--------
.. autofunction:: paddle.v2.layer.prelu
:noindex:
========
Networks
========
The v2.networks module contains pieces of neural network that combine multiple layers.
NLP
===
sequence_conv_pool
------------------
.. automodule:: paddle.v2.networks
:members: sequence_conv_pool
:noindex:
.. _api_trainer_config_helpers_network_text_conv_pool:
text_conv_pool
--------------
.. automodule:: paddle.v2.networks
:members: text_conv_pool
:noindex:
Images
======
img_conv_bn_pool
----------------
.. automodule:: paddle.v2.networks
:members: img_conv_bn_pool
:noindex:
img_conv_group
--------------
.. automodule:: paddle.v2.networks
:members: img_conv_group
:noindex:
.. _api_trainer_config_helpers_network_simple_img_conv_pool:
simple_img_conv_pool
--------------------
.. automodule:: paddle.v2.networks
:members: simple_img_conv_pool
:noindex:
small_vgg
---------
.. automodule:: paddle.v2.networks
:members: small_vgg
:noindex:
vgg_16_network
---------------
.. automodule:: paddle.v2.networks
:members: vgg_16_network
:noindex:
Recurrent
=========
LSTM
----
lstmemory_unit
``````````````
.. automodule:: paddle.v2.networks
:members: lstmemory_unit
:noindex:
lstmemory_group
```````````````
.. automodule:: paddle.v2.networks
:members: lstmemory_group
:noindex:
simple_lstm
```````````
.. automodule:: paddle.v2.networks
:members: simple_lstm
:noindex:
bidirectional_lstm
``````````````````
.. automodule:: paddle.v2.networks
:members: bidirectional_lstm
:noindex:
GRU
---
gru_unit
````````
.. automodule:: paddle.v2.networks
:members: gru_unit
:noindex:
gru_group
`````````
.. automodule:: paddle.v2.networks
:members: gru_group
:noindex:
simple_gru
``````````
.. automodule:: paddle.v2.networks
:members: simple_gru
:noindex:
simple_gru2
```````````
.. automodule:: paddle.v2.networks
:members: simple_gru2
:noindex:
bidirectional_gru
``````````````````
.. automodule:: paddle.v2.networks
:members: bidirectional_gru
:noindex:
simple_attention
----------------
.. automodule:: paddle.v2.networks
:members: simple_attention
:noindex:
dot_product_attention
---------------------
.. automodule:: paddle.v2.networks
:members: dot_product_attention
:noindex:
==========
Optimizer
==========
Momentum
========
.. automodule:: paddle.v2.optimizer
:members: Momentum
:noindex:
Adam
====
.. automodule:: paddle.v2.optimizer
:members: Adam
:noindex:
Adamax
======
.. automodule:: paddle.v2.optimizer
:members: Adamax
:noindex:
AdaGrad
=======
.. automodule:: paddle.v2.optimizer
:members: AdaGrad
:noindex:
DecayedAdaGrad
==============
.. automodule:: paddle.v2.optimizer
:members: DecayedAdaGrad
:noindex:
AdaDelta
========
.. automodule:: paddle.v2.optimizer
:members: AdaDelta
:noindex:
RMSProp
=======
.. automodule:: paddle.v2.optimizer
:members: RMSProp
:noindex:
=======
Pooling
=======
BasePool
========
.. automodule:: paddle.v2.pooling
:members: BasePool
:noindex:
Avg
===
.. automodule:: paddle.v2.pooling
:members: Avg
:noindex:
Max
===
.. automodule:: paddle.v2.pooling
:members: Max
:noindex:
Sum
===
.. automodule:: paddle.v2.pooling
:members: Sum
:noindex:
SquareRootN
===========
.. automodule:: paddle.v2.pooling
:members: SquareRootN
:noindex:
CudnnAvg
========
.. automodule:: paddle.v2.pooling
:members: CudnnAvg
:noindex:
CudnnMax
========
.. automodule:: paddle.v2.pooling
:members: CudnnMax
:noindex:
==================================
Data Reader Interface and DataSets
==================================
.. toctree::
:maxdepth: 1
data/data_reader.rst
data/image.rst
data/dataset.rst
=====================
Data Reader Interface
=====================
DataTypes
=========
.. autofunction:: paddle.v2.data_type.dense_array
:noindex:
.. autofunction:: paddle.v2.data_type.integer_value
:noindex:
.. autofunction:: paddle.v2.data_type.integer_value_sequence
:noindex:
.. autofunction:: paddle.v2.data_type.integer_value_sub_sequence
:noindex:
.. autofunction:: paddle.v2.data_type.sparse_binary_vector
:noindex:
.. autofunction:: paddle.v2.data_type.sparse_binary_vector_sequence
:noindex:
.. autofunction:: paddle.v2.data_type.sparse_binary_vector_sub_sequence
:noindex:
.. autofunction:: paddle.v2.data_type.sparse_float_vector
:noindex:
.. autofunction:: paddle.v2.data_type.sparse_float_vector_sequence
:noindex:
.. autofunction:: paddle.v2.data_type.sparse_float_vector_sub_sequence
:noindex:
.. autofunction:: paddle.v2.data_type.sparse_non_value_slot
:noindex:
.. autofunction:: paddle.v2.data_type.sparse_value_slot
:noindex:
.. autoclass:: paddle.v2.data_type.InputType
:members:
:noindex:
DataFeeder
==========
.. automodule:: paddle.v2.data_feeder
:members:
:noindex:
Reader
======
.. automodule:: paddle.reader
:members:
:noindex:
.. automodule:: paddle.reader.creator
:members:
:noindex:
minibatch
=========
.. automodule:: paddle.v2.minibatch
:members:
:noindex:
Dataset
=======
.. automodule:: paddle.dataset
:members:
:noindex:
mnist
+++++
.. automodule:: paddle.dataset.mnist
:members:
:noindex:
cifar
+++++
.. automodule:: paddle.dataset.cifar
:members:
:noindex:
conll05
+++++++
.. automodule:: paddle.dataset.conll05
:members: get_dict,get_embedding,test
:noindex:
imdb
++++
.. automodule:: paddle.dataset.imdb
:members:
:noindex:
imikolov
++++++++
.. automodule:: paddle.dataset.imikolov
:members:
:noindex:
movielens
+++++++++
.. automodule:: paddle.dataset.movielens
:members:
:noindex:
.. autoclass:: paddle.dataset.movielens.MovieInfo
:noindex:
.. autoclass:: paddle.dataset.movielens.UserInfo
:noindex:
sentiment
+++++++++
.. automodule:: paddle.dataset.sentiment
:members:
:noindex:
uci_housing
+++++++++++
.. automodule:: paddle.dataset.uci_housing
:members:
:noindex:
wmt14
+++++
.. automodule:: paddle.dataset.wmt14
:members:
:noindex:
wmt16
+++++
.. automodule:: paddle.dataset.wmt16
:members:
:noindex:
Image Interface
===============
.. automodule:: paddle.v2.image
:members:
API
===
.. toctree::
:maxdepth: 1
model_configs.rst
data.rst
run_logic.rst
Model Configuration
===================
.. toctree::
:maxdepth: 1
config/activation.rst
config/layer.rst
config/evaluators.rst
config/optimizer.rst
config/pooling.rst
config/networks.rst
config/attr.rst
V2 API Overview
================
The PaddlePaddle V2 API is designed to provide a modern user interface for PaddlePaddle V1(the original layer-based platform of PaddlePaddle),
it proposes some high-level concepts such as `Layers <http://www.paddlepaddle.org/docs/develop/api/en/v2/config/layer.html>`_ , `Optimizer <http://www.paddlepaddle.org/docs/develop/api/en/v2/config/optimizer.html>`_ , `Evaluator <http://www.paddlepaddle.org/docs/develop/api/en/v2/config/evaluators.html>`_ and `Data Reader <http://www.paddlepaddle.org/docs/develop/api/en/v2/data/data_reader.html>`_ to make the model configuration more familiar to users.
A model is composed of the computation described by a group of `Layers`, with `Evaluator` to define the error, `Optimizer` to update the parameters and `Data Reader` to feed in the data.
We also provide the `interface for Training and Inference <http://www.paddlepaddle.org/docs/develop/api/en/v2/run_logic.html>`_ to help control the training and inference phrase,
it has several easy to use methods to better expose the internal running details, different `events <http://www.paddlepaddle.org/docs/develop/api/en/v2/run_logic.html#event>`_ are available to users by writing some callbacks.
All in all, the V2 API gives a higher abstraction and make PaddlePaddle programs require fiew lines of code.
======================
Training and Inference
======================
Parameters
==========
.. automodule:: paddle.v2.parameters
:members: Parameters
:noindex:
Trainer
=======
.. automodule:: paddle.v2.trainer
:members: SGD
:noindex:
Event
=====
.. automodule:: paddle.v2.event
:members:
:noindex:
Inference
=========
.. autofunction:: paddle.v2.infer
:noindex:
\ No newline at end of file
从源码编译
======================
.. _requirements:
需要的软硬件
----------------
为了编译PaddlePaddle,我们需要
1. 一台电脑,可以装的是 Linux, Windows 或者 MacOS 操作系统
2. Docker
不需要依赖其他任何软件了。即便是 Python 和 GCC 都不需要,因为我们会把所有编译工具都安装进一个 Docker 镜像里。
.. _build_step:
编译方法
----------------
PaddlePaddle需要使用Docker环境完成编译,这样可以免去单独安装编译依赖的步骤,可选的不同编译环境Docker镜像
可以在 `这里 <https://hub.docker.com/r/paddlepaddle/paddle_manylinux_devel/tags/>`__ 找到,您也可以
在 `这里 <https://github.com/PaddlePaddle/Paddle/tree/develop/tools/manylinux1/>`__ 找到 paddle_manylinux_devel
镜像的编译以及使用方法。或者参考下述可选步骤,从源码中构建用于编译PaddlePaddle的Docker镜像。
如果您选择不使用Docker镜像,则需要在本机安装下面章节列出的 :ref:`编译依赖 <_compile_deps>` 之后才能开始编译的步骤。
编译PaddlePaddle,需要执行:
.. code-block:: bash
# 1. 获取源码
git clone https://github.com/PaddlePaddle/Paddle.git
cd Paddle
# 2. 可选步骤:源码中构建用于编译PaddlePaddle的Docker镜像
docker build -t paddle:dev .
# 3. 执行下面的命令编译CPU-Only的二进制
docker run -it -v $PWD:/paddle -w /paddle -e "PYTHON_ABI=cp27-cp27mu" -e "WITH_GPU=OFF" -e "WITH_TESTING=OFF" paddlepaddle/paddle_manylinux_devel:cuda8.0_cudnn5 ./paddle/scripts/paddle_build.sh build
# 4. 或者也可以使用为上述可选步骤构建的镜像(必须先执行第2步)
docker run -it -v $PWD:/paddle -w /paddle -e "WITH_GPU=OFF" -e "WITH_TESTING=OFF" paddle:dev ./paddle/scripts/paddle_build.sh build
注:
- 上述命令把当前目录(源码树根目录)映射为 container 里的 :code:`/paddle` 目录。
- 如果您使用的是 manylinux 的镜像进行编译, 那么您需要通过环境变量 :code:`PYTHON_ABI` 来指定一个 `Python ABI <https://www.python.org/dev/peps/pep-0425/#id8>`__.
PaddlePaddle目前支持的 Python ABI 有 :code:`cp27-cp27m` 和 :code:`cp27-cp27mu`.
编译完成后会在build/python/dist目录下生成输出的whl包,可以选在在当前机器安装也可以拷贝到目标机器安装:
.. code-block:: bash
pip install build/python/dist/*.whl
如果机器中已经安装过PaddlePaddle,有两种方法:
.. code-block:: bash
1. 先卸载之前的版本,再重新安装
pip uninstall paddlepaddle
pip install build/python/dist/*.whl
2. 直接升级到更新的版本
pip install build/python/dist/*.whl -U
.. _run_test:
执行单元测试
----------------
如果您期望在编译完成后立即执行所有的单元测试,可以按照下面的方法:
设置 :code:`RUN_TEST=ON` 和 :code:`WITH_TESTING=ON` 就会在完成编译之后,立即执行单元测试。
开启 :code:`WITH_GPU=ON` 可以指定同时执行GPU上的单元测试。
.. code-block:: bash
docker run -it -v $PWD:/paddle -w /paddle -e "WITH_GPU=OFF" -e "WITH_TESTING=ON" -e "RUN_TEST=ON" paddlepaddle/paddle_manylinux_devel:cuda8.0_cudnn5 ./paddle/scripts/paddle_build.sh test
如果期望执行其中一个单元测试,(比如 :code:`test_sum_op` ):
.. code-block:: bash
docker run -it -v $PWD:/paddle -w /paddle -e "WITH_GPU=OFF" -e "WITH_TESTING=ON" -e "RUN_TEST=OFF" paddlepaddle/paddle_manylinux_devel:cuda8.0_cudnn5 /bin/bash
./paddle/scripts/paddle_build.sh build
cd build
ctest -R test_sum_op -V
.. _faq_docker:
常见问题
----------------
- 什么是 Docker?
如果您没有听说 Docker,可以把它想象为一个类似 virtualenv 的系统,但是虚拟的不仅仅是 Python 的运行环境。
- Docker 还是虚拟机?
有人用虚拟机来类比 Docker。需要强调的是:Docker 不会虚拟任何硬件,Docker container 里运行的编译工具实际上都是在本机的 CPU 和操作系统上直接运行的,性能和把编译工具安装在本机运行一样。
- 为什么用 Docker?
把工具和配置都安装在一个 Docker image 里可以标准化编译环境。这样如果遇到问题,其他人可以复现问题以便帮助。
另外,对于习惯使用Windows和MacOS的开发者来说,使用Docker就不用配置交叉编译环境了。
- 我可以选择不用Docker吗?
当然可以。大家可以用把开发工具安装进入 Docker image 一样的方式,把这些工具安装到本机。这篇文档介绍基于 Docker 的开发流程,是因为这个流程比其他方法都更简便。
- 学习 Docker 有多难?
理解 Docker 并不难,大概花十分钟看一下 `如何使用Docker <https://zhuanlan.zhihu.com/p/19902938>`_ 。这可以帮您省掉花一小时安装和配置各种开发工具,以及切换机器时需要新安装的辛苦。别忘了 PaddlePaddle 更新可能导致需要新的开发工具。更别提简化问题复现带来的好处了。
- 我可以用 IDE 吗?
当然可以,因为源码就在本机上。IDE 默认调用 make 之类的程序来编译源码,我们只需要配置 IDE 来调用 Docker 命令编译源码即可。
很多 PaddlePaddle 开发者使用 Emacs。他们在自己的 `~/.emacs` 配置文件里加两行
.. code-block:: emacs
(global-set-key "\C-cc" 'compile)
(setq compile-command "docker run --rm -it -v $(git rev-parse --show-toplevel):/paddle paddle:dev")
就可以按 `Ctrl-C` 和 `c` 键来启动编译了。
- 可以并行编译吗?
是的。我们的 Docker image 运行一个 `Paddle编译Bash脚本 <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/docker/build.sh>`_ 。这个脚本调用 `make -j$(nproc)` 来启动和 CPU 核一样多的进程来并行编译。
- Docker 需要 sudo
如果用自己的电脑开发,自然也就有管理员权限(sudo)了。如果用公用的电脑开发,需要请管理员安装和配置好 Docker。此外,PaddlePaddle 项目在努力开始支持其他不需要 sudo 的集装箱技术,比如 rkt。
- 在 Windows/MacOS 上编译很慢
Docker 在 Windows 和 MacOS 都可以运行。不过实际上是运行在一个 Linux 虚拟机上。可能需要注意给这个虚拟机多分配一些 CPU 和内存,以保证编译高效。具体做法请参考 `如何为Windows/Mac计算机上的Docker增加内存和虚拟机 <https://github.com/PaddlePaddle/Paddle/issues/627>`_ 。
- 磁盘不够
本文中的例子里,`docker run` 命令里都用了 `--rm` 参数,这样保证运行结束之后的 containers 不会保留在磁盘上。可以用 `docker ps -a` 命令看到停止后但是没有删除的 containers。`docker build` 命令有时候会产生一些中间结果,是没有名字的 images,也会占用磁盘。可以参考 `如何删除Docker Container <https://zaiste.net/posts/removing_docker_containers/>`_ 来清理这些内容。
.. _compile_deps:
附录:编译依赖
----------------
PaddlePaddle编译需要使用到下面的依赖(包含但不限于),其他的依赖软件,会自动在编译时下载。
.. csv-table:: PaddlePaddle编译依赖
:header: "依赖", "版本", "说明"
:widths: 10, 15, 30
"CMake", ">=3.2", ""
"GCC", "4.8.2", "推荐使用CentOS的devtools2"
"Python", "2.7.x", "依赖libpython2.7.so"
"pip", ">=9.0", ""
"numpy", "", ""
"SWIG", ">=2.0", ""
"Go", ">=1.8", "可选"
.. _build_options:
附录:编译选项
----------------
PaddlePaddle的编译选项,包括生成CPU/GPU二进制文件、链接何种BLAS库等。
用户可在调用cmake的时候设置它们,详细的cmake使用方法可以参考
`官方文档 <https://cmake.org/cmake-tutorial>`_ 。
在cmake的命令行中,通过使用 ``-D`` 命令设置该类编译选项,例如:
.. code-block:: bash
cmake .. -DWITH_GPU=OFF
.. csv-table:: 编译选项说明
:header: "选项", "说明", "默认值"
:widths: 1, 7, 2
"WITH_GPU", "是否支持GPU", "ON"
"WITH_C_API", "是否仅编译CAPI", "OFF"
"WITH_DOUBLE", "是否使用双精度浮点数", "OFF"
"WITH_DSO", "是否运行时动态加载CUDA动态库,而非静态加载CUDA动态库。", "ON"
"WITH_AVX", "是否编译含有AVX指令集的PaddlePaddle二进制文件", "ON"
"WITH_PYTHON", "是否内嵌PYTHON解释器", "ON"
"WITH_STYLE_CHECK", "是否编译时进行代码风格检查", "ON"
"WITH_TESTING", "是否开启单元测试", "OFF"
"WITH_DOC", "是否编译中英文文档", "OFF"
"WITH_SWIG_PY", "是否编译PYTHON的SWIG接口,该接口可用于预测和定制化训练", "Auto"
"WITH_GOLANG", "是否编译go语言的可容错parameter server", "OFF"
"WITH_MKL", "是否使用MKL数学库,如果为否则是用OpenBLAS", "ON"
BLAS
+++++
PaddlePaddle支持 `MKL <https://software.intel.com/en-us/intel-mkl>`_ 和
`OpenBlAS <http://www.openblas.net/>`_ 两种BLAS库。默认使用MKL。如果使用MKL并且机器含有AVX2指令集,
还会下载MKL-DNN数学库,详细参考 `mkldnn设计文档 <https://github.com/PaddlePaddle/Paddle/tree/develop/doc/design/mkldnn#cmake>`_ 。
如果关闭MKL,则会使用OpenBLAS作为BLAS库。
CUDA/cuDNN
+++++++++++
PaddlePaddle在编译时/运行时会自动找到系统中安装的CUDA和cuDNN库进行编译和执行。
使用参数 :code:`-DCUDA_ARCH_NAME=Auto` 可以指定开启自动检测SM架构,加速编译。
PaddlePaddle可以使用cuDNN v5.1之后的任何一个版本来编译运行,但尽量请保持编译和运行使用的cuDNN是同一个版本。
我们推荐使用最新版本的cuDNN。
编译选项的设置
++++++++++++++
PaddePaddle通过编译时指定路径来实现引用各种BLAS/CUDA/cuDNN库。cmake编译时,首先在系统路径( :code:`/usr/lib:/usr/local/lib` )中搜索这几个库,同时也会读取相关路径变量来进行搜索。 通过使用 ``-D`` 命令可以设置,例如
.. code-block:: bash
cmake .. -DWITH_GPU=ON -DWITH_TESTING=OFF -DCUDNN_ROOT=/opt/cudnnv5
**注意:这几个编译选项的设置,只在第一次cmake的时候有效。如果之后想要重新设置,推荐清理整个编译目录(** :code:`rm -rf` )**后,再指定。**
Build from Sources
==========================
.. _requirements:
Requirements
----------------
To build PaddlePaddle, you need
1. A computer -- Linux, Windows, MacOS.
2. Docker.
Nothing else. Not even Python and GCC, because you can install all build tools into a Docker image.
We run all the tools by running this image.
.. _build_step:
How To Build
----------------
You need to use Docker to build PaddlePaddle
to avoid installing dependencies by yourself. We have several pre-built
Docker images `here <https://hub.docker.com/r/paddlepaddle/paddle_manylinux_devel/tags/>`_ ,
you can also find how to build and use paddle_manylinux_devel Docker image from
`here <https://github.com/PaddlePaddle/Paddle/tree/develop/tools/manylinux1/>`__
Or you can build your own image from source as the optional step below:
If you don't wish to use docker,you need to install several compile dependencies manually as :ref:`Compile Dependencies <_compile_deps>` shows to start compilation.
.. code-block:: bash
# 1. clone the source code
git clone https://github.com/PaddlePaddle/Paddle.git
cd Paddle
# 2. Optional: build development docker image from source
docker build -t paddle:dev .
# 3. Run the following command to build a CPU-Only binaries
docker run -it -v $PWD:/paddle -w /paddle -e "PYTHON_ABI=cp27-cp27mu" -e "WITH_GPU=OFF" -e "WITH_TESTING=OFF" paddlepaddle/paddle_manylinux_devel:cuda8.0_cudnn5 ./paddle/scripts/paddle_build.sh build
# 4. Or, use your built Docker image to build PaddlePaddle (must run step 2)
docker run -it -v $PWD:/paddle -w /paddle -e "WITH_GPU=OFF" -e "WITH_TESTING=OFF" paddle:dev ./paddle/scripts/paddle_build.sh build
NOTE:
- The above command try to mount the current working directory (root directory of source code)
into :code:`/paddle` directory inside docker container.
- You need to pass in the required environment variable :code:`PYTHON_ABI` to specify a `Python ABI <https://www.python.org/dev/peps/pep-0425/#id8>`__.
Currently PaddlePaddle supported Python ABIs include :code:`cp27-cp27m` and :code:`cp27-cp27mu` .
When the compile finishes, you can get the output whl package under
build/python/dist, then you can choose to install the whl on local
machine or copy it to the target machine.
.. code-block:: bash
pip install build/python/dist/*.whl
If the machine has installed PaddlePaddle before, there are two methods:
.. code-block:: bash
1. uninstall and reinstall
pip uninstall paddlepaddle
pip install build/python/dist/*.whl
2. upgrade directly
pip install build/python/dist/*.whl -U
.. _run_test:
Run Tests
----------------
If you wish to run the tests, you may follow the below steps:
When using Docker, set :code:`RUN_TEST=ON` and :code:`WITH_TESTING=ON` will run test immediately after the build.
Set :code:`WITH_GPU=ON` Can also run tests on GPU.
.. code-block:: bash
docker run -it -v $PWD:/paddle -w /paddle -e "WITH_GPU=OFF" -e "WITH_TESTING=ON" -e "RUN_TEST=ON" paddlepaddle/paddle_manylinux_devel:cuda8.0_cudnn5 ./paddle/scripts/paddle_build.sh test
If you wish to run only one unit test, like :code:`test_sum_op`:
.. code-block:: bash
docker run -it -v $PWD:/paddle -w /paddle -e "WITH_GPU=OFF" -e "WITH_TESTING=ON" -e "RUN_TEST=OFF" paddlepaddle/paddle_manylinux_devel:cuda8.0_cudnn5 /bin/bash
./paddle/scripts/paddle_build.sh build
cd build
ctest -R test_sum_op -V
.. _faq_docker:
Frequently Asked Questions
---------------------------
- What is Docker?
If you haven't heard of it, consider it something like Python's virtualenv.
- Docker or virtual machine?
Some people compare Docker with VMs, but Docker doesn't virtualize any hardware nor running a guest OS, which means there is no compromise on the performance.
- Why Docker?
Using a Docker image of build tools standardizes the building environment, which makes it easier for others to reproduce your problems and to help.
Also, some build tools don't run on Windows or Mac or BSD, but Docker runs almost everywhere, so developers can use whatever computer they want.
- Can I choose not to use Docker?
Sure, you don't have to install build tools into a Docker image; instead, you can install them on your local computer. This document exists because Docker would make the development way easier.
- How difficult is it to learn Docker?
It takes you ten minutes to read `an introductory article <https://docs.docker.com/get-started>`_ and saves you more than one hour to install all required build tools, configure them, especially when new versions of PaddlePaddle require some new tools. Not even to mention the time saved when other people trying to reproduce the issue you have.
- Can I use my favorite IDE?
Yes, of course. The source code resides on your local computer, and you can edit it using whatever editor you like.
Many PaddlePaddle developers are using Emacs. They add the following few lines into their `~/.emacs` configure file:
.. code-block:: emacs
(global-set-key "\C-cc" 'compile)
(setq compile-command "docker run --rm -it -v $(git rev-parse --show-toplevel):/paddle paddle:dev")
so they could type `Ctrl-C` and `c` to build PaddlePaddle from source.
- Does Docker do parallel building?
Our building Docker image runs a `Bash script <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/docker/build.sh>`_ , which calls `make -j$(nproc)` to starts as many processes as the number of your CPU cores.
- Docker requires sudo
An owner of a computer has the administrative privilege, a.k.a., sudo, and Docker requires this privilege to work properly. If you use a shared computer for development, please ask the administrator to install and configure Docker. We will do our best to support rkt, another container technology that doesn't require sudo.
- Docker on Windows/MacOS builds slowly
On Windows and MacOS, Docker containers run in a Linux VM. You might want to give this VM some more memory and CPUs so to make the building efficient. Please refer to `this issue <https://github.com/PaddlePaddle/Paddle/issues/627>`_ for details.
- Not enough disk space
Examples in this article use option `--rm` with the `docker run` command. This option ensures that stopped containers do not exist on hard disks. We can use `docker ps -a` to list all containers, including stopped. Sometimes `docker build` generates some intermediate dangling images, which also take disk space. To clean them, please refer to `this article <https://zaiste.net/posts/removing_docker_containers/>`_ .
.. _compile_deps:
Appendix: Compile Dependencies
-------------------------------
PaddlePaddle need the following dependencies when compiling, other dependencies
will be downloaded automatically.
.. csv-table:: PaddlePaddle Compile Dependencies
:header: "Dependency", "Version", "Description"
:widths: 10, 15, 30
"CMake", ">=3.2", ""
"GCC", "4.8.2", "Recommend devtools2 for CentOS"
"Python", "2.7.x", "Need libpython2.7.so"
"pip", ">=9.0", ""
"numpy", "", ""
"SWIG", ">=2.0", ""
"Go", ">=1.8", "Optional"
.. _build_options:
Appendix: Build Options
-------------------------
Build options include whether build binaries for CPU or GPU, which BLAS
library to use etc. You may pass these settings when running cmake.
For detailed cmake tutorial please refer to `here <https://cmake.org/cmake-tutorial>`__ 。
You can add :code:`-D` argument to pass such options, like:
.. code-block:: bash
cmake .. -DWITH_GPU=OFF
.. csv-table:: Bool Type Options
:header: "Option", "Description", "Default"
:widths: 1, 7, 2
"WITH_GPU", "Build with GPU support", "ON"
"WITH_C_API", "Build only CAPI", "OFF"
"WITH_DOUBLE", "Build with double precision", "OFF"
"WITH_DSO", "Dynamically load CUDA libraries", "ON"
"WITH_AVX", "Build with AVX support", "ON"
"WITH_PYTHON", "Build with integrated Python interpreter", "ON"
"WITH_STYLE_CHECK", "Check code style when building", "ON"
"WITH_TESTING", "Build unit tests", "OFF"
"WITH_DOC", "Build documentations", "OFF"
"WITH_SWIG_PY", "Build Python SWIG interface for V2 API", "Auto"
"WITH_GOLANG", "Build fault-tolerant parameter server written in go", "OFF"
"WITH_MKL", "Use MKL as BLAS library, else use OpenBLAS", "ON"
BLAS
+++++
PaddlePaddle supports `MKL <https://software.intel.com/en-us/intel-mkl>`_ and
`OpenBlAS <http://www.openblas.net/>`_ as BLAS library。By default it uses MKL.
If you are using MKL and your machine supports AVX2, MKL-DNN will also be downloaded
and used, for more `details <https://github.com/PaddlePaddle/Paddle/tree/develop/doc/design/mkldnn#cmake>`_ .
If you choose not to use MKL, then OpenBlAS will be used.
CUDA/cuDNN
+++++++++++
PaddlePaddle will automatically find CUDA and cuDNN when compiling and running.
parameter :code:`-DCUDA_ARCH_NAME=Auto` can be used to detect SM architecture
automatically in order to speed up the build.
PaddlePaddle can build with any version later than cuDNN v5.1, and we intend to
keep on with latest cuDNN versions. Be sure to run with the same version of cuDNN
you built.
Pass Compile Options
++++++++++++++++++++++
You can pass compile options to use intended BLAS/CUDA/Cudnn libraries.
When running cmake command, it will search system paths like
:code:`/usr/lib:/usr/local/lib` and then search paths that you
passed to cmake, i.e.
.. code-block:: bash
cmake .. -DWITH_GPU=ON -DWITH_TESTING=OFF -DCUDNN_ROOT=/opt/cudnnv5
**NOTE: These options only take effect when running cmake for the first time, you need to clean the cmake cache or clean the build directory (** :code:`rm -rf` **) if you want to change it.**
使用Docker安装运行
================================
使用Docker安装和运行PaddlePaddle可以无需考虑依赖环境即可运行。并且也可以在Windows的docker中运行。
您可以在 `Docker官网 <https://docs.docker.com/get-started/>`_ 获得基本的Docker安装和使用方法。
如果您在使用Windows,可以参考
`这篇 <https://docs.docker.com/toolbox/toolbox_install_windows/>`_
教程,完成在Windows上安装和使用Docker。
在了解Docker的基本使用方法之后,即可开始下面的步骤:
.. _docker_pull:
获取PaddlePaddle的Docker镜像
------------------------------
执行下面的命令获取最新的PaddlePaddle Docker镜像,版本为cpu_avx_mkl:
.. code-block:: bash
docker pull paddlepaddle/paddle
对于国内用户,我们提供了加速访问的镜像源:
.. code-block:: bash
docker pull docker.paddlepaddlehub.com/paddle
下载GPU版本(cuda8.0_cudnn5_avx_mkl)的Docker镜像:
.. code-block:: bash
docker pull paddlepaddle/paddle:latest-gpu
docker pull docker.paddlepaddlehub.com/paddle:latest-gpu
选择下载使用不同的BLAS库的Docker镜像:
.. code-block:: bash
# 默认是使用MKL的镜像
docker pull paddlepaddle/paddle
# 使用OpenBLAS的镜像
docker pull paddlepaddle/paddle:latest-openblas
下载指定版本的Docker镜像,可以从 `DockerHub网站 <https://hub.docker.com/r/paddlepaddle/paddle/tags/>`_ 获取可选的tag,并执行下面的命令:
.. code-block:: bash
docker pull paddlepaddle/paddle:[tag]
# 比如:
docker pull docker.paddlepaddlehub.com/paddle:0.11.0-gpu
.. _docker_run:
在Docker中执行PaddlePaddle训练程序
----------------------------------
假设您已经在当前目录(比如在/home/work)编写了一个PaddlePaddle的程序 :code:`train.py` (可以参考
`PaddlePaddleBook <http://www.paddlepaddle.org/docs/develop/book/01.fit_a_line/index.cn.html>`_
编写),就可以使用下面的命令开始执行训练:
.. code-block:: bash
cd /home/work
docker run -it -v $PWD:/work paddlepaddle/paddle /work/train.py
上述命令中, :code:`-it` 参数说明容器已交互式运行; :code:`-v $PWD:/work`
指定将当前路径(Linux中$PWD变量会展开为当前路径的绝对路径)挂载到容器内部的 :code:`/work`
目录; :code:`paddlepaddle/paddle` 指定需要使用的容器; 最后 :code:`/work/train.py`
为容器内执行的命令,即运行训练程序。
当然,您也可以进入到Docker容器中,以交互式的方式执行或调试您的代码:
.. code-block:: bash
docker run -it -v $PWD:/work paddlepaddle/paddle /bin/bash
cd /work
python train.py
**注:PaddlePaddle Docker镜像为了减小体积,默认没有安装vim,您可以在容器中执行** :code:`apt-get install -y vim` **安装后,在容器中编辑代码。**
.. _docker_run_book:
使用Docker启动PaddlePaddle Book教程
-----------------------------------
使用Docker可以快速在本地启动一个包含了PaddlePaddle官方Book教程的Jupyter Notebook,可以通过网页浏览。
PaddlePaddle Book是为用户和开发者制作的一个交互式的Jupyter Notebook。
如果您想要更深入了解deep learning,PaddlePaddle Book一定是您最好的选择。
大家可以通过它阅读教程,或者制作和分享带有代码、公式、图表、文字的交互式文档。
我们提供可以直接运行PaddlePaddle Book的Docker镜像,直接运行:
.. code-block:: bash
docker run -p 8888:8888 paddlepaddle/book
国内用户可以使用下面的镜像源来加速访问:
.. code-block:: bash
docker run -p 8888:8888 docker.paddlepaddlehub.com/book
然后在浏览器中输入以下网址:
.. code-block:: text
http://localhost:8888/
就这么简单,享受您的旅程!
.. _docker_run_gpu:
使用Docker执行GPU训练
------------------------------
为了保证GPU驱动能够在镜像里面正常运行,我们推荐使用
`nvidia-docker <https://github.com/NVIDIA/nvidia-docker>`_ 来运行镜像。
请不要忘记提前在物理机上安装GPU最新驱动。
.. code-block:: bash
nvidia-docker run -it -v $PWD:/work paddlepaddle/paddle:latest-gpu /bin/bash
**注: 如果没有安装nvidia-docker,可以尝试以下的方法,将CUDA库和Linux设备挂载到Docker容器内:**
.. code-block:: bash
export CUDA_SO="$(\ls /usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')"
export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}')
docker run ${CUDA_SO} ${DEVICES} -it paddlepaddle/paddle:latest-gpu
**关于AVX:**
AVX是一种CPU指令集,可以加速PaddlePaddle的计算。最新的PaddlePaddle Docker镜像默认
是开启AVX编译的,所以,如果您的电脑不支持AVX,需要单独
`编译 <./build_from_source_cn.html>`_ PaddlePaddle为no-avx版本。
以下指令能检查Linux电脑是否支持AVX:
.. code-block:: bash
if cat /proc/cpuinfo | grep -i avx; then echo Yes; else echo No; fi
如果输出是No,就需要选择使用no-AVX的镜像
Run in Docker Containers
=================================
Run PaddlePaddle in Docker container so that you don't need to care about
runtime dependencies, also you can run under Windows system. You can get
tutorials at `here <https://docs.docker.com/get-started/>`_ .
If you are using Windows, please refer to
`this <https://docs.docker.com/toolbox/toolbox_install_windows/>`_
tutorial to start running docker under windows.
After you've read above tutorials you may proceed the following steps.
.. _docker_pull:
Pull PaddlePaddle Docker Image
------------------------------
Run the following command to download the latest Docker images, the version is cpu_avx_mkl:
.. code-block:: bash
docker pull paddlepaddle/paddle
For users in China, we provide a faster mirror:
.. code-block:: bash
docker pull docker.paddlepaddlehub.com/paddle
Download GPU version (cuda8.0_cudnn5_avx_mkl) images:
.. code-block:: bash
docker pull paddlepaddle/paddle:latest-gpu
docker pull docker.paddlepaddlehub.com/paddle:latest-gpu
Choose between different BLAS version:
.. code-block:: bash
# image using MKL by default
docker pull paddlepaddle/paddle
# image using OpenBLAS
docker pull paddlepaddle/paddle:latest-openblas
If you want to use legacy versions, choose a tag from
`DockerHub <https://hub.docker.com/r/paddlepaddle/paddle/tags/>`_
and run:
.. code-block:: bash
docker pull paddlepaddle/paddle:[tag]
# i.e.
docker pull docker.paddlepaddlehub.com/paddle:0.11.0-gpu
.. _docker_run:
Launch your training program in Docker
--------------------------------------
Assume that you have already written a PaddlePaddle program
named :code:`train.py` under directory :code:`/home/work` (refer to
`PaddlePaddleBook <http://www.paddlepaddle.org/docs/develop/book/01.fit_a_line/index.cn.html>`_
for more samples), then run the following command:
.. code-block:: bash
cd /home/work
docker run -it -v $PWD:/work paddlepaddle/paddle /work/train.py
In the above command, :code:`-it` means run the container interactively;
:code:`-v $PWD:/work` means mount the current directory ($PWD will expand
to current absolute path in Linux) under :code:`/work` in the container.
:code:`paddlepaddle/paddle` to specify image to use; finnally
:code:`/work/train.py` is the command to run inside docker.
Also, you can go into the container shell, run or debug your code
interactively:
.. code-block:: bash
docker run -it -v $PWD:/work paddlepaddle/paddle /bin/bash
cd /work
python train.py
**NOTE: We did not install vim in the default docker image to reduce the image size, you can run** :code:`apt-get install -y vim` **to install it if you need to edit python files.**
.. _docker_run_book:
PaddlePaddle Book
------------------
You can create a container serving PaddlePaddle Book using Jupyter Notebook in
one minute using Docker. PaddlePaddle Book is an interactive Jupyter Notebook
for users and developers.If you want to
dig deeper into deep learning, PaddlePaddle Book definitely is your best choice.
We provide a packaged book image, simply issue the command:
.. code-block:: bash
docker run -p 8888:8888 paddlepaddle/book
For users in China, we provide a faster mirror:
.. code-block:: bash
docker run -p 8888:8888 docker.paddlepaddlehub.com/book
Then, you would back and paste the address into the local browser:
.. code-block:: text
http://localhost:8888/
That's all. Enjoy your journey!
.. _docker_run_gpu:
Train with Docker with GPU
------------------------------
We recommend using
`nvidia-docker <https://github.com/NVIDIA/nvidia-docker>`_
to run GPU training jobs. Please ensure you have latest
GPU driver installed before move on.
.. code-block:: bash
nvidia-docker run -it -v $PWD:/work paddlepaddle/paddle:latest-gpu /bin/bash
**NOTE: If you don't have nvidia-docker installed, try the following method to mount CUDA libs and devices into the container.**
.. code-block:: bash
export CUDA_SO="$(\ls /usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')"
export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}')
docker run ${CUDA_SO} ${DEVICES} -it paddlepaddle/paddle:latest-gpu
**About AVX:**
AVX is a kind of CPU instruction can accelerate PaddlePaddle's calculations.
The latest PaddlePaddle Docker image turns AVX on by default, so, if your
computer doesn't support AVX, you'll probably need to
`build <./build_from_source_en.html>`_ with :code:`WITH_AVX=OFF`.
The following command will tell you whether your computer supports AVX.
.. code-block:: bash
if cat /proc/cpuinfo | grep -i avx; then echo Yes; else echo No; fi
安装与编译
==========
.. _install_steps:
PaddlePaddle针对不同的用户群体提供了多种安装方式。
专注深度学习模型开发
--------------------
PaddlePaddle提供了多种python wheel包,可通过pip一键安装:
.. toctree::
:maxdepth: 1
pip_install_cn.rst
这是最便捷的安装方式,请根据机器配置和系统选择对应的安装包。
关注底层框架
-------------
PaddlePaddle提供了基于Docker的安装方式,请参照以下教程:
.. toctree::
:maxdepth: 1
docker_install_cn.rst
我们推荐在Docker中运行PaddlePaddle,该方式具有以下优势:
- 无需单独安装第三方依赖
- 方便分享运行时环境,易于问题的复现
对于有定制化二进制文件需求的用户,我们同样提供了从源码编译安装PaddlePaddle的方法:
.. toctree::
:maxdepth: 1
build_from_source_cn.rst
.. warning::
需要提醒的是,这种安装方式会涉及到一些第三方库的下载、编译及安装,整个安装过程耗时较长。
常见问题汇总
--------------
如果在安装过程中遇到了问题,请先尝试在下面的页面寻找答案:
:ref:`常见问题解答 <install_faq>`
如果问题没有得到解决,欢迎向PaddlePaddle社区反馈问题:
`创建issue <https://github.com/PaddlePaddle/Paddle/issues/new>`_
install and Compile
======================
.. _install_steps:
PaddlePaddle provides various methods of installation for many different users
Focus on Deep Learning Model Development
----------------------------------------
PaddlePaddle provides lots of packages of python wheel , that pip can install:
.. toctree::
:maxdepth: 1
pip_install_en.rst
This is the most convenient way of installation. Please choose the right installation package with machine configure and system.
Follow the Bottom Frame
------------------------
PaddlePaddle also supports installation using Docker. Please refer to the tutorial below:
.. toctree::
:maxdepth: 1
docker_install_en.rst
We recommend running PaddlePaddle in Docker. This method has the following advantages:
- Does not require installation of third-party dependencies.
- Easy to share runtime environment.
Lastly, users can also compile and install PaddlePaddle from source code. The instructions are below:
.. toctree::
:maxdepth: 1
build_from_source_en.rst
.. warning::
One caveat with this approach is that developers will have to download, compile and install all third-party dependencies. Thus this process of installation is more time consuming.
FAQ
-----------
For any problems during installation, please refer to the page below for answers:
:ref:`常见问题解答 <install_faq>`
If the problem still persists, you are welcome to seek assistance from the PaddlePaddle community:
`创建issue <https://github.com/PaddlePaddle/Paddle/issues/new>`_
使用pip安装
================================
PaddlePaddle可以使用常用的Python包管理工具
`pip <https://pip.pypa.io/en/stable/installing/>`_
完成安装,并可以在大多数主流的Linux操作系统以及MacOS上执行。
.. _pip_install:
使用pip安装
------------------------------
执行下面的命令即可在当前机器上安装PaddlePaddle的运行时环境,并自动下载安装依赖软件。
.. code-block:: bash
pip install paddlepaddle
当前的默认版本为0.12.0,cpu_avx_openblas,您可以通过指定版本号来安装其它版本,例如:
.. code-block:: bash
pip install paddlepaddle==0.11.0
如果需要安装支持GPU的版本(cuda8.0_cudnn5_avx_openblas),需要执行:
.. code-block:: bash
pip install paddlepaddle-gpu
当前的默认版本也是0.12.0,PaddlePaddle针对不同需求提供了更多版本的安装包,部分列表如下:
================================= ========================================
版本号 版本说明
================================= ========================================
paddlepaddle-gpu==0.12.0 使用CUDA 8.0和cuDNN 5编译的0.12.0版本
paddlepaddle-gpu==0.11.0.post87 使用CUDA 8.0和cuDNN 7编译的0.11.0版本
paddlepaddle-gpu==0.11.0.post8 使用CUDA 8.0和cuDNN 5编译的0.11.0版本
paddlepaddle-gpu==0.11.0 使用CUDA 7.5和cuDNN 5编译的0.11.0版本
================================= ========================================
您可以在 `Release History <https://pypi.org/project/paddlepaddle-gpu/#history>`_ 中找到paddlepaddle-gpu的各个发行版本。
如果需要获取并安装最新的(开发分支)PaddlePaddle,可以从我们的CI系统中下载最新的whl安装包和c-api开发包并安装,
您可以从下面的表格中找到需要的版本:
如果在点击下面链接时出现如下登陆界面,点击“Log in as guest”即可开始下载:
.. image:: paddleci.png
:scale: 50 %
:align: center
.. csv-table:: 各个版本最新的whl包
:header: "版本说明", "cp27-cp27mu", "cp27-cp27m"
:widths: 1, 3, 3
"cpu_avx_mkl", "`paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl>`__", "`paddlepaddle-latest-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddlepaddle-latest-cp27-cp27m-linux_x86_64.whl>`__"
"cpu_avx_openblas", "`paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxOpenblas/.lastSuccessful/paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl>`__", "`paddlepaddle-latest-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxOpenblas/.lastSuccessful/paddlepaddle-latest-cp27-cp27m-linux_x86_64.whl>`__"
"cpu_noavx_openblas", "`paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl>`__", "`paddlepaddle-latest-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddlepaddle-latest-cp27-cp27m-linux_x86_64.whl>`_"
"cuda8.0_cudnn5_avx_mkl", "`paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl>`__", "`paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl>`__"
"cuda8.0_cudnn7_avx_mkl", "`paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl>`__", "`paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl>`__"
"cuda9.0_cudnn7_avx_mkl", "`paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda90cudnn7avxMkl/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl>`__", "`paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda90cudnn7avxMkl/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl>`__"
.. _pip_dependency:
运行环境依赖
------------------------------
PaddlePaddle安装包由于不仅仅包含.py程序,而且包含了C++编写的部分,所以我们确保发布的二进制包可以支持主流的Linux操作系统,比如CentOS 6以上,Ubuntu 14.04以上,MacOS 10.12以上。
PaddlePaddle发布的安装包会尽量对齐 `manylinux1 <https://www.python.org/dev/peps/pep-0513/#the-manylinux1-policy>`_ 标准,通常使用CentOS 5作为编译环境。但由于CUDA库通常需要CentOS 6以上,而且CentOS 5即将停止维护,所以我们默认使用CentOS 6作为标准编译环境。
.. csv-table:: PaddlePaddle环境依赖
:header: "依赖", "版本", "说明"
:widths: 10, 15, 30
"操作系统", "Linux, MacOS", "CentOS 6以上,Ubuntu 14.04以上,MacOS 10.12以上"
"Python", "2.7.x", "暂时不支持Python3"
"libc.so", "GLIBC_2.7", "glibc至少包含GLIBC_2.7以上的符号"
"libstdc++.so", "GLIBCXX_3.4.11, CXXABI_1.3.3", "至少包含GLIBCXX_3.4.11, CXXABI_1.3.3以上的符号"
"libgcc_s.so", "GCC_3.3", "至少包含GCC_3.3以上的符号"
.. _pip_faq:
安装常见问题和解决方法
------------------------------
- paddlepaddle*.whl is not a supported wheel on this platform.
出现这个问题的主要原因是,没有找到和当前系统匹配的paddlepaddle安装包。请检查Python版本是否为2.7系列。另外最新的pip官方源中的安装包默认是manylinux1标准,需要使用最新的pip (>9.0.0) 才可以安装。可以使用下面的命令更新您的pip:
.. code-block:: bash
pip install --upgrade pip
如果仍然存在问题,可以执行:
.. code-block:: bash
python -c "import pip; print(pip.pep425tags.get_supported())"
获取当前系统支持的安装包格式,并检查和需安装的包是否匹配。pypi安装包可以在 `这个 <https://pypi.python.org/pypi/paddlepaddle/0.10.5>`_ 链接中找到。
如果系统支持的是 linux_x86_64 而安装包是 manylinux1_x86_64 ,需要升级pip版本到最新; 如果系统支持 manylinux1_x86_64 而安装包(本地)是 linux_x86_64 ,可以重命名这个whl包为 manylinux1_x86_64 再安装。
Install using pip
================================
You can use current widely used Python package management
tool `pip <https://pip.pypa.io/en/stable/installing/>`_
to install PaddlePaddle. This method can be used in
most of current Linux systems or MacOS.
.. _pip_install:
Install using pip
------------------------------
Run the following command to install PaddlePaddle on the current
machine, it will also download requirements.
.. code-block:: bash
pip install paddlepaddle
the default version is 0.12.0, cpu_avx_openblas, you can specify the versions to satisfy your demands, like:
.. code-block:: bash
pip install paddlepaddle==0.11.0
If you need to install a GPU-enabled version (cuda8.0_cudnn5_avx_openblas), you need to run:
.. code-block:: bash
pip install paddlepaddle-gpu
The default version is also 0.12.0, PaddlePaddle provides several versions of packages for different needs, as shown in the table:
================================= ========================================
版本号 版本说明
================================= ========================================
paddlepaddle-gpu==0.12.0 0.12.0 built with CUDA 8.0 and cuDNN 5
paddlepaddle-gpu==0.11.0.post87 0.11.0 built with CUDA 8.0 and cuDNN 7
paddlepaddle-gpu==0.11.0.post8 0.11.0 built with CUDA 8.0 and cuDNN 5
paddlepaddle-gpu==0.11.0 0.11.0 built with CUDA 7.5 and cuDNN 5
================================= ========================================
You can find all versions released of paddlepaddle-gpu in `Release History <https://pypi.org/project/paddlepaddle-gpu/#history>`_ .
If you wish to install the latest develop branch PaddlePaddle,
you can download the latest whl package from our CI system. Access
the below links, log in as guest, then click at the "Artifact"
tab, you'll find the download link of whl packages.
If the links below shows up the login form, just click "Log in as guest" to start the download:
.. image:: paddleci.png
:scale: 50 %
:align: center
.. csv-table:: whl package of each version
:header: "version", "cp27-cp27mu", "cp27-cp27m"
:widths: 1, 3, 3
"cpu_avx_mkl", "`paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl>`__", "`paddlepaddle-latest-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddlepaddle-latest-cp27-cp27m-linux_x86_64.whl>`__"
"cpu_avx_openblas", "`paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxOpenblas/.lastSuccessful/paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl>`__", "`paddlepaddle-latest-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxOpenblas/.lastSuccessful/paddlepaddle-latest-cp27-cp27m-linux_x86_64.whl>`__"
"cpu_noavx_openblas", "`paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl>`__", "`paddlepaddle-latest-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddlepaddle-latest-cp27-cp27m-linux_x86_64.whl>`__"
"cuda8.0_cudnn5_avx_mkl", "`paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl>`__", "`paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl>`__"
"cuda8.0_cudnn7_avx_mkl", "`paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl>`__", "`paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl>`__"
"cuda9.0_cudnn7_avx_mkl", "`paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda90cudnn7avxMkl/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl>`__", "`paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda90cudnn7avxMkl/.lastSuccessful/paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl>`__"
.. _pip_dependency:
Runtime Dependency
------------------------------
PaddlePaddle installation packages (whl) does not only contain .py files,
but also binaries built from C++ code. We ensure that PaddlePaddle can
run on current mainline Linux distributions, like CentOS 6, Ubuntu 14.04
and MacOS 10.12.
PaddlePaddle whl packages are trying to satisfy
`manylinux1 <https://www.python.org/dev/peps/pep-0513/#the-manylinux1-policy>`_
standard, which uses CentOS 5 as default build environment. But CUDA libraries
seems only run on CentOS 6 at least, also, CentOS 5 is about to end its lifetime,
so we use CentOS 6 as default build environment.
.. csv-table:: PaddlePaddle Runtime Deps
:header: "Dependency", "version", "description"
:widths: 10, 15, 30
"OS", "Linux, MacOS", "CentOS 6 or later,Ubuntu 14.04 or later,MacOS 10.12 or later"
"Python", "2.7.x", "Currently Python3 is not supported"
"libc.so", "GLIBC_2.7", "glibc at least include GLIBC_2.7 symbols"
"libstdc++.so", "GLIBCXX_3.4.11, CXXABI_1.3.3", "At least include GLIBCXX_3.4.11, CXXABI_1.3.3 symbols"
"libgcc_s.so", "GCC_3.3", "At least include GCC_3.3 symbols"
.. _pip_faq:
FAQ
------------------------------
- paddlepaddle*.whl is not a supported wheel on this platform.
The main cause of this issue is that your current platform is
not supported. Please check that you are using Python 2.7 series.
Besides, pypi only supports manylinux1 standard, you'll need to
upgrade your pip to >9.0.0. Then run the below command:
.. code-block:: bash
pip install --upgrade pip
If the problem still exists, run the following command:
.. code-block:: bash
python -c "import pip; print(pip.pep425tags.get_supported())"
Then you'll get supported package suffixes, then check if it matches
the file name of the whl package. You can find default whl package at
`here <https://pypi.python.org/pypi/paddlepaddle/0.10.5>`_
If your system supports linux_x86_64 but the whl package is manylinux1_x86_64,
you'll need to update pip to the latest version; If your system supports
manylinux1_x86_64 but the whl package is linux_x86_64 you can rename the
file to manylinux1_x86_64 suffix and then install.
# Design Doc: Distributed Training
## Objective
In [this slides](https://www.slideshare.net/cxwangyi/paddlepaddle-a-complete-solution-for-businesses), we explained that we'd like PaddlePaddle running on general-purpose clusters like those managed by Kubernetes, so to address demands for AI from both Internet and non-Internet industries.
This poses technical challenges to PaddlePaddle:
1. Support fault-recovery.
1. Support both offline and online training.
1. [Serverless computing](https://en.wikipedia.org/wiki/Serverless_computing) of distributed training.
## Training Job
A training job will be created once user asks Paddle cloud to train a model. The training job is made up of different processes that collaboratively consume data and produce a trained model. There are three kinds of processes:
1. the *master server process*, which dispatches tasks to
1. one or more *trainer processes*, which run distributed training and synchronize gradients/models via
1. one or more *parameter server processes*, where each holds a shard of the global model, and receive the uploaded gradients from every *trainer process*, so they can run the optimize functions to update their parameters.
Their relation is illustrated in the following graph:
<img src="src/paddle-model-sharding.png"/>
By coordinating these processes, PaddlePaddle supports use both Synchronize Stochastic Gradient Descent (sync SGD) and Asynchronous Stochastic Gradient Descent (async SGD) to train user-defined neural network topologies.
When training with sync SGD, parameter servers wait for all trainers to finish gradients update and then send the updated parameters to trainers, training can not proceed until the trainer received the updated parameters. This creates a synchronization point between trainers. When training with async SGD, each trainer upload gradient and download new parameters individually, without the synchronization with other trainers. Using asyc SGD will be faster in terms of time per pass, but have more noise in gradient since trainers are likely to have a stale model.
### Master Server Process
The master server process will:
- Partition a dataset into [tasks](#task) and dispatch tasks to trainers.
- Keep track of training progress on the dataset with [task queue](#task-queue). A training job will iterate on the dataset for a full pass until it goes into next pass.
#### Task
A task is a data shard to be trained. The total number of tasks will be much bigger than the total number of trainers. The number of data instances inside a task will be much bigger than the mini-batch size.
#### Task Queue
The master server has three task queues to track training progress. As illustrated in the graph below, Job A and Job B both have one master server. Each master server process has three task queues.
<img src="src/paddle-task-queues.png"/>
- The todo queue holds tasks to be dispatched. When a job starts, the master server fills in the todo queue with all tasks.
- The pending queue holds tasks that are currently training by trainers.
- the done queue holds tasks that are already trained.
The life cycle of a single task is illustrated below:
<img src="src/paddle-task-states.png"/>
1. When a new pass of training starts, all tasks will be placed in the todo queue.
1. Upon trainer requests for new task, the master server will dispatch a task from todo queue to it, put the task in the pending queue and wait for completion.
1. The trainer will work on its task and tell the master server once the task is completed and ask for new task. The master server will dispatch a new task to that trainer.
1. If a task fails for any reason in trainer, or takes longer than a specific period of time, the master server will move the task back to the todo queue. The timeout count for that task will increase by one. If the timeout count is above a threshold, the task is likely to cause a trainer to crash, then it will be discarded.
1. The master server will move completed task to the done queue. When the todo queue is empty, the master server will start a new pass by moving all tasks in the done queue to todo queue and reset the timeout counter of all tasks to zero.
### Trainer Process
The trainer process will:
- Request tasks from the master.
- Work on the tasks
- Upload gradient to parameter servers, and update local model by downloading new parameters from parameter servers.
### Parameter Server Process
Parameter server processes hold the parameters collaboratively. The parameters are partitioned on different parameter servers.
The parameter server will:
- Receive gradient from the trainers, update its parameters, and give the trainers the latest parameters.
- Periodically save its parameters to distributed file system by overriding the previous save.
### Optimization Algorithms
The communication pattern between the trainers and the parameter servers depends on the category of optimization algorithm:
- Synchronous Stochastic Gradient Descent (sync-SGD)
Parameter server will wait for all trainer finish n-th mini-batch calculation and send their gradients before broadcasting new parameters to every trainer. Every trainer will wait for the new parameters before starting n+1-th mini-batch.
- Asynchronous Stochastic Gradient Descent (async-SGD)
There will no synchronization between different trainers, and parameter server updates its parameter as soon as it receives new gradient:
- Each trainer uploads its accumulated gradient every n mini-batches.
- Every m mini-batches, the trainer downloads new parameters from parameter server.
- n and m do not have to be equal.
## Fault Tolerant
The training job will pause if the master server processes is dead, or any of the parameter server process is dead. They will be started by [Kubernetes](https://kubernetes.io/) and recover in few minutes. Please refer to [fault recovery](#fault-recovery).
The training job will continue to make progress if there is at least one training process running. The strategy depends on the type of optimization algorithm:
- sync-SGD
TODO
- async-SGD
Since async-SGD does not require synchronization between mini-batches, the system will by definition make process if at least one trainer is running.
## Fault Recovery
PaddlePaddle uses [etcd](https://github.com/coreos/etcd) to keep track of the states of processes. Because etcd is a distributed reliable key-value store, the restarted process can recover its states from etcd. The model parameters are periodically saved into distributed file system, so a restarted parameter server can recover its parameters from the saved file.
Now we will introduce how each process recovers from a failure, the graph below shows how etcd is used:
<img src="src/paddle-etcd.png"/>
### Master Server Process
When the master is started by the Kubernetes, it executes the following steps at startup:
1. Grabs a unique *master* lock in etcd, which prevents concurrent master instantiations.
1. Recovers the task queues from etcd if they already exist, otherwise, the master will create them.
1. Write its ip address to */master/addr* so that trainers can discover it.
1. Listens to trainers' request of task, dispatch one upon request, and updates task queue using an etcd transaction to ensure lock is held during the update.
When the master server process is dead for any reason, Kubernetes will restart it. It will be online again with all states recovered from etcd in few minutes.
### Trainer Process
When the trainer is started by the Kubernetes, it executes the following steps at startup:
1. Watches the available parameter server prefix keys `/ps/` on etcd and waits until the count of parameter servers reaches the desired count */ps_desired*.
1. Finds and watches */master/addr* to get master's address.
1. Requests for tasks from the master to start training.
When a trainer fails, Kuberentes would try to restart it. The recovered trainer would fetch tasks from master and go on training.
### Parameter Server Process
When the parameter server is started by Kubernetes, it executes the following steps at startup:
1. Read desired total number of parameter servers from etcd `/ps_desired`
1. Search through etcd keys `/ps/<index>` (`/ps/0`, `/ps/1`, ...) to find the first non-existant key whose index is smaller than the total number of parameter servers. Set the key using a transaction to avoid concurrent writes. The parameter server's index is inferred from the key name.
The desired number of parameter servers is 3:
<img src="src/paddle-ps-0.png"/>
The third parameter server joined:
<img src="src/paddle-ps-1.png"/>
1. The parameter server can load parameters if there are already saved parameters in the save path (inferred from its index).
1. Now the parameter server is ready for the trainers' requests.
If the parameter server's etcd lease expires, the parameter server will kill itself.
## Parameter Server Checkpointing
See [here](./checkpointing.md)
## Store and dispatching trainning data
See [here](./data_dispatch.md)
## Dynamic Scaling
### Trainer Scaling
TODO
### Parameter Server Scaling
Not planned for v1.
## Training Dataset Format
TODO
## User Interface
TODO
## 模型参数检查点(Checkpointing)
模型数据检查点的实现,可以有效的避免parameter server的单点或多点同时故障。模型参数检查点通过定期向磁盘上保存一份存储在parameter server内存中的模型数据的完整镜像,来保证训练过程可以从中间状态重新启动。在一个不可中断并缺少备份的训练任务中,可以通过阶段性的保存每个parameter server的数据快照(snapshot)到 ***分布式存储服务*** 达到容灾的目的,比如每隔10分钟最新的快照,并删除更早的快照。在出现单点故障时,只需要恢复这台节点,或者将这台节点迁移到另一个节点并启动即可恢复训练任务。
<img src="src/checkpointing.png" width="500"/>
### 快照保存的设计如下:
说明:
* parameter server在集群中启动后,自动挂载分布式存储目录,并把快照保存到这个目录下。
* ***注:每个parameter server的检查点各自独立保存,暂时不考虑多个parameter server同步的保存一个特定时间点的全局检查点,因为这样做也没法保证消除随机性。***
检查点保存程序流程:
1. 如果满足条件"每隔10分钟"时,parameter server会获取parameters内存的`read_lock`,启动一个新的线程开始保存检查点。如果已经正在执行保存检查点的线程,则忽略。由于对parameters的更新需要获取parameters内存的`write_lock`,所以在写入快照的过程中,parameter server会暂停参数更新并等待。
2. parameter server生成一个UUID,向指定的目录中一个新的文件(文件名为此UUID)写入快照数据。在快照写入完成后,计算这个文件的MD5 sum。然后在etcd的`/checkpoints/[pserver_id]`中写入json内容:`{"uuid": [UUID], "md5", "MD5 sum", "timestamp": xxxx}`
3. 删除磁盘目录中不是当前uuid的快照文件。
4. 释放对paramters内存的锁定,停止保存检查点的线程。
这里需要用户额外注意,在您的实际环境中,训练任务的运行可能会占满trainer和parameter server之间的网络带宽,如果parameter server此时还需要通过网络访问分布式存储以保存快照,可能会造成网络拥塞,而出现阶段性的运行停滞。
### 从快照恢复
在parameter server第一次启动或任意时间parameter server故障后被Kubernetes重新启动,则需要回滚到上一个检查点:
1. 从etcd中读取节点:`/checkpoints/[pserver_id]`获取最新的检查点的文件uuid
1. 从磁盘文件中加载uuid文件名的检查点快照文件,并加载其中的参数
1. 如果上面两步出现错误,则使用启动参数定义的初始化方法初始化参数
1. 开始提供服务
## TODO List
### 推测执行/加速执行(TODO)
在异构集群中,如果存在某些trainer执行速度过慢会影响整体集群的速度(如图中Trainer 1),此时master将负责启动一个新的Trainer(Accelerate Trainer 2),使用同样的训练数据block。哪个trainer先完成block的训练,则把另一个慢速的kill掉。
### 动态扩容/缩容
目前只考虑动态扩容trainer数量,可以减小系统复杂性。
## 术语
* model: 指深度学习训练之后得到的所有参数,使用这个神经网络可以完成对新数据的预测
* parameters: 神经网络中的参数,包括权重w和偏置b。一个神经网络的模型由大量的参数组成
* shard: 分片,通常指将一个整体拆分成多份的其中的一份。
* model shard: 将一个神经网络参数拆分成多份,每个shard分别存储在其中一台parameter server之上
* parameter block: 多个parameter block构成一个model shard
* 单点故障: 任意时刻只可能同时有一台服务器故障。由于集群中同时存在两台机器故障的概率极低((平均故障率*平均故障修复时间)^2)只对特殊在线系统考虑两台以上同时故障的容灾。
## 训练数据的存储和分发
### 概念解释
### 流程介绍
生产环境中的训练数据集通常体积很大,并被存储在诸如Hadoop HDFS,Ceph,AWS S3之类的分布式存储之上。这些分布式存储服务通常会把数据切割成多个分片分布式的存储在多个节点之上。这样就可以在云端执行多种数据类计算任务,包括:
* 数据预处理任务
* Paddle训练任务
* 在线模型预测服务
<div style="align: center">
<img src="src/paddle-cloud-in-data-center.png" width="800"/>
</div>
在上图中显示了在一个实际生产环境中的应用(人脸识别)的数据流图。生产环境的日志数据会通过实时流的方式(Kafka)和离线数据的方式(HDFS)存储,并在集群中运行多个分布式数据处理任务,比如流式数据处理(online data process),离线批处理(offline data process)完成数据的预处理,提供给paddle作为训练数据。用户也可以上传labeled data到分布式存储补充训练数据。在paddle之上运行的深度学习训练输出的模型会提供给在线人脸识别的应用使用。
### 训练数据存储
我们选择[CephFS](http://docs.ceph.com/docs/master/cephfs/)作为存储系统。
- 无论是从[PFSClient](../file_manager/README.md)的角度,还是从[Pod](https://kubernetes.io/docs/concepts/workloads/pods/pod/)中运行任务的角度,统一用`/pfs/$DATACENTER/home/$USER`来访问用户自己的数据。
- `/pfs/$DATACENTER/common`下存放公共数据集合
- 做只读挂载
<div style="align: center">
<img src="src/file_storage.png" width="700" align=center/>
</div>
### 文件预处理
在开始训练之前, 数据集需要预先被转换成PaddlePaddle分布式训练使用的存储格[RecordIO](https://github.com/PaddlePaddle/Paddle/issues/1947)。我们提供两个转换方式:
1. 用户在本地转换好再上传
1. 用户上传数据后,在机群上运行转换程序
转换生成的文件名会是以下格式:
```text
name_prefix-aaaaa-of-bbbbb
```
"aaaaa"和"bbbbb"都是五位的数字,每一个文件是数据集的一个shard,"aaaaa"代表shard的index,"bbbbb"代表这个shard的最大index。
比如ImageNet这个数据集可能被分成1000个shard,它们的文件名是:
```text
imagenet-00000-of-00999
imagenet-00001-of-00999
...
imagenet-00999-of-00999
```
#### 转换库
无论是在本地或是云端转换,我们都提供Python的转换库,接口是:
```python
def convert(output_path, reader, num_shards, name_prefix)
```
- `output_path`: directory in which output files will be saved.
- `reader`: a [data reader](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/reader/README.md#data-reader-interface), from which the convert program will read data instances.
- `num_shards`: the number of shards that the dataset will be partitioned into.
- `name_prefix`: the name prefix of generated files.
`reader`每次输出一个data instance,这个instance可以是单个值,或者用tuple表示的多个值:
```python
yield 1 # 单个值
yield numpy.random.uniform(-1, 1, size=28*28) # 单个值
yield numpy.random.uniform(-1, 1, size=28*28), 0 # 多个值
```
每个值的类型可以是整形、浮点型数据、字符串,或者由它们组成的list,以及numpy.ndarray。如果是其它类型,会被Pickle序列化成字符串。
### 示例程序
#### 使用转换库
以下`reader_creator`生成的`reader`每次输出一个data instance,每个data instance包涵两个值:numpy.ndarray类型的值和整型的值:
```python
def reader_creator():
def reader():
for i in range(1000):
yield numpy.random.uniform(-1, 1, size=28*28), 0 # 多个值
return reader
```
`reader_creator`生成的`reader`传入`convert`函数即可完成转换:
```python
convert("./", reader_creator(), 100, random_images)
```
以上命令会在当前目录下生成100个文件:
```text
random_images-00000-of-00099
random_images-00001-of-00099
...
random_images-00099-of-00099
```
#### 进行训练
PaddlePaddle提供专用的[data reader creator](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/reader/README.md#python-data-reader-design-doc),生成给定`RecordIO`文件对应的data reader。**无论在本地还是在云端,reader的使用方式都是一致的**
```python
# ...
reader = paddle.reader.creator.RecordIO("/pfs/datacenter_name/home/user_name/random_images-*-of-*")
batch_reader = paddle.batch(paddle.dataset.mnist.train(), 128)
trainer.train(batch_reader, ...)
```
以上代码的reader输出的data instance与生成数据集时,reader输出的data instance是一模一样的。
### 上传训练文件
使用下面命令,可以把本地的数据上传到存储集群中。
```bash
paddle pfs cp filename /pfs/$DATACENTER/home/$USER/folder/
```
比如,把之前示例中转换完毕的random_images数据集上传到云端的`/home/`可以用以下指令:
```bash
paddle pfs cp random_images-*-of-* /pfs/$DATACENTER/home/$USER/folder/
```
需要`$DATACENTER`的配置写到配置文件中,例如
```
# config file
[datacenter_1]
username=user
usercert=user.pem
userkey=user-key.pem
endpoint=datacenter1.paddlepaddle.org
[datacenter_2]
username=user
usercert=user.pem
userkey=user-key.pem
endpoint=datacenter2.paddlepaddle.org
```
## TODO
### 文件访问的权限
控制用户权限
- 用户可以把自己的数据分享给别人
### 文件访问方式
不用mount的方式来访问数据,而是直接用API的接口远程访问
例如:
```
f = open('/pfs/datacenter_name/home/user_name/test1.dat')
```
### 支持用户自定义的数据预处理job
# Alalysis of large model distributed training in Paddle
***NOTE: This is only some note for how we implemeted this scheme in V1, not a new design.***
## What is it
We often encounter cases that the embedding layer parameters(sparse) are so large that we can not store it in the trainer's memory when training. So we need to put them to several servers, and fetch them row by row instead of fetch all of the parameters.
## How to use
Specify command-line argument like `--loadsave_parameters_in_pserver=true --ports_num_for_sparse=1 --use_old_updater=1` when starting the paddle trainer. And also add something like `--ports_num_for_sparse=1 --pserver_num_threads=5` when starting pserver processes.
Accrodingly, configure your embedding layers like:
```python
SPARSE_REMOTE=True
w1 = data_layer(name="w1", size=dict_size)
emb1 = embedding_layer(input=w1, size=32, param_attr=ParameterAttribute(sparse_update=SPARSE_REMOTE))
w2 = data_layer(name="w2", size=dict_size)
emb2 = embedding_layer(input=w2, size=32, param_attr=ParameterAttribute(sparse_update=SPARSE_REMOTE))
...
```
## Implementation details
```c++
enum MatType {
MAT_NORMAL,
MAT_NORMAL_SHARED,
MAT_VALUE_SHARED,
MAT_SPARSE_ROW_IDS,
MAT_SPARSE_ROW_AUTO_GROW,
MAT_CACHE_ROW,
MAT_SPARSE_ROW,
MAT_SPARSE_ROW_PREFETCH,
MAT_SPARSE_ROW_PREFETCH_FULL_SIZE,
};
```
`MAT_SPARSE_ROW_PREFETCH` is what we use when configured to fetch only row of matrix when training.
In `trainer_internal.cpp:L93 trainOneBatch`:
```c++
if (config_->getOptConfig().use_sparse_remote_updater()) {
REGISTER_TIMER("prefetch");
gradientMachine_->prefetch(inArgs);
parameterUpdater_->getParametersRemote();
}
```
When doing actual network forward and backward, at the beginning of each batch, the trainer will try to download one row of data from pserver.
In `legacy/trainer/RemoteParameterUpdater.cpp`: `parameterUpdater_->getParametersRemote();`:
```c++
if (fullSize) {
...
} else {
getParams = [&] {
parameterClient_->getParameterSparse(
/* recvParameterType= */ PARAMETER_VALUE, sendBackParameterType);
};
applyL1 = [](Parameter& para, real decayRate) {
para.getMat(PARAMETER_VALUE)->applyL1(/*lr=*/1.0f, decayRate);
};
}
```
Calling `parameterClient_->getParameterSparse` will do remote call to pserver's `getParameterSparse`:
```c++
void ParameterServer2::getParameterSparse(const SendParameterRequest& request,
std::vector<Buffer>& inputBuffers,
SendParameterResponse* response,
std::vector<Buffer>* outputBuffers) {
(void)inputBuffers;
auto& buffer = *readWriteBuffer_;
size_t numReals = 0;
for (const auto& block : request.blocks()) {
numReals += getParameterConfig(block).dims(1);
}
buffer.resize(numReals);
VLOG(3) << "pserver: getParameterSparse, numReals=" << numReals;
ReadLockGuard guard(parameterMutex_);
size_t offset = 0;
for (const auto& block : request.blocks()) {
size_t width = getParameterConfig(block).dims(1);
Buffer buf = {buffer.data() + offset, width};
int type = request.send_back_parameter_type();
sendBackParameterSparse(block, type, response, &buf, width, outputBuffers);
offset += width;
}
}
```
`getParameterConfig(block).dims(1)` returns the width of the current "parameter block"(a shard of parameter object),
then `getParameterSparse` remote call returns only one row of data to the client.
# Design Doc: Master Server
For an overview of master server's role, please refer to [distributed training design doc](./README.md). In this design doc we will discuss the master server in more details. The master will be implemented in [Go](https://golang.org/).
## Dataset
<img src="src/dataset.png"/>
A dataset is a list of files in *RecordIO* format. A RecordIO file consists of chunks, whereas each chunk consists some records.
## Task Queue
As mentioned in [distributed training design doc](./README.md), a *task* is a data shard that the master server assigns to the trainer process to train on. A task consists of one or multiple *chunks* from one or multiple files. The master server maintains *task queues* to track the training progress.
### Task Queue Creation
1. Each trainer will make an RPC call (using Go's [rpc](https://golang.org/pkg/net/rpc/) package) to the master server, telling it the RecordIO files representing the dataset specified by the user. Since every trainer will tell the master server the same dataset, only the first RPC call will be honored.
The RPC interface is:
```go
func (m *RPCServer) ReportDataset(Paths []string, dummy *int) error {
}
```
1. The master server will scan through each RecordIO file to generate the *chunk index* and know how many chunks does each file have. A chunk can be referenced by the file path and the index of the chunk within the file. The chunk index is in memory data structure that enables fast access to each chunk, and the index of the chunk with the file is an integer start from 0, representing the n-th chunk within the file.
The definition of the chunk is:
```go
type Chunk struct {
Idx int // index of the chunk within the file
Path string
Index recordio.Index // chunk index
}
```
1. Chunks are grouped into tasks, and tasks are filled into the todo queue. The pending queue and the done queue are initialized with no element.
The definition of the task is:
```go
type Task struct {
Index int
Chunks []Chunk
}
```
The elements in the tasks queues is of type `TaskEntry`, containing a timeout counter (described in [task retry logic](#task-retry-logic)), and a task:
```go
type TaskEntry struct {
NumTimeout int
Task Task
}
```
The definition of task queues is:
```go
type TaskQueues struct {
Todo []TaskEntry
Pending map[int]TaskEntry // map from task index to task entry
Done []TaskEntry
}
```
### Task Queue Persistence
The task queues need to be persisted on [etcd](https://github.com/coreos/etcd) for fault recovery. Since the task queues only change once a task is completed or timed out, which is not very frequent, we can afford to synchronize with etcd every time the task queues change.
We will serialize the task queues data structure with [gob encoding](https://golang.org/pkg/encoding/gob/), compress with gzip, and save into etcd synchronously under key `/task_queues`.
### Task Dispatch
The trainer will make an RPC call to master to get a new task when:
- the trainer first started, or
- the trainer finishes a task.
The RPC interface is:
```go
func (m *RPCServer) GetTask(finished *Task, result *Task) error {
}
```
Argument `finished` will be `nil` when the trainer is just started.
During the RPC call the master will do the following:
- Make a copy of the task queues, and update the copy reflecting the finished tasks and the new pending tasks.
- Synchronize the copy of task queues with etcd using a transaction conditioned on holding the master lock.
- Replace the task queues with the copy and report to the trainer with the new tasks if succeeded, or discard the copy and report the error to the trainer if failed.
### Task Retry Logic
When a task is dispatched to the trainer, the master will schedule a function for execution after the timeout duration (based on the moving average of task completion time). If the task entry in still in the pending queue, its timeout counter will increase by one, and the task will be moved to todo queue. If the timeout counter is above the threshold, the master will log the error and discard the task.
Please note that since a timed out task could be completed after it has been dispatched for retry, so it is possible for a task to be processed multiple times. We do not try to prevent it from happening since it's fine to train on the same task multiple times due to the stochastic nature of the stochastic gradient decent algorithm.
# Design Doc: The Client Library of Parameter Server
For an overview of trainer's role, please refer to [distributed training design doc](README.md). In this design doc, we will discuss the parameter server's client library, which will manage communication with parameter servers. The library will be implemented in [Go](https://golang.org/) and made available as a static or dynamic library with a C header file.
## Parameter Partition
Each parameter will be partitioned into parameter blocks to make the parameters evenly distributed on parameter servers. The partition is done automatically by the client library. The *sparse parameter* require a little different treatment:
### Sparse Parameter
The sparse parameter is a parameter that is updated sparsely. The name is somewhat misleading, it does not have a sparse representation, it has the same representation as a dense vector.
Because a sparse parameter is updated sparsely, the trainer will have to partition the sparse parameter. Because the parameter server will merge all sparse parameter shard into the same file when saving the parameter. It needs special naming convention:
If a sparse parameter is partitioned into n shards, they should be named as:
```text
name:sparse-0
name:sparse-1
...
name:sparse-n-1
```
The library is unaware of the partition, and treat each parameter independently. Only when saving parameters, the parameter servers will merge the sparse parameters according to the naming convention.
## Model Optimization Using Gradients
There are two ways to perform model optimization using gradients:
- On Client
The client does multiple steps of forward and backward update. In each step, the gradients are calculated and a new model is generated. After some steps, the client will calculate the difference between the newest model and the old model at step 0. The difference will be updated to parameter servers. Parameter servers will just update parameters using the difference without any optimization using gradients (such as Adam and L1 regularization).
- On Parameter Server
The client will send accumulated gradients to parameter servers, the parameter server will do the optimization using gradients.
## L1 and L2 Regularization
PaddlePaddle allows L1 or L2 regularizations to be specified per parameter, so when the trainer initializes the parameter it needs include a parameter configuration when L1 or L2 regularization is necessary.
## Parameter Initialization
The parameters on parameter servers need to be initialized. To provide maximum flexibility, the trainer will initialize the parameters. Only one trainer will do the initialization, the other trainers will wait for the completion of initialization and get the parameters from the parameter servers.
### Trainer Selection
To select the trainer for initialization, every trainer will try to get a distributed lock, whoever owns the lock will do the initialization. As illustrated below:
<img src="./src/init_lock.png">
### Trainer Selection Process
The trainer select process is encapsulated in the C API function:
```c
int paddle_begin_init_params(paddle_pserver_client* client, const char* config_proto);
```
The selected trainer's call to `paddle_begin_init_params` will return with 1, and the other trainers' call to `paddle_begin_init_params` will return 0. `paddle_get_params` will be blocked until initialization is completed. As illustrated below:
<img src="./src/pserver_init.png">
## C Interface
```c
typedef enum {
PADDLE_ELEMENT_TYPE_INT32 = 0,
PADDLE_ELEMENT_TYPE_UINT32 = 1,
PADDLE_ELEMENT_TYPE_INT64 = 2,
PADDLE_ELEMENT_TYPE_UINT64 = 3,
PADDLE_ELEMENT_TYPE_FLOAT32 = 4,
PADDLE_ELEMENT_TYPE_FLOAT64 = 5,
} paddle_element_type;
typedef struct {
char* name;
paddle_element_type element_type;
unsigned char* content;
int content_len;
} paddle_parameter, paddle_gradient;
typedef int paddle_pserver_client;
/**
* @brief creates a pserver client that talks to etcd for coordination.
*/
paddle_pserver_client paddle_new_etcd_pserver_client(char* etcd_addr);
/**
* @brief creates a pserver client given pserver addresses.
*
* @param pserver_addrs comma-separated pserver addresses.
* @param selected if current pserver client is selected to initialize all parameter servers.
*/
paddle_pserver_client paddle_new_pserver_client(char* pserver_addrs, int selected);
void paddle_pserver_client_release(paddle_pserver_client c);
/**
* @brief paddle_begin_init_params begins to initialize parameters on
* parameter servers.
*
* paddle_begin_init_params will be called from multiple trainers,
* only one trainer will be selected to initialize the parameters on
* parameter servers. Other trainers need to get the initialized
* parameters from parameter servers using @paddle_get_params.
*
* @return 1 if the trainer is selected to initialize parameter
* servers, otherwise 0.
*/
int paddle_begin_init_params(paddle_pserver_client client);
/**
* @brief paddle_init_param initializes the parameter on parameter
* servers.
*
* @param param the parameter to initialize.
* @param param_config_proto the configuration for the parameter.
* @param config_len the length of param_config_proto
* @return 0 if successful, otherwise -1. On failure, the trainer
* needs to restart the entire initialization process (starting from
* @paddle_begin_init_param). Or simply exit the program and wait for
* the cluster management system to restart the trainer.
*/
int paddle_init_param(paddle_pserver_client client, paddle_parameter param, const unsigned char* param_config_proto, int config_len);
/**
* @brief paddle_finish_init_params tells parameter servers client has
* sent all parameters to parameter servers as initialization.
*
* @return 0 if successful, otherwise -1. On failure, the trainer
* needs to restart the entire initialization process (starting from
* @paddle_begin_init_param). Or simply exit the program and wait for
* the cluster management system to restart the trainer.
*/
int paddle_finish_init_params(paddle_pserver_client client);
/**
* @brief paddle_send_grads sends gradients to parameter servers for
* updating parameters.
*
* @param grads the array of gradients to send.
* @param len the length of the gradient array.
* @param learning_rate the learning rate for the gradients.
* @return 0 if successful, otherwise -1.
*/
int paddle_send_grads(paddle_pserver_client client, const paddle_gradient* grads, int len);
/**
* @brief paddle_get_params gets parameters from parameter servers.
*
* paddle_get_params will block until parameters are initialized on
* the parameter servers.
*
* @param dst the destination array of parameter pointers to save to.
* The parameter pointer must be pre-popullated with required parameter name,
* and the content of parameter must be pre-allocated of the size of required
* parameter on pserver.
* @param len the length of the names array and the paddle_parameter
* array.
* @return 0 if successful, otherwise -1.
*/
int paddle_get_params(paddle_pserver_client client, paddle_parameter** dst, int len);
/**
* @brief paddle_save_model indicates parameters to save the parameter
* to the given path
*
* @param path the path to save parameters.
* @return 0 if successful, otherwise -1.
*/
int paddle_save_model(paddle_pserver_client client, const char* path);
```
# Design Doc: Remote Parameter Updater for Cluster Train
For an overview of distribute training, please refer to [distributed training design doc](README.md). In this design doc, we will discuss the parameter updater that will use parameter server cclient [The Client Library of Parameter Server Design Doc](pserver_client.md) to manage and update parameters.
## Parameter Updater
Parameter Updater is used by trainer to manage and update parameter, there are mainly two kind of parameter updater: local and remote, since this design is for cluster train, we will only discuss remote parameter updater here.
### Remote Parameter Updater
Remote Parameter Updater manage parameters through remote parameter server with the client that communicate with pserver([The Client Library of Parameter Server Design Doc](pserver_client.md))
In PaddlePaddle Python V2 API, trainer is implemented in python, and the trainer will hold a instance of parameter updater and call it's functions directly. In this design, we will also expose the api of RemoteParameterUpdater to python with swig.
#### Sparse Remote Parameter Updater
Since we will only implement dense parameter management new, the mechanism for sparse parameter will be discussed in next stage.
### Interface Design
TBD
# Design Doc: Save Model
## Overview
The model is the output of the training process. There are two
ways from which user can obtain a model:
- Save model triggered by user code: user code asks PaddlePaddle to
save a model.
- Convert model from the checkpoint: model being converted from
pservers' periodic checkpoint. In this way, the user can cancel a
job at any time, and still have a relatively fresh model (we
checkpoint around every 5 minutes).
### Trainer Saving Model vs. Pservers Saving Model
Both trainers and pservers have access to the model. So the model can
be saved from a trainer or pservers. We need to decide where the model
is saved from.
#### Dense Update vs. Sparse Update
There are two types of model update methods: dense update and sparse
update (when the model parameter is configured to be sparse).
- Dense update
Every trainer has it's own full copy of the model. Every model
update will update the entire model.
- Sparse update
The training input is sparse, and the trainer does not have the
entire model. It will only download the sub-model necessary related
to the input. When updating the model, only the sub-model related to
the training input is updated.
#### Pservers Saving Model
The benefit of letting pservers save model is they have the entire
model all the time. However, since pservers are on different nodes, it
requires a merging process to merge model shards into the same
model. Thus requires the pservers to write models to a distributed
filesystem, making the checkpoint shards visible to the merge program.
#### Trainer Saving Model
The benefit of letting one trainer to save the model is it does not
require a distributed filesystem. And it's reusing the same save model
logic when training locally - except when doing sparse update, the
trainer needs to download the entire model during the saving process.
#### Conclusion
Given trainer saving model does not require a distributed filesystem,
and is an intuitive extension to trainer saving model when training
locally, we decide to let the trainer save the model when doing
distributed training.
### Convert Model from Checkpoint
TODO
## Timeline
We first implement trainer save the model. Converting the latest
snapshot to a model will be a TODO for future.
## Trainer Save Model
### Trainer Election
One trainer will be elected as the one to save the model. When using
etcd, trainer ID is a randomly generated UUID, the trainer will
contact the master server requesting to save the model, and find out
if itself is elected. When the master server is not used, unique
trainer IDs will be given by the administrator, the trainer whose ID
is "0" is elected to save the model.
### Model Save Path
Each trainer will be given the directory to save the model. The
elected trainer will save the model to
`given-directory/trainerID`. Since the trainer ID is unique, this
would prevent concurrent save to the same file when multiple trainers
are elected to save the model when split-brain problem happens.
### What Happens When Model Is Saving
It takes some time to save model, we need to define what will happen
when save model is taking place.
When doing dense update, the trainer uses the local model. Pservers
does not need to pause model update.
When doing sparse update. The trainer needs to download the entire
model while saving. To get the most accurate model, the model update
needs to be paused before the download starts and resumed after the
download finishes. Otherwise, the trainer gets a model that is
"polluted": some part of the model is old, some part of the model is
new.
It's unclear that the "polluted" model will be inferior due to the
stochastic nature of deep learning, and pausing the model update will
add more complexity to the system. Since supporting sparse update is a
TODO item. We defer the evaluation of pause the model update or not
during saving model to the future.
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册