Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
0d71cffd
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0d71cffd
编写于
8月 24, 2020
作者:
C
cc
提交者:
GitHub
8月 24, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add mnist test for post training quantization, test=develop (#26436)
* Add mnist test for post training quantization, test=develop
上级
79539cf1
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
227 addition
and
0 deletion
+227
-0
python/paddle/fluid/contrib/slim/tests/CMakeLists.txt
python/paddle/fluid/contrib/slim/tests/CMakeLists.txt
+1
-0
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_mnist.py
...ntrib/slim/tests/test_post_training_quantization_mnist.py
+226
-0
未找到文件。
python/paddle/fluid/contrib/slim/tests/CMakeLists.txt
浏览文件 @
0d71cffd
...
...
@@ -123,6 +123,7 @@ endfunction()
if
(
WIN32
)
list
(
REMOVE_ITEM TEST_OPS test_light_nas
)
list
(
REMOVE_ITEM TEST_OPS test_post_training_quantization_mnist
)
list
(
REMOVE_ITEM TEST_OPS test_post_training_quantization_mobilenetv1
)
list
(
REMOVE_ITEM TEST_OPS test_post_training_quantization_resnet50
)
list
(
REMOVE_ITEM TEST_OPS test_weight_quantization_mobilenetv1
)
...
...
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_mnist.py
0 → 100644
浏览文件 @
0d71cffd
# copyright (c) 2018 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
# http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
import
unittest
import
os
import
time
import
sys
import
random
import
math
import
functools
import
contextlib
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.dataset.common
import
download
from
paddle.fluid.contrib.slim.quantization
import
PostTrainingQuantization
random
.
seed
(
0
)
np
.
random
.
seed
(
0
)
class
TestPostTrainingQuantization
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
download_path
=
'int8/download'
self
.
cache_folder
=
os
.
path
.
expanduser
(
'~/.cache/paddle/dataset/'
+
self
.
download_path
)
self
.
timestamp
=
time
.
strftime
(
'%Y-%m-%d-%H-%M-%S'
,
time
.
localtime
())
self
.
int8_model_path
=
os
.
path
.
join
(
os
.
getcwd
(),
"post_training_"
+
self
.
timestamp
)
try
:
os
.
system
(
"mkdir -p "
+
self
.
int8_model_path
)
except
Exception
as
e
:
print
(
"Failed to create {} due to {}"
.
format
(
self
.
int8_model_path
,
str
(
e
)))
sys
.
exit
(
-
1
)
def
tearDown
(
self
):
try
:
os
.
system
(
"rm -rf {}"
.
format
(
self
.
int8_model_path
))
except
Exception
as
e
:
print
(
"Failed to delete {} due to {}"
.
format
(
self
.
int8_model_path
,
str
(
e
)))
def
cache_unzipping
(
self
,
target_folder
,
zip_path
):
if
not
os
.
path
.
exists
(
target_folder
):
cmd
=
'mkdir {0} && tar xf {1} -C {0}'
.
format
(
target_folder
,
zip_path
)
os
.
system
(
cmd
)
def
download_model
(
self
,
data_url
,
data_md5
,
folder_name
):
download
(
data_url
,
self
.
download_path
,
data_md5
)
file_name
=
data_url
.
split
(
'/'
)[
-
1
]
zip_path
=
os
.
path
.
join
(
self
.
cache_folder
,
file_name
)
print
(
'Data is downloaded at {0}'
.
format
(
zip_path
))
data_cache_folder
=
os
.
path
.
join
(
self
.
cache_folder
,
folder_name
)
self
.
cache_unzipping
(
data_cache_folder
,
zip_path
)
return
data_cache_folder
def
run_program
(
self
,
model_path
,
batch_size
,
infer_iterations
):
print
(
"test model path:"
+
model_path
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
[
infer_program
,
feed_dict
,
fetch_targets
]
=
\
fluid
.
io
.
load_inference_model
(
model_path
,
exe
)
val_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
)
img_shape
=
[
1
,
28
,
28
]
test_info
=
[]
cnt
=
0
periods
=
[]
for
batch_id
,
data
in
enumerate
(
val_reader
()):
image
=
np
.
array
(
[
x
[
0
].
reshape
(
img_shape
)
for
x
in
data
]).
astype
(
"float32"
)
input_label
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
"int64"
)
t1
=
time
.
time
()
out
=
exe
.
run
(
infer_program
,
feed
=
{
feed_dict
[
0
]:
image
},
fetch_list
=
fetch_targets
)
t2
=
time
.
time
()
period
=
t2
-
t1
periods
.
append
(
period
)
out_label
=
np
.
argmax
(
np
.
array
(
out
[
0
]),
axis
=
1
)
top1_num
=
sum
(
input_label
==
out_label
)
test_info
.
append
(
top1_num
)
cnt
+=
len
(
data
)
if
(
batch_id
+
1
)
==
infer_iterations
:
break
throughput
=
cnt
/
np
.
sum
(
periods
)
latency
=
np
.
average
(
periods
)
acc1
=
np
.
sum
(
test_info
)
/
cnt
return
(
throughput
,
latency
,
acc1
)
def
generate_quantized_model
(
self
,
model_path
,
algo
=
"KL"
,
quantizable_op_type
=
[
"conv2d"
],
is_full_quantize
=
False
,
is_use_cache_file
=
False
,
is_optimize_model
=
False
,
batch_size
=
10
,
batch_nums
=
10
):
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
scope
=
fluid
.
global_scope
()
val_reader
=
paddle
.
dataset
.
mnist
.
train
()
ptq
=
PostTrainingQuantization
(
executor
=
exe
,
model_dir
=
model_path
,
sample_generator
=
val_reader
,
batch_size
=
batch_size
,
batch_nums
=
batch_nums
,
algo
=
algo
,
quantizable_op_type
=
quantizable_op_type
,
is_full_quantize
=
is_full_quantize
,
optimize_model
=
is_optimize_model
,
is_use_cache_file
=
is_use_cache_file
)
ptq
.
quantize
()
ptq
.
save_quantized_model
(
self
.
int8_model_path
)
def
run_test
(
self
,
model_name
,
data_url
,
data_md5
,
algo
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
batch_size
=
10
,
infer_iterations
=
10
,
quant_iterations
=
5
):
origin_model_path
=
self
.
download_model
(
data_url
,
data_md5
,
model_name
)
origin_model_path
=
os
.
path
.
join
(
origin_model_path
,
model_name
)
print
(
"Start FP32 inference for {0} on {1} images ..."
.
format
(
model_name
,
infer_iterations
*
batch_size
))
(
fp32_throughput
,
fp32_latency
,
fp32_acc1
)
=
self
.
run_program
(
origin_model_path
,
batch_size
,
infer_iterations
)
print
(
"Start INT8 post training quantization for {0} on {1} images ..."
.
format
(
model_name
,
quant_iterations
*
batch_size
))
self
.
generate_quantized_model
(
origin_model_path
,
algo
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
batch_size
,
quant_iterations
)
print
(
"Start INT8 inference for {0} on {1} images ..."
.
format
(
model_name
,
infer_iterations
*
batch_size
))
(
int8_throughput
,
int8_latency
,
int8_acc1
)
=
self
.
run_program
(
self
.
int8_model_path
,
batch_size
,
infer_iterations
)
print
(
"---Post training quantization of {} method---"
.
format
(
algo
))
print
(
"FP32 {0}: batch_size {1}, throughput {2} img/s, latency {3} s, acc1 {4}."
.
format
(
model_name
,
batch_size
,
fp32_throughput
,
fp32_latency
,
fp32_acc1
))
print
(
"INT8 {0}: batch_size {1}, throughput {2} img/s, latency {3} s, acc1 {4}.
\n
"
.
format
(
model_name
,
batch_size
,
int8_throughput
,
int8_latency
,
int8_acc1
))
sys
.
stdout
.
flush
()
delta_value
=
fp32_acc1
-
int8_acc1
self
.
assertLess
(
delta_value
,
diff_threshold
)
class
TestPostTrainingKLForMnist
(
TestPostTrainingQuantization
):
def
test_post_training_kl
(
self
):
model_name
=
"mnist_model"
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
algo
=
"KL"
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
is_full_quantize
=
False
is_use_cache_file
=
False
is_optimize_model
=
True
diff_threshold
=
0.01
batch_size
=
10
infer_iterations
=
50
quant_iterations
=
5
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
batch_size
,
infer_iterations
,
quant_iterations
)
class
TestPostTrainingAbsMaxForMnist
(
TestPostTrainingQuantization
):
def
test_post_training_abs_max
(
self
):
model_name
=
"mnist_model"
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
algo
=
"abs_max"
quantizable_op_type
=
[
"conv2d"
,
"mul"
]
is_full_quantize
=
True
is_use_cache_file
=
False
is_optimize_model
=
True
diff_threshold
=
0.01
batch_size
=
10
infer_iterations
=
50
quant_iterations
=
10
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
batch_size
,
infer_iterations
,
quant_iterations
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录