diff --git a/paddle/operators/fc_op.cc b/paddle/operators/fc_op.cc index 3e6cd8f76adae0d2da62491442164965df8983d3..be0fca3c7189b5a5709a57805e0fc374ae9ca20f 100644 --- a/paddle/operators/fc_op.cc +++ b/paddle/operators/fc_op.cc @@ -41,21 +41,16 @@ class FCOp : public NetOp { "The size of inputs X(%d) should be no less than 1.", n); auto x_num_col_dims = Attr<std::vector<int>>("xNumColDims"); - auto w_num_col_dims = Attr<std::vector<int>>("wNumColDims"); PADDLE_ENFORCE_EQ(x_num_col_dims.size(), n, "The size of attribute xNumColDims(%d) should be the " "same as that of inputs X(%d).", x_num_col_dims.size(), n); - PADDLE_ENFORCE_EQ(w_num_col_dims.size(), n, - "The size of attribute wNumColDims(%d) should be the " - "same as that of inputs X(%d).", - w_num_col_dims.size(), n) // mul_out[i] = X[i] * W[i] for (size_t i = 0; i < n; i++) { framework::AttributeMap mul_attr; mul_attr["x_num_col_dims"] = static_cast<int>(x_num_col_dims[i]); - mul_attr["y_num_col_dims"] = static_cast<int>(w_num_col_dims[i]); + mul_attr["y_num_col_dims"] = static_cast<int>(1); AppendOp( framework::OpRegistry::CreateOp("mul", {{"X", {x[i]}}, {"Y", {w[i]}}}, {{"Out", {mul_out[i]}}}, mul_attr)); @@ -95,30 +90,54 @@ class FCOpMaker : public framework::OpProtoAndCheckerMaker { public: FCOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "The inputs of FC operator, a ordered vector of 2-D matrix.") + AddInput("X", + "(A vector of Tensors) each input Tensor can be of arbitrary " + "dimension, and will be reshaped to a 2-D matrix of size " + "(minibatch, number_of_input_features) according to attribute " + "xNumColDims.") .AsDuplicable(); - AddInput("W", "The weights of FC operator, a ordered vector of 2-D matrix.") + AddInput("W", + "(A vector of Tensors) the weights of FC operator, a " + "vector of 2-D matrix of size " + "(number_of_input_features, number_of_neurons).") .AsDuplicable(); - AddInput("B", "The 1-D bias vector of FC operator"); + AddInput("B", + "(Tensor) the bias of FC operator, a 1-D vector of size " + "number_of_neurons."); - AddOutput("Y", "The activated output matrix of FC operator"); + AddOutput("Y", + "(Tensor) the activated output matrix of FC operator, a 2-D " + "matrix of size (minibatch, number_of_neurons)."); AddOutput("MulOut", - "The intermediate outputs of FC operator, " - "saving the product of X[i] * W[i]") + "(A vector of Tensors) the intermediate outputs of FC operator, " + "each Tensor saving the product of X_i * W_i.") .AsIntermediate() .AsDuplicable(); - AddOutput("SumOut", - "The intermediate output of FC operator, " - "saving the sum of products, sum(X[i] * W[i])") + AddOutput( + "SumOut", + "(Tensor) the intermediate output of FC operator, " + "saving the sum of the products of X and W, that is sum{X_i * W_i}.") .AsIntermediate(); AddOutput("AddOut", - "The non-actived output of FC operator, saving X * W + b") + "(Tensor) the non-actived output of FC operator, " + "saving sum{X_i * W_i} + B.") .AsIntermediate(); - AddAttr<std::string>("activation", "The activation type of FC operator.") + AddAttr<std::string>( + "activation", + "(string, default identity) the activation type of FC operator.") .SetDefault("identity") .InEnum({"identity", "sigmoid", "softmax"}); - AddAttr<std::vector<int>>("xNumColDims", ""); - AddAttr<std::vector<int>>("wNumColDims", ""); + AddAttr<std::vector<int>>( + "xNumColDims", + "(std::vector<int>) The inputs Tensors of FC operator can be of " + "more than 2 dimensions. In that case, each input Tensor `X_i` will be " + "reshaped to a 2-D matrix. The matrix's first dimension " + "(the length of column) will be the product of `X_i`'s last " + "`xNumColDims_i` dimensions, that is " + "`X_i.dims[0] x ... x X_i.dims[xNumColDims_i - 1]`. " + "The matrix's second dimension (the length of row) will be the product " + "of `X_i`'s first `rank - xNumColDims_i` dimensions, that is " + "`X_i.dims[xNumColDims_i] x ... x X_i.dims[rank - 1]`)"); AddComment(R"DOC( Fully Connected Operator, known as Fully Connected Layer or Inner Product Layer @@ -129,15 +148,14 @@ learned weights with a matrix multiplication followed by a bias offset (optionally). Equation: - Y = Act(sum_n{X_i * W_i} + b) + Y = Act(sum_n{X_i * W_i} + B) -where X_i is a 2D matrix of size (M x K), usually M is the minibatch size and -K is the number of features. W_i is also a 2D matrix of size (K x N), -where N means the number of neurons in the fully connected layer. -b is a 1D vector of size N. Thus, the output Y is a 2D matrix of size (M x N). +where X_i is Tensor that will be reshaped to a 2-D matrix of size (M x K), +usually M is the minibatch size and K is the number of input features. +W_i is a 2-D matrix of size (K x N), where N means the number of neurons +in the fully connected layer. B is a 1-D vector of size N. +Thus, the output Y is a 2-D matrix of size (M x N). Activation type can be set to `identity` (default), `sigmoid` or `softmax`. - - The config api is `paddle.v2.layer.fc`. )DOC"); } }; diff --git a/python/paddle/v2/framework/tests/test_fc_op.py b/python/paddle/v2/framework/tests/test_fc_op.py index 39906c8b332219d324ac04e9d772b6c56f71894b..f646fad33735549c5133c60bddb2e834986fc2f5 100644 --- a/python/paddle/v2/framework/tests/test_fc_op.py +++ b/python/paddle/v2/framework/tests/test_fc_op.py @@ -22,7 +22,7 @@ class TestFCOp1(OpTest): "AddOut": add_out, "Y": identity_out } - self.attrs = {"xNumColDims": [1], "wNumColDims": [1]} + self.attrs = {"xNumColDims": [1]} def test_check_output(self): self.check_output() @@ -34,13 +34,13 @@ class TestFCOp1(OpTest): class TestFCOp2(OpTest): def setUp(self): x0 = np.random.random((16, 4, 8)).astype("float32") - x1 = np.random.random((16, 32)).astype("float32") + x1 = np.random.random((4, 4, 32)).astype("float32") w0 = np.random.random((32, 10)).astype("float32") - w1 = np.random.random((4, 8, 10)).astype("float32") + w1 = np.random.random((32, 10)).astype("float32") b = np.random.random(10).astype("float32") mul_out0 = np.dot(x0.reshape(16, 4 * 8), w0) - mul_out1 = np.dot(x1, w1.reshape(4 * 8, 10)) + mul_out1 = np.dot(x1.reshape(4 * 4, 32), w1) sum_out = mul_out0 + mul_out1 add_out = np.add(sum_out, b) sigmoid_out = 1 / (1 + np.exp(-add_out)) @@ -51,11 +51,7 @@ class TestFCOp2(OpTest): "W": [("W0", w0), ("W1", w1)], "B": b } - self.attrs = { - "xNumColDims": [1, 1], - "wNumColDims": [1, 2], - "activation": "sigmoid" - } + self.attrs = {"xNumColDims": [1, 2], "activation": "sigmoid"} self.outputs = { "MulOut": [("MulOut0", mul_out0), ("MulOut1", mul_out1)], "SumOut": sum_out,