提交 0a0b6f4a 编写于 作者: S shippingwang

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into shufflechannel

...@@ -31,10 +31,12 @@ std::map<std::string, ...@@ -31,10 +31,12 @@ std::map<std::string,
std::shared_ptr<std::unordered_map< std::shared_ptr<std::unordered_map<
std::string, std::shared_ptr<ngraph::Node>>>)>> std::string, std::shared_ptr<ngraph::Node>>>)>>
NgraphBridge::NG_NODE_MAP = { NgraphBridge::NG_NODE_MAP = {
{"fill_constant", paddle::operators::ngraphs::BuildFillConstantNode},
{"mul", paddle::operators::ngraphs::BuildMulNode}, {"mul", paddle::operators::ngraphs::BuildMulNode},
{"mul_grad", paddle::operators::ngraphs::BuildMulGradNode}, {"mul_grad", paddle::operators::ngraphs::BuildMulGradNode},
{"relu", paddle::operators::ngraphs::BuildUnaryNode<ngraph::op::Relu>}, {"relu", paddle::operators::ngraphs::BuildUnaryNode<ngraph::op::Relu>},
{"tanh", paddle::operators::ngraphs::BuildUnaryNode<ngraph::op::Tanh>}}; {"tanh", paddle::operators::ngraphs::BuildUnaryNode<ngraph::op::Tanh>},
{"top_k", paddle::operators::ngraphs::BuildTopKNode}};
void NgraphBridge::BuildNgNode(const std::shared_ptr<OperatorBase>& op) { void NgraphBridge::BuildNgNode(const std::shared_ptr<OperatorBase>& op) {
auto& op_type = op->Type(); auto& op_type = op->Type();
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "mkldnn.hpp"
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/dequantize_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
namespace paddle {
namespace operators {
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using platform::to_void_cast;
using Tensor = framework::Tensor;
using framework::DataLayout;
using mkldnn::stream;
using platform::GetMKLDNNFormat;
template <typename T>
class DeQuantOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* input = ctx.Input<Tensor>("Input");
auto scale_data = ctx.Attr<float>("Scale");
auto* output = ctx.Output<Tensor>("Output");
auto& dev_ctx =
ctx.template device_context<platform::MKLDNNDeviceContext>();
const auto& engine = dev_ctx.GetEngine();
const T* input_data = input->data<T>();
float* output_data = output->mutable_data<float>(ctx.GetPlace());
std::vector<float> reorder_scale = {1.0f / scale_data};
std::vector<primitive> pipeline;
std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
mkldnn::memory::data_type src_dt =
paddle::framework::ToMKLDNNDataType(input->type());
mkldnn::memory::format src_fmt = input->format();
mkldnn::primitive_attr attri;
int mask = 0;
attri.set_output_scales(mask, reorder_scale);
auto src_md = platform::MKLDNNMemDesc({src_tz}, src_dt, src_fmt);
auto src_pd = mkldnn::memory::primitive_desc(src_md, engine);
auto src_memory =
std::make_shared<mkldnn::memory>(src_pd, to_void_cast<T>(input_data));
std::shared_ptr<primitive::at> src_memory_p =
std::shared_ptr<primitive::at>(new primitive::at(*src_memory));
auto dst_md = platform::MKLDNNMemDesc({dst_tz}, memory::data_type::f32,
memory::format::nchw);
auto dst_pd = mkldnn::memory::primitive_desc(dst_md, engine);
auto dst_memory = mkldnn::memory(dst_pd, to_void_cast<float>(output_data));
auto reorder_pd = std::shared_ptr<reorder::primitive_desc>(
new reorder::primitive_desc(src_pd, dst_pd, attri));
auto reorder_p = std::shared_ptr<reorder>(
new reorder(*reorder_pd, *src_memory_p, dst_memory));
pipeline.push_back(*reorder_p);
stream(stream::kind::eager).submit(pipeline).wait();
output->set_format(GetMKLDNNFormat(dst_memory));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_KERNEL(dequantize, MKLDNN, ::paddle::platform::CPUPlace,
ops::DeQuantOpKernel<uint8_t>, ops::DeQuantOpKernel<int8_t>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/dequantize_op.h"
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace paddle {
namespace operators {
framework::OpKernelType DeQuantOp::GetExpectedKernelType(
const framework::ExecutionContext& ctx) const {
framework::LibraryType library_ = framework::LibraryType::kMKLDNN;
framework::DataLayout layout_ = framework::DataLayout::kMKLDNN;
return framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
ctx.GetPlace(), layout_, library_);
}
void DeQuantOpMaker::Make() {
AddInput("Input", "input data");
AddOutput("Output", "output data");
AddAttr<float>("Scale", "scale data").SetDefault({1.0f});
AddComment(R"DOC(This op will dequantize data from INT8 to FP32)DOC");
}
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(dequantize, ops::DeQuantOp, ops::DeQuantOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
using framework::OpKernelType;
using framework::Tensor;
class DeQuantOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
ctx->SetOutputDim("Output", ctx->GetInputDim("Input"));
ctx->ShareLoD("Input", /*->*/ "Output");
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override;
};
class DeQuantOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override;
};
class DeQuantGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {}
};
} // namespace operators
} // namespace paddle
...@@ -22,4 +22,6 @@ limitations under the License. */ ...@@ -22,4 +22,6 @@ limitations under the License. */
#pragma once #pragma once
#include "ops/binary_unnary_op.h" #include "ops/binary_unnary_op.h"
#include "ops/fill_constant_op.h"
#include "ops/mul_op.h" #include "ops/mul_op.h"
#include "ops/top_k_op.h"
...@@ -45,7 +45,6 @@ static void BuildUnaryNode( ...@@ -45,7 +45,6 @@ static void BuildUnaryNode(
auto out = std::make_shared<T>(input); auto out = std::make_shared<T>(input);
paddle::platform::SetOutputNode(op, "Out", out, ngb_node_map); paddle::platform::SetOutputNode(op, "Out", out, ngb_node_map);
} }
} // namespace ngraphs } // namespace ngraphs
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
......
/*Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_NGRAPH
#pragma once
#include <string>
#include <vector>
#include "ngraph/ngraph.hpp"
#include "paddle/fluid/platform/ngraph_helper.h"
namespace paddle {
namespace operators {
namespace ngraphs {
void BuildFillConstantNode(
const std::shared_ptr<paddle::framework::OperatorBase>& op,
std::shared_ptr<
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
ngb_node_map) {
auto op_attrs = paddle::framework::AttrReader(op->Attrs());
auto vsp = op_attrs.Get<std::vector<int64_t>>("shape");
ngraph::Shape shape;
for (auto& sp : vsp) {
shape.push_back(sp);
}
float value = op_attrs.Get<float>("value");
ngraph::element::Type ng_dtype;
auto data_type = static_cast<paddle::framework::proto::VarType::Type>(
op_attrs.Get<int>("dtype"));
if (data_type == paddle::framework::proto::VarType::FP32) {
ng_dtype = ngraph::element::f32;
} else if (data_type == paddle::framework::proto::VarType::FP64) {
ng_dtype = ngraph::element::f64;
} else if (data_type == paddle::framework::proto::VarType::INT64) {
ng_dtype = ngraph::element::i64;
} else if (data_type == paddle::framework::proto::VarType::INT32) {
ng_dtype = ngraph::element::i32;
} else if (data_type == paddle::framework::proto::VarType::BOOL) {
ng_dtype = ngraph::element::boolean;
} else {
PADDLE_THROW("unsupported data type: %s", data_type);
}
auto out = ngraph::op::Constant::create(ng_dtype, shape, {value});
paddle::platform::SetOutputNode(op, "Out", out, ngb_node_map);
}
} // namespace ngraphs
} // namespace operators
} // namespace paddle
#endif
/*Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_NGRAPH
#pragma once
#include <string>
#include "ngraph/ngraph.hpp"
#include "paddle/fluid/platform/ngraph_helper.h"
namespace paddle {
namespace operators {
namespace ngraphs {
void BuildTopKNode(
const std::shared_ptr<paddle::framework::OperatorBase>& op,
std::shared_ptr<
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
ngb_node_map) {
auto op_attrs = paddle::framework::AttrReader(op->Attrs());
int k = op_attrs.Get<int>("k");
auto input = paddle::platform::GetInputNode(op, "X", ngb_node_map);
auto top_k = std::make_shared<ngraph::op::TopK>(
input, input->get_shape().size() - 1, ngraph::element::i64, k);
std::shared_ptr<ngraph::Node> indices =
std::make_shared<ngraph::op::GetOutputElement>(top_k, 0);
std::shared_ptr<ngraph::Node> out =
std::make_shared<ngraph::op::GetOutputElement>(top_k, 1);
auto dummy_out = paddle::platform::GetOutputNode(op, "Out", ngb_node_map);
if (dummy_out && dummy_out->get_element_type() != out->get_element_type()) {
out = std::make_shared<ngraph::op::Convert>(out,
dummy_out->get_element_type());
}
paddle::platform::SetOutputNode(op, "Indices", indices, ngb_node_map);
paddle::platform::SetOutputNode(op, "Out", out, ngb_node_map);
}
} // namespace ngraphs
} // namespace operators
} // namespace paddle
#endif
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "mkldnn.hpp"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/quantize_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/mkldnn_reuse.h"
namespace paddle {
namespace operators {
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using platform::to_void_cast;
using Tensor = framework::Tensor;
using framework::DataLayout;
using mkldnn::stream;
using platform::GetMKLDNNFormat;
template <typename T>
class QuantOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* input = ctx.Input<Tensor>("Input");
auto scale_data = ctx.Attr<float>("Scale");
auto* output = ctx.Output<Tensor>("Output");
auto& dev_ctx =
ctx.template device_context<platform::MKLDNNDeviceContext>();
const auto& engine = dev_ctx.GetEngine();
std::vector<primitive> pipeline;
std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
const T* input_data = input->data<T>();
mkldnn::primitive_attr attri;
int mask = 0;
attri.set_output_scales(mask, {scale_data});
auto src_md = platform::MKLDNNMemDesc({src_tz}, memory::data_type::f32,
input->format());
auto src_pd = mkldnn::memory::primitive_desc(src_md, engine);
auto src_memory =
std::make_shared<mkldnn::memory>(src_pd, to_void_cast<T>(input_data));
std::shared_ptr<primitive::at> src_memory_p =
std::shared_ptr<primitive::at>(new primitive::at(*src_memory));
bool is_negative = ctx.Attr<bool>("is_negative_input");
std::shared_ptr<mkldnn::memory::primitive_desc> dst_pd;
std::shared_ptr<mkldnn::memory> dst_memory;
if (is_negative) {
platform::ConvMKLDNNHandler::SetDstMemory<int8_t>(
ctx, output, dst_tz, engine, dst_pd, dst_memory);
} else {
platform::ConvMKLDNNHandler::SetDstMemory<uint8_t>(
ctx, output, dst_tz, engine, dst_pd, dst_memory);
}
auto reorder_pd = std::shared_ptr<reorder::primitive_desc>(
new reorder::primitive_desc(src_pd, *dst_pd, attri));
auto reorder_p = std::shared_ptr<reorder>(
new reorder(*reorder_pd, *src_memory_p, *dst_memory));
pipeline.push_back(*reorder_p);
stream(stream::kind::eager).submit(pipeline).wait();
output->set_layout(DataLayout::kMKLDNN);
output->set_format(GetMKLDNNFormat(*dst_memory));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
// TODO(Xiaoli) Support FP32->S8 quantization.
REGISTER_OP_KERNEL(quantize, MKLDNN, ::paddle::platform::CPUPlace,
ops::QuantOpKernel<float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/operators/quantize_op.h"
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace paddle {
namespace operators {
framework::OpKernelType QuantOp::GetExpectedKernelType(
const framework::ExecutionContext& ctx) const {
framework::LibraryType library_ = framework::LibraryType::kMKLDNN;
framework::DataLayout layout_ = framework::DataLayout::kMKLDNN;
return framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
ctx.GetPlace(), layout_, library_);
}
void QuantOpMaker::Make() {
AddInput("Input", "input data");
AddOutput("Output", "output data");
AddAttr<bool>("is_negative_input",
"(bool, default false) Only used in mkldnn INT8 kernel")
.SetDefault(false);
AddAttr<float>("Scale", "scale data").SetDefault({1.0f});
AddComment(R"DOC(This op will quantize data from FP32 to INT8)DOC");
}
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(quantize, ops::QuantOp, ops::QuantOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
using framework::OpKernelType;
using framework::Tensor;
class QuantOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
ctx->SetOutputDim("Output", ctx->GetInputDim("Input"));
ctx->ShareLoD("Input", /*->*/ "Output");
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override;
};
class QuantOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override;
};
} // namespace operators
} // namespace paddle
...@@ -15,6 +15,7 @@ limitations under the License. */ ...@@ -15,6 +15,7 @@ limitations under the License. */
#include <string> #include <string>
#include <vector> #include <vector>
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/operator.h" #include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/mkldnn_helper.h" #include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/place.h" #include "paddle/fluid/platform/place.h"
...@@ -181,6 +182,21 @@ class MKLDNNHandler { ...@@ -181,6 +182,21 @@ class MKLDNNHandler {
return dims2str(operand_dims) + suffix; return dims2str(operand_dims) + suffix;
} }
template <typename M>
static void SetDstMemory(
const framework::ExecutionContext& ctx, framework::Tensor* output,
std::vector<int> dst_tz, const mkldnn::engine& engine,
std::shared_ptr<mkldnn::memory::primitive_desc>& dst_pd, // NOLINT
std::shared_ptr<mkldnn::memory>& dst_memory) { // NOLINT
M* output_data = output->mutable_data<M>(ctx.GetPlace());
auto dst_md = platform::MKLDNNMemDesc(
{dst_tz}, paddle::framework::ToMKLDNNDataType(
framework::DataTypeTrait<M>::DataType),
mkldnn::memory::format::nhwc);
dst_pd.reset(new mkldnn::memory::primitive_desc(dst_md, engine));
dst_memory.reset(new mkldnn::memory(*dst_pd, to_void_cast<M>(output_data)));
}
protected: protected:
static std::string dims2str(const mkldnn::memory::dims& operand_dims) { static std::string dims2str(const mkldnn::memory::dims& operand_dims) {
std::string dstr = ""; std::string dstr = "";
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
from paddle.fluid.tests.unittests.test_fill_constant_op import TestFillConstantOp1, TestFillConstantOp2, TestFillConstantOpWithSelectedRows
class TestNGRAPHFillConstantOp1(TestFillConstantOp1):
def setUp(self):
super(TestNGRAPHFillConstantOp1, self).setUp()
class TestNGRAPHFillConstantOp2(TestFillConstantOp2):
def setUp(self):
super(TestNGRAPHFillConstantOp2, self).setUp()
class TestNGRAPHFillConstantOpWithSelectedRows(
TestFillConstantOpWithSelectedRows):
def setUp(self):
super(TestFillConstantOpWithSelectedRows, self).setUp()
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
from paddle.fluid.tests.unittests.test_top_k_op import TestTopkOp, TestTopkOp3d, TestTopkOp2, TestTopkOp3, TestTopkOp4
class TestNGRAPHTopkOp(TestTopkOp):
def setUp(self):
super(TestNGRAPHTopkOp, self).setUp()
class TestNGRAPHTopkOp2(TestTopkOp2):
def setUp(self):
super(TestNGRAPHTopkOp2, self).setUp()
class TestNGRAPHTopkOp3(TestTopkOp3):
def setUp(self):
super(TestNGRAPHTopkOp3, self).setUp()
class TestNGRAPHTopkOp4(TestTopkOp4):
def setUp(self):
super(TestNGRAPHTopkOp4, self).setUp()
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
class TestDeQuantizeOp(OpTest):
def setUp(self):
self.op_type = 'dequantize'
self.scale = 2.0
self.input_size = [1, 1, 5, 5] #Naive nChw16c
self.data_type = 'int8'
self.set_scale()
self.set_data_type()
if self.data_type == 'int8':
input = (np.random.randint(0, 100, self.input_size) - 50
).astype(self.data_type)
output = (input * (1 / self.scale)).astype('float')
else:
input = (np.random.randint(0, 100,
self.input_size)).astype(self.data_type)
output = (input * (1 / self.scale)).astype('float')
self.inputs = {'Input': OpTest.np_dtype_to_fluid_dtype(input)}
self.outputs = {'Output': output}
self.attrs = {'Scale': self.scale, }
def test_check_output(self):
self.check_output()
def set_scale(self):
pass
def set_data_type(OpTest):
pass
class TestDeQuantizeOp1(TestDeQuantizeOp):
def set_scale(self):
self.scale = 1.5
def set_data_type(self):
self.data_type = 'int8'
class TestDeQuantizeOp2(TestDeQuantizeOp):
def set_scale(self):
self.scale = 0.8
def set_data_type(self):
self.data_type = 'uint8'
if __name__ == '__main__':
unittest.main()
...@@ -1018,9 +1018,8 @@ class TestBook(unittest.TestCase): ...@@ -1018,9 +1018,8 @@ class TestBook(unittest.TestCase):
def test_shuffle_channel(self): def test_shuffle_channel(self):
program = Program() program = Program()
with program_guard(program): with program_guard(program):
x = layers.data(name="x", shape=[1, 4, 2, 2], dtype="float32") x = layers.data(name="x", shape=[10, 16, 4, 4], dtype="float32")
group = layers.data(name="group", shape=[1], dtype="int32") out = layers.shuffle_channel(x, group=2)
out = layers.shuffle_channel(x, group)
self.assertIsNotNone(out) self.assertIsNotNone(out)
print(str(program)) print(str(program))
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
class TestQuantizeOp(OpTest):
def setUp(self):
self.op_type = 'quantize'
self.scale = 2.0
self.input_size = [1, 1, 5, 5] #Naive nChw16c
self.is_negative = False
self.set_scale()
self.set_is_negative()
if self.is_negative:
input = (100 * np.random.random_sample(self.input_size) - 50
).astype('float32')
output = np.round(input * self.scale).astype('int8')
else:
input = (100 *
np.random.random_sample(self.input_size)).astype('float32')
output = np.round(input * self.scale).astype('uint8')
self.inputs = {'Input': OpTest.np_dtype_to_fluid_dtype(input)}
self.outputs = {'Output': output}
self.attrs = {
'Scale': self.scale,
'is_negative_input': self.is_negative
}
def test_check_output(self):
self.check_output()
def set_scale(self):
pass
def set_is_negative(self):
pass
class TestQuantizeOp1(TestQuantizeOp):
def set_scale(self):
self.scale = 1.5
def set_is_negative(self):
self.is_nagative = True
class TestQuantizeOp2(TestQuantizeOp):
def set_scale(self):
self.scale = 0.1
def set_is_negative(self):
self.is_nagative = False
if __name__ == '__main__':
unittest.main()
...@@ -25,11 +25,11 @@ import paddle.fluid.core as core ...@@ -25,11 +25,11 @@ import paddle.fluid.core as core
class TestShuffleChannelOp(OpTest): class TestShuffleChannelOp(OpTest):
def setUp(self): def setUp(self):
self.op_type = "shuffle_channel" self.op_type = "shuffle_channel"
self.batch_size = 1 self.batch_size = 10
self.input_channels = 4 self.input_channels = 16
self.layer_h = 2 self.layer_h = 4
self.layer_w = 2 self.layer_w = 4
self.group = 2 self.group = 4
self.x = np.random.random( self.x = np.random.random(
(self.batch_size, self.input_channels, self.layer_h, (self.batch_size, self.input_channels, self.layer_h,
self.layer_w)).astype('float32') self.layer_w)).astype('float32')
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册