Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
0865b5a9
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0865b5a9
编写于
8月 20, 2019
作者:
D
danleifeng
提交者:
gongweibao
8月 20, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
distribute launch : add use_paddlecloud argument (#19273)
distribute launch : add use_paddlecloud argument
上级
76c95af0
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
59 addition
and
28 deletion
+59
-28
python/paddle/distributed/launch.py
python/paddle/distributed/launch.py
+39
-13
python/paddle/fluid/tests/unittests/multi_process.py
python/paddle/fluid/tests/unittests/multi_process.py
+3
-3
python/paddle/fluid/tests/unittests/test_launch.sh
python/paddle/fluid/tests/unittests/test_launch.sh
+17
-12
未找到文件。
python/paddle/distributed/launch.py
浏览文件 @
0865b5a9
...
@@ -14,11 +14,9 @@
...
@@ -14,11 +14,9 @@
"""
"""
paddle.distributed.launch is a module that spawns multiple distributed
paddle.distributed.launch is a module that spawns multiple distributed
process on each trainning node for gpu trainning.
process on each trainning node for gpu trainning.
Usage:
Usage:
In both of single node training or multiple node training, this module
In both of single node training or multiple node training, this module
launch a process on each of the given gpu card.
launch a process on each of the given gpu card.
1. for single node trainning with all visible gpu cards:
1. for single node trainning with all visible gpu cards:
python -m paddle.distributed.launch
\
python -m paddle.distributed.launch
\
your_training_py (arg1 arg2 and all others)
your_training_py (arg1 arg2 and all others)
...
@@ -26,13 +24,11 @@ launch a process on each of the given gpu card.
...
@@ -26,13 +24,11 @@ launch a process on each of the given gpu card.
2. for single node trainning with [0,4) cards
2. for single node trainning with [0,4) cards
python -m paddle.distributed.launch --selected_gpus="0,1,2,3"
\
python -m paddle.distributed.launch --selected_gpus="0,1,2,3"
\
your_training_py (arg1 arg2 and all others)
your_training_py (arg1 arg2 and all others)
3. for mulitple node training such as two node:192.168.0.16, 192.168.0.17
3. for mulitple node training such as two node:192.168.0.16, 192.168.0.17
on 192.168.0.16:
on 192.168.0.16:
python -m paddle.distributed.launch --cluster_node_ips="192.168.0.16,192.168.0.17"
\
python -m paddle.distributed.launch --cluster_node_ips="192.168.0.16,192.168.0.17"
\
--node_ip=192.168.0.16
\
--node_ip=192.168.0.16
\
your_training_py (arg1 arg2 and all others)
your_training_py (arg1 arg2 and all others)
on 192.168.0.17:
on 192.168.0.17:
python -m paddle.distributed.launch --cluster_node_ips="192.168.0.16,192.168.0.17"
\
python -m paddle.distributed.launch --cluster_node_ips="192.168.0.16,192.168.0.17"
\
--node_ip=192.168.0.17
\
--node_ip=192.168.0.17
\
...
@@ -44,6 +40,7 @@ import sys
...
@@ -44,6 +40,7 @@ import sys
from
sys
import
version
from
sys
import
version
import
subprocess
import
subprocess
import
os
import
os
import
warnings
import
six
import
six
import
copy
import
copy
from
argparse
import
ArgumentParser
,
REMAINDER
from
argparse
import
ArgumentParser
,
REMAINDER
...
@@ -76,19 +73,22 @@ PADDLE_TRAINER_ENDPOINTS
...
@@ -76,19 +73,22 @@ PADDLE_TRAINER_ENDPOINTS
POD_IP (current node ip address, not needed for local training)
POD_IP (current node ip address, not needed for local training)
'''
)
'''
)
#
Optional arguments for the launch helper
#Optional arguments for the launch helper
parser
.
add_argument
(
parser
.
add_argument
(
"--cluster_node_ips"
,
"--cluster_node_ips"
,
type
=
str
,
type
=
str
,
default
=
"127.0.0.1"
,
default
=
"127.0.0.1"
,
help
=
"Paddle cluster nodes ips, such as 192.168.0.16,192.168.0.17.."
)
help
=
"Paddle cluster nodes ips, such as 192.168.0.16,192.168.0.17.."
)
parser
.
add_argument
(
parser
.
add_argument
(
"--node_ip"
,
"--node_ip"
,
type
=
str
,
type
=
str
,
default
=
"127.0.0.1"
,
default
=
"127.0.0.1"
,
help
=
"The current node ip. "
)
help
=
"The current node ip. "
)
parser
.
add_argument
(
"--use_paddlecloud"
,
type
=
bool
,
default
=
"False"
,
help
=
"wheter to use paddlecloud platform to run your multi-process job."
)
parser
.
add_argument
(
parser
.
add_argument
(
"--started_port"
,
"--started_port"
,
type
=
int
,
type
=
int
,
...
@@ -115,7 +115,7 @@ POD_IP (current node ip address, not needed for local training)
...
@@ -115,7 +115,7 @@ POD_IP (current node ip address, not needed for local training)
help
=
"The path for each process's log.If it's not setted, the log will printed to default pipe."
help
=
"The path for each process's log.If it's not setted, the log will printed to default pipe."
)
)
#
positional
#positional
parser
.
add_argument
(
parser
.
add_argument
(
"training_script"
,
"training_script"
,
type
=
str
,
type
=
str
,
...
@@ -124,7 +124,7 @@ POD_IP (current node ip address, not needed for local training)
...
@@ -124,7 +124,7 @@ POD_IP (current node ip address, not needed for local training)
"followed by all the arguments for the "
"followed by all the arguments for the "
"training script"
)
"training script"
)
#
rest from the training program
#rest from the training program
parser
.
add_argument
(
'training_script_args'
,
nargs
=
REMAINDER
)
parser
.
add_argument
(
'training_script_args'
,
nargs
=
REMAINDER
)
return
parser
.
parse_args
()
return
parser
.
parse_args
()
...
@@ -140,6 +140,32 @@ def start_procs(args):
...
@@ -140,6 +140,32 @@ def start_procs(args):
current_node_ip
=
args
.
node_ip
current_node_ip
=
args
.
node_ip
node_ips
=
[
x
.
strip
()
for
x
in
args
.
cluster_node_ips
.
split
(
','
)]
node_ips
=
[
x
.
strip
()
for
x
in
args
.
cluster_node_ips
.
split
(
','
)]
node_id
=
node_ips
.
index
(
current_node_ip
)
node_id
=
node_ips
.
index
(
current_node_ip
)
if
args
.
use_paddlecloud
:
trainer_nums
=
int
(
os
.
getenv
(
"PADDLE_TRAINERS_NUM"
,
"1"
))
if
trainer_nums
!=
1
:
#you can automatically get ip info while using paddlecloud multi nodes mode.
current_node_ip
=
os
.
getenv
(
"POD_IP"
)
assert
current_node_ip
is
not
None
,
"POD_IP should not be None"
node_ips
=
os
.
getenv
(
"PADDLE_TRAINERS"
)
assert
node_ips
is
not
None
,
"PADDLE_TRAINERS should not be None"
node_ips
=
node_ips
.
split
(
","
)
node_id
=
os
.
getenv
(
"PADDLE_TRAINER_ID"
)
assert
node_id
is
not
None
,
"PADDLE_TRAINER_ID should not be None"
node_id
=
int
(
node_id
)
if
args
.
node_ip
!=
"127.0.0.1"
and
current_node_ip
!=
args
.
node_ip
:
warnings
.
warn
(
"Please NOTE: When using paddlecloud, current_node_ip is
\
automatically got from POD_IP. Your input node_ip: {} doesn't equals to
\
current_node_ip: {} from paddlecloud environment."
.
format
(
args
.
node_ip
,
current_node_ip
))
if
args
.
cluster_node_ips
!=
"127.0.0.1"
and
args
.
cluster_node_ips
!=
","
.
join
(
node_ips
):
warnings
.
warn
(
"Please NOTE: When using paddlecloud, cluster_node_ips is
\
automatically got from PADDLE_TRAINERS(multi nodes) or POD_IP(single node).
\
Your input cluster_node_ips: {} doesn't equals to IPs: {} from
\
paddlecloud environment."
.
format
(
args
.
cluster_node_ips
,
node_ips
))
num_nodes
=
len
(
node_ips
)
num_nodes
=
len
(
node_ips
)
if
args
.
selected_gpus
is
None
:
if
args
.
selected_gpus
is
None
:
...
@@ -164,10 +190,10 @@ def start_procs(args):
...
@@ -164,10 +190,10 @@ def start_procs(args):
", node_ips:"
,
node_ips
,
", nranks:"
,
nranks
)
", node_ips:"
,
node_ips
,
", nranks:"
,
nranks
)
current_env
=
copy
.
copy
(
default_env
)
current_env
=
copy
.
copy
(
default_env
)
#
paddle broadcast ncclUniqueId use socket, and
#paddle broadcast ncclUniqueId use socket, and
#
proxy maybe make trainers unreachable, so delete them.
#proxy maybe make trainers unreachable, so delete them.
#
if we set them to "", grpc will log error message "bad uri"
#if we set them to "", grpc will log error message "bad uri"
#
so just delete them.
#so just delete them.
current_env
.
pop
(
"http_proxy"
,
None
)
current_env
.
pop
(
"http_proxy"
,
None
)
current_env
.
pop
(
"https_proxy"
,
None
)
current_env
.
pop
(
"https_proxy"
,
None
)
...
...
python/paddle/fluid/tests/unittests/multi_process.py
浏览文件 @
0865b5a9
...
@@ -20,14 +20,14 @@ def train():
...
@@ -20,14 +20,14 @@ def train():
trainer_id
=
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
))
trainer_id
=
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
))
worker_endpoints_env
=
os
.
getenv
(
"PADDLE_TRAINER_ENDPOINTS"
)
worker_endpoints_env
=
os
.
getenv
(
"PADDLE_TRAINER_ENDPOINTS"
)
current_endpoint
=
os
.
getenv
(
"PADDLE_CURRENT_ENDPOINT"
)
current_endpoint
=
os
.
getenv
(
"PADDLE_CURRENT_ENDPOINT"
)
worker_endpoints
=
worker_endpoints_env
.
split
(
","
)
worker_endpoints
=
worker_endpoints_env
trainers_num
=
len
(
worker_endpoints
)
trainers_num
=
len
(
worker_endpoints
.
split
(
','
)
)
name
=
"selected_gpus:{} worker_endpoints:{} trainers_num:{} current_endpoint:{} trainer_id:{}"
\
name
=
"selected_gpus:{} worker_endpoints:{} trainers_num:{} current_endpoint:{} trainer_id:{}"
\
.
format
(
selected_gpus
,
worker_endpoints
,
trainers_num
,
current_endpoint
,
trainer_id
)
.
format
(
selected_gpus
,
worker_endpoints
,
trainers_num
,
current_endpoint
,
trainer_id
)
print
(
name
)
print
(
name
)
with
open
(
"multi_process.check
.log"
,
"w"
)
as
f
:
with
open
(
"multi_process.check
_{}.log"
.
format
(
trainer_id
)
,
"w"
)
as
f
:
f
.
write
(
name
)
f
.
write
(
name
)
...
...
python/paddle/fluid/tests/unittests/test_launch.sh
浏览文件 @
0865b5a9
#!/bin/bash
#!/bin/bash
set
-e
set
-ex
# use default values
# use default values
python
-m
paddle.distributed.launch multi_process.py
python
-m
paddle.distributed.launch multi_process.py
# use specified values
# use paddlecloud
cluster_node_ips
=
"127.0.0.1"
cluster_node_ips
=
"10.0.0.1"
node_ip
=
"127.0.0.1"
node_ip
=
"10.0.0.1"
export
PADDLE_TRAINERS_NUM
=
2
export
POD_IP
=
127.0.0.1
export
PADDLE_TRAINERS
=
127.0.0.1,127.0.0.2
export
PADDLE_TRAINER_ID
=
0
distributed_args
=
"--cluster_node_ips
${
cluster_node_ips
}
--node_ip
${
node_ip
}
--selected_gpus=0,1 --log_dir testlog"
distributed_args
=
"--
use_paddlecloud True --
cluster_node_ips
${
cluster_node_ips
}
--node_ip
${
node_ip
}
--selected_gpus=0,1 --log_dir testlog"
python
-m
paddle.distributed.launch
${
distributed_args
}
multi_process.py
python
-m
paddle.distributed.launch
${
distributed_args
}
multi_process.py
str1
=
"selected_gpus:0 worker_endpoints:['127.0.0.1:6170', '127.0.0.1:6171'] trainers_num:2 current_endpoint:127.0.0.1:6170 trainer_id:0"
str1
=
"selected_gpus:0 worker_endpoints:127.0.0.1:6170,127.0.0.1:6171,127.0.0.2:6170,127.0.0.2:6171 trainers_num:4 current_endpoint:127.0.0.1:6170 trainer_id:0"
str2
=
"selected_gpus:1 worker_endpoints:['127.0.0.1:6170', '127.0.0.1:6171'] trainers_num:2 current_endpoint:127.0.0.1:6171 trainer_id:1"
str2
=
"selected_gpus:1 worker_endpoints:127.0.0.1:6170,127.0.0.1:6171,127.0.0.2:6170,127.0.0.2:6171 trainers_num:4 current_endpoint:127.0.0.1:6171 trainer_id:1"
file
=
"multi_process.check.log"
file_0
=
"multi_process.check_0.log"
file_1
=
"multi_process.check_1.log"
if
!
grep
-q
"
$str1
"
"
$file
"
;
then
echo
"paddlecloud params test"
if
grep
-q
"
$str1
"
"
$file_0
"
;
then
echo
"find trainer 0"
echo
"find trainer 0"
else
else
echo
"not find trainer 0"
echo
"not find trainer 0"
exit
-1
exit
-1
fi
fi
if
!
grep
-q
"
$str2
"
"
$file
"
;
then
if
grep
-q
"
$str2
"
"
$file_1
"
;
then
echo
"find trainer 1"
echo
"find trainer 1"
else
else
echo
"not find trainer
0
"
echo
"not find trainer
1
"
exit
-1
exit
-1
fi
fi
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录