Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
078a6782
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
078a6782
编写于
9月 11, 2019
作者:
Z
Zeng Jinle
提交者:
GitHub
9月 11, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine math_op_patch, test=develop (#19727)
上级
e506c99c
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
119 addition
and
70 deletion
+119
-70
paddle/fluid/operators/scale_op.cc
paddle/fluid/operators/scale_op.cc
+3
-0
paddle/fluid/operators/scale_op.cu
paddle/fluid/operators/scale_op.cu
+5
-0
python/paddle/fluid/layers/math_op_patch.py
python/paddle/fluid/layers/math_op_patch.py
+90
-37
python/paddle/fluid/tests/unittests/test_optimizer.py
python/paddle/fluid/tests/unittests/test_optimizer.py
+21
-33
未找到文件。
paddle/fluid/operators/scale_op.cc
浏览文件 @
078a6782
...
...
@@ -108,5 +108,8 @@ REGISTER_OPERATOR(scale, ops::ScaleOp, ops::ScaleOpMaker, ops::ScaleGradMaker,
REGISTER_OP_CPU_KERNEL
(
scale
,
ops
::
ScaleKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
ScaleKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
ScaleKernel
<
paddle
::
platform
::
CPUDeviceContext
,
uint8_t
>
,
ops
::
ScaleKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int8_t
>
,
ops
::
ScaleKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int16_t
>
,
ops
::
ScaleKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
ScaleKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
);
paddle/fluid/operators/scale_op.cu
浏览文件 @
078a6782
...
...
@@ -20,6 +20,11 @@ REGISTER_OP_CUDA_KERNEL(
scale
,
paddle
::
operators
::
ScaleKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
paddle
::
operators
::
ScaleKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
paddle
::
operators
::
ScaleKernel
<
paddle
::
platform
::
CUDADeviceContext
,
uint8_t
>
,
paddle
::
operators
::
ScaleKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int8_t
>
,
paddle
::
operators
::
ScaleKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int16_t
>
,
paddle
::
operators
::
ScaleKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
paddle
::
operators
::
ScaleKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
,
...
...
python/paddle/fluid/layers/math_op_patch.py
浏览文件 @
078a6782
...
...
@@ -14,10 +14,19 @@
from
__future__
import
print_function
from
..
import
core
from
..framework
import
Variable
,
unique_name
from
.layer_function_generator
import
OpProtoHolder
from
..initializer
import
force_init_on_cpu
_supported_int_dtype_
=
[
core
.
VarDesc
.
VarType
.
UINT8
,
core
.
VarDesc
.
VarType
.
INT8
,
core
.
VarDesc
.
VarType
.
INT16
,
core
.
VarDesc
.
VarType
.
INT32
,
core
.
VarDesc
.
VarType
.
INT64
,
]
def
monkey_patch_variable
():
def
unique_tmp_name
():
...
...
@@ -30,10 +39,16 @@ def monkey_patch_variable():
raise
ValueError
(
"Cannot get data type from %s"
,
var
.
name
)
return
dtype
def
current_block
(
var
):
return
var
.
block
.
program
.
current_block
()
def
create_new_tmp_var
(
block
,
dtype
):
tmp_name
=
unique_tmp_name
()
return
block
.
create_var
(
name
=
tmp_name
,
dtype
=
dtype
)
def
create_tensor
(
block
,
value
,
dtype
,
shape
):
value
=
float
(
value
)
tmp_name
=
unique_tmp_name
()
var
=
block
.
create_var
(
name
=
tmp_name
,
shape
=
shape
,
dtype
=
dtype
)
var
=
create_new_tmp_var
(
block
,
dtype
)
block
.
append_op
(
type
=
"fill_constant"
,
outputs
=
{
'Out'
:
[
var
]},
...
...
@@ -53,15 +68,15 @@ def monkey_patch_variable():
def
create_tensor_with_batchsize
(
ref_var
,
value
,
dtype
):
assert
isinstance
(
ref_var
,
Variable
)
value
=
float
(
value
)
tmp_name
=
unique_tmp_name
(
)
var
=
ref_var
.
block
.
create_var
(
name
=
tmp_name
,
dtype
=
dtype
)
block
=
current_block
(
ref_var
)
var
=
create_new_tmp_var
(
block
,
dtype
)
batch_dim
=
-
1
for
i
,
d
in
enumerate
(
ref_var
.
shape
):
if
d
<
0
:
batch_dim
=
i
break
assert
batch_dim
!=
-
1
ref_var
.
block
.
append_op
(
block
.
append_op
(
type
=
'fill_constant_batch_size_like'
,
outputs
=
{
'Out'
:
[
var
]},
inputs
=
{
'Input'
:
[
ref_var
]},
...
...
@@ -87,9 +102,9 @@ def monkey_patch_variable():
Returns:
Variable with new dtype
"""
tmp_name
=
unique_tmp_name
(
)
out
=
self
.
block
.
create_var
(
name
=
tmp_name
,
dtype
=
dtype
)
self
.
block
.
append_op
(
block
=
current_block
(
self
)
out
=
create_new_tmp_var
(
block
,
dtype
)
block
.
append_op
(
type
=
"cast"
,
inputs
=
{
"X"
:
[
self
]},
outputs
=
{
"Out"
:
[
out
]},
...
...
@@ -97,8 +112,46 @@ def monkey_patch_variable():
"out_dtype"
:
out
.
dtype
})
return
out
def
_elemwise_method_creator_
(
method_name
,
op_type
,
reverse
=
False
):
def
_scalar_elementwise_op_
(
var
,
scale
,
bias
):
block
=
current_block
(
var
)
out
=
create_new_tmp_var
(
block
,
var
.
dtype
)
block
.
append_op
(
type
=
"scale"
,
inputs
=
{
"X"
:
[
var
]},
outputs
=
{
"Out"
:
[
out
]},
attrs
=
{
"scale"
:
scale
,
"bias"
:
bias
})
return
out
def
_scalar_elementwise_add_
(
var
,
value
):
return
_scalar_elementwise_op_
(
var
,
1.0
,
value
)
def
_scalar_elementwise_sub_
(
var
,
value
):
return
_scalar_elementwise_op_
(
var
,
1.0
,
-
value
)
def
_scalar_elementwise_rsub_
(
var
,
value
):
return
_scalar_elementwise_op_
(
var
,
-
1.0
,
value
)
def
_scalar_elementwise_mul_
(
var
,
value
):
return
_scalar_elementwise_op_
(
var
,
value
,
0.0
)
def
_scalar_elementwise_div_
(
var
,
value
):
return
_scalar_elementwise_op_
(
var
,
1.0
/
value
,
0.0
)
def
_elemwise_method_creator_
(
method_name
,
op_type
,
reverse
=
False
,
scalar_method
=
None
):
def
__impl__
(
self
,
other_var
):
if
scalar_method
is
not
None
:
if
isinstance
(
other_var
,
float
):
if
self
.
dtype
in
_supported_int_dtype_
:
assert
other_var
==
int
(
other_var
),
\
"float value {} cannot convert to integer"
.
format
(
other_var
)
return
scalar_method
(
self
,
other_var
)
elif
isinstance
(
other_var
,
int
):
return
scalar_method
(
self
,
float
(
other_var
))
lhs_dtype
=
safe_get_dtype
(
self
)
if
not
isinstance
(
other_var
,
Variable
):
...
...
@@ -110,7 +163,7 @@ def monkey_patch_variable():
break
if
not
has_batch_size
:
other_var
=
create_tensor
(
self
.
block
,
current_block
(
self
)
,
other_var
,
dtype
=
lhs_dtype
,
shape
=
self
.
shape
)
...
...
@@ -118,9 +171,9 @@ def monkey_patch_variable():
other_var
=
create_tensor_with_batchsize
(
self
,
other_var
,
lhs_dtype
)
else
:
# add fill_op to
self.
block
# add fill_op to
current_
block
other_var
=
create_scalar
(
self
.
block
,
value
=
other_var
,
dtype
=
lhs_dtype
)
current_block
(
self
)
,
value
=
other_var
,
dtype
=
lhs_dtype
)
rhs_dtype
=
safe_get_dtype
(
other_var
)
if
lhs_dtype
!=
rhs_dtype
:
...
...
@@ -130,8 +183,7 @@ def monkey_patch_variable():
self
=
other_var
other_var
=
tmp
tmp_name
=
unique_tmp_name
()
out
=
self
.
block
.
create_var
(
name
=
tmp_name
,
dtype
=
lhs_dtype
)
out
=
create_new_tmp_var
(
current_block
(
self
),
dtype
=
lhs_dtype
)
axis
=
-
1
if
other_var
.
shape
[
0
]
==
-
1
:
...
...
@@ -141,7 +193,7 @@ def monkey_patch_variable():
"be smaller than the rank of its second argument: %s vs %s"
%
(
len
(
self
.
shape
),
len
(
other_var
.
shape
)))
self
.
block
.
append_op
(
current_block
(
self
)
.
append_op
(
type
=
op_type
,
inputs
=
{
'X'
:
[
self
],
'Y'
:
[
other_var
]},
...
...
@@ -164,31 +216,32 @@ def monkey_patch_variable():
return
__impl__
# inject methods
for
method_name
,
op_type
,
reverse
in
(
(
"__add__"
,
"elementwise_add"
,
False
),
for
method_name
,
op_type
,
reverse
,
scalar_method
in
(
(
"__add__"
,
"elementwise_add"
,
False
,
_scalar_elementwise_add_
),
# a+b == b+a. Do not need to reverse explicitly
(
"__radd__"
,
"elementwise_add"
,
False
),
(
"__sub__"
,
"elementwise_sub"
,
False
),
(
"__rsub__"
,
"elementwise_sub"
,
True
),
(
"__mul__"
,
"elementwise_mul"
,
False
),
(
"__radd__"
,
"elementwise_add"
,
False
,
_scalar_elementwise_add_
),
(
"__sub__"
,
"elementwise_sub"
,
False
,
_scalar_elementwise_sub_
),
(
"__rsub__"
,
"elementwise_sub"
,
True
,
_scalar_elementwise_rsub_
),
(
"__mul__"
,
"elementwise_mul"
,
False
,
_scalar_elementwise_mul_
),
# a*b == b*a. Do not need to reverse explicitly
(
"__rmul__"
,
"elementwise_mul"
,
False
),
(
"__div__"
,
"elementwise_div"
,
False
),
(
"__truediv__"
,
"elementwise_div"
,
False
),
(
"__rdiv__"
,
"elementwise_div"
,
True
),
(
"__rtruediv__"
,
"elementwise_div"
,
True
),
(
"__pow__"
,
"elementwise_pow"
,
False
),
(
"__rpow__"
,
"elementwise_pow"
,
True
),
(
"__floordiv__"
,
"elementwise_floordiv"
,
False
),
(
"__mod__"
,
"elementwise_mod"
,
False
),
(
"__rmul__"
,
"elementwise_mul"
,
False
,
_scalar_elementwise_mul_
),
(
"__div__"
,
"elementwise_div"
,
False
,
_scalar_elementwise_div_
),
(
"__truediv__"
,
"elementwise_div"
,
False
,
_scalar_elementwise_div_
),
(
"__rdiv__"
,
"elementwise_div"
,
True
,
None
),
(
"__rtruediv__"
,
"elementwise_div"
,
True
,
None
),
(
"__pow__"
,
"elementwise_pow"
,
False
,
None
),
(
"__rpow__"
,
"elementwise_pow"
,
True
,
None
),
(
"__floordiv__"
,
"elementwise_floordiv"
,
False
,
None
),
(
"__mod__"
,
"elementwise_mod"
,
False
,
None
),
# for logical compare
(
"__eq__"
,
"equal"
,
False
),
(
"__ne__"
,
"not_equal"
,
False
),
(
"__lt__"
,
"less_than"
,
False
),
(
"__le__"
,
"less_equal"
,
False
),
(
"__gt__"
,
"greater_than"
,
False
),
(
"__ge__"
,
"greater_equal"
,
False
)):
(
"__eq__"
,
"equal"
,
False
,
None
),
(
"__ne__"
,
"not_equal"
,
False
,
None
),
(
"__lt__"
,
"less_than"
,
False
,
None
),
(
"__le__"
,
"less_equal"
,
False
,
None
),
(
"__gt__"
,
"greater_than"
,
False
,
None
),
(
"__ge__"
,
"greater_equal"
,
False
,
None
)):
setattr
(
Variable
,
method_name
,
_elemwise_method_creator_
(
method_name
,
op_type
,
reverse
))
_elemwise_method_creator_
(
method_name
,
op_type
,
reverse
,
scalar_method
))
Variable
.
astype
=
astype
python/paddle/fluid/tests/unittests/test_optimizer.py
浏览文件 @
078a6782
...
...
@@ -52,9 +52,8 @@ class TestOptimizer(unittest.TestCase):
return
opts
opts
=
check_sgd_optimizer
({
'learning_rate'
:
1.1
})
self
.
assertEqual
(
len
(
opts
),
3
)
self
.
assertEqual
([
op
.
type
for
op
in
opts
],
[
"fill_constant"
,
"elementwise_mul"
,
"sgd"
])
self
.
assertEqual
(
len
(
opts
),
2
)
self
.
assertEqual
([
op
.
type
for
op
in
opts
],
[
"scale"
,
"sgd"
])
opts
=
check_sgd_optimizer
({
'learning_rate'
:
1.0
})
self
.
assertEqual
(
len
(
opts
),
1
)
...
...
@@ -94,9 +93,8 @@ class TestOptimizerBackwardApplygrad(unittest.TestCase):
return
opts
opts
=
check_sgd_optimizer
({
'learning_rate'
:
1.1
})
self
.
assertEqual
(
len
(
opts
),
3
)
self
.
assertEqual
([
op
.
type
for
op
in
opts
],
[
"fill_constant"
,
"elementwise_mul"
,
"sgd"
])
self
.
assertEqual
(
len
(
opts
),
2
)
self
.
assertEqual
([
op
.
type
for
op
in
opts
],
[
"scale"
,
"sgd"
])
opts
=
check_sgd_optimizer
({
'learning_rate'
:
1.0
})
self
.
assertEqual
(
len
(
opts
),
1
)
...
...
@@ -143,10 +141,9 @@ class TestMomentumOptimizer(unittest.TestCase):
self
.
assertEqual
(
len
(
momentum_optimizer
.
get_accumulators
()),
0
)
with
framework
.
program_guard
(
program
,
init_program
):
opts
=
momentum_optimizer
.
apply_gradients
(
params_grads
)
self
.
assertEqual
(
len
(
opts
),
3
)
self
.
assertEqual
(
len
(
opts
),
2
)
sgd_op
=
opts
[
-
1
]
self
.
assertEqual
([
op
.
type
for
op
in
opts
],
[
"fill_constant"
,
"elementwise_mul"
,
"momentum"
])
self
.
assertEqual
([
op
.
type
for
op
in
opts
],
[
"scale"
,
"momentum"
])
self
.
assertFalse
(
sgd_op
.
attr
(
'use_nesterov'
))
# Check accumulators
...
...
@@ -197,10 +194,9 @@ class TestMomentumOptimizer(unittest.TestCase):
self
.
assertEqual
(
len
(
momentum_optimizer
.
get_accumulators
()),
0
)
with
framework
.
program_guard
(
program
,
init_program
):
opts
=
momentum_optimizer
.
apply_gradients
(
params_grads
)
self
.
assertEqual
(
len
(
opts
),
3
)
self
.
assertEqual
(
len
(
opts
),
2
)
sgd_op
=
opts
[
-
1
]
self
.
assertEqual
([
op
.
type
for
op
in
opts
],
[
"fill_constant"
,
"elementwise_mul"
,
"momentum"
])
self
.
assertEqual
([
op
.
type
for
op
in
opts
],
[
"scale"
,
"momentum"
])
self
.
assertTrue
(
sgd_op
.
attr
(
'use_nesterov'
))
# Check accumulators
...
...
@@ -260,9 +256,8 @@ class TestAdagradOptimizer(unittest.TestCase):
self
.
assertEqual
(
len
(
adagrad_optimizer
.
get_accumulators
()),
0
)
with
framework
.
program_guard
(
program
,
init_program
):
opts
=
adagrad_optimizer
.
apply_gradients
(
params_grads
)
self
.
assertEqual
(
len
(
opts
),
3
)
self
.
assertEqual
([
op
.
type
for
op
in
opts
],
[
"fill_constant"
,
"elementwise_mul"
,
"adagrad"
])
self
.
assertEqual
(
len
(
opts
),
2
)
self
.
assertEqual
([
op
.
type
for
op
in
opts
],
[
"scale"
,
"adagrad"
])
# Check accumulators
accumulators
=
adagrad_optimizer
.
get_accumulators
()
...
...
@@ -324,10 +319,9 @@ class TestAdamOptimizer(unittest.TestCase):
self
.
assertEqual
(
len
(
adam_optimizer
.
get_accumulators
()),
0
)
with
framework
.
program_guard
(
program
,
init_program
):
opts
=
adam_optimizer
.
apply_gradients
(
params_grads
)
self
.
assertEqual
(
len
(
opts
),
5
)
self
.
assertEqual
(
[
op
.
type
for
op
in
opts
],
[
"fill_constant"
,
"elementwise_mul"
,
"adam"
,
"scale"
,
"scale"
])
self
.
assertEqual
(
len
(
opts
),
4
)
self
.
assertEqual
([
op
.
type
for
op
in
opts
],
[
"scale"
,
"adam"
,
"scale"
,
"scale"
])
# Check accumulators
accumulators
=
adam_optimizer
.
get_accumulators
()
...
...
@@ -391,10 +385,8 @@ class TestAdamaxOptimizer(unittest.TestCase):
self
.
assertEqual
(
len
(
adamax_optimizer
.
get_accumulators
()),
0
)
with
framework
.
program_guard
(
program
,
init_program
):
opts
=
adamax_optimizer
.
apply_gradients
(
params_grads
)
self
.
assertEqual
(
len
(
opts
),
4
)
self
.
assertEqual
(
[
op
.
type
for
op
in
opts
],
[
"fill_constant"
,
"elementwise_mul"
,
"adamax"
,
"scale"
])
self
.
assertEqual
(
len
(
opts
),
3
)
self
.
assertEqual
([
op
.
type
for
op
in
opts
],
[
"scale"
,
"adamax"
,
"scale"
])
# Check accumulators
accumulators
=
adamax_optimizer
.
get_accumulators
()
...
...
@@ -455,10 +447,8 @@ class TestDecayedAdagradOptimizer(unittest.TestCase):
self
.
assertEqual
(
len
(
decayed_adagrad_optimizer
.
get_accumulators
()),
0
)
with
framework
.
program_guard
(
program
,
init_program
):
opts
=
decayed_adagrad_optimizer
.
apply_gradients
(
params_grads
)
self
.
assertEqual
(
len
(
opts
),
3
)
self
.
assertEqual
(
[
op
.
type
for
op
in
opts
],
[
"fill_constant"
,
"elementwise_mul"
,
"decayed_adagrad"
])
self
.
assertEqual
(
len
(
opts
),
2
)
self
.
assertEqual
([
op
.
type
for
op
in
opts
],
[
"scale"
,
"decayed_adagrad"
])
# Check accumulators
accumulators
=
decayed_adagrad_optimizer
.
get_accumulators
()
...
...
@@ -521,9 +511,8 @@ class TestFtrlOptimizer(unittest.TestCase):
self
.
assertEqual
(
len
(
ftrl_optimizer
.
get_accumulators
()),
0
)
with
framework
.
program_guard
(
program
,
init_program
):
opts
=
ftrl_optimizer
.
apply_gradients
(
params_grads
)
self
.
assertEqual
(
len
(
opts
),
3
)
self
.
assertEqual
([
op
.
type
for
op
in
opts
],
[
"fill_constant"
,
"elementwise_mul"
,
"ftrl"
])
self
.
assertEqual
(
len
(
opts
),
2
)
self
.
assertEqual
([
op
.
type
for
op
in
opts
],
[
"scale"
,
"ftrl"
])
# Check accumulators
accumulators
=
ftrl_optimizer
.
get_accumulators
()
...
...
@@ -578,9 +567,8 @@ class TestLookaheadOptimizer(unittest.TestCase):
lookahead
=
optimizer
.
LookaheadOptimizer
(
sgd
,
alpha
=
0.5
,
k
=
5
)
with
framework
.
program_guard
(
program
,
init_program
):
opts
,
_
=
lookahead
.
minimize
(
mean_out
)
self
.
assertEqual
(
len
(
opts
),
3
)
self
.
assertEqual
([
op
.
type
for
op
in
opts
],
[
"fill_constant"
,
"elementwise_mul"
,
"sgd"
])
self
.
assertEqual
(
len
(
opts
),
2
)
self
.
assertEqual
([
op
.
type
for
op
in
opts
],
[
"scale"
,
"sgd"
])
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录