Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
07330866
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
07330866
编写于
4月 21, 2020
作者:
W
wangguanzhong
提交者:
GitHub
4月 21, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
cherry-pick add clamp api, test=release/2.0 (#23872)
上级
3f4678c9
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
261 addition
and
19 deletion
+261
-19
paddle/fluid/operators/clip_op.cc
paddle/fluid/operators/clip_op.cc
+14
-6
paddle/fluid/operators/clip_op.h
paddle/fluid/operators/clip_op.h
+59
-6
python/paddle/__init__.py
python/paddle/__init__.py
+1
-0
python/paddle/fluid/tests/unittests/test_clamp.py
python/paddle/fluid/tests/unittests/test_clamp.py
+67
-0
python/paddle/fluid/tests/unittests/test_clip_op.py
python/paddle/fluid/tests/unittests/test_clip_op.py
+29
-6
python/paddle/tensor/__init__.py
python/paddle/tensor/__init__.py
+1
-0
python/paddle/tensor/math.py
python/paddle/tensor/math.py
+90
-1
未找到文件。
paddle/fluid/operators/clip_op.cc
浏览文件 @
07330866
...
...
@@ -26,12 +26,6 @@ class ClipOp : public framework::OperatorWithKernel {
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"clip"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Out"
),
"Output"
,
"Out"
,
"clip"
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
max
=
ctx
->
Attrs
().
Get
<
float
>
(
"max"
);
auto
min
=
ctx
->
Attrs
().
Get
<
float
>
(
"min"
);
PADDLE_ENFORCE_LT
(
min
,
max
,
platform
::
errors
::
InvalidArgument
(
"Max of ClipOp should be greater than min. "
"Received max is %f, received min is %f."
,
max
,
min
));
ctx
->
SetOutputDim
(
"Out"
,
x_dims
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
...
...
@@ -44,6 +38,14 @@ class ClipOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"Tensor, the input of clip op, data type should be float32 or "
"float64."
);
AddInput
(
"Min"
,
"Tensor, the lower bound, data type should be float32 "
"or float64."
)
.
AsDispensable
();
AddInput
(
"Max"
,
"Tensor, the upper bound, data type should be float32 "
"or float64."
)
.
AsDispensable
();
AddOutput
(
"Out"
,
"Tensor, the clipped tensor, with the same shape and data type as "
...
...
@@ -88,6 +90,12 @@ class ClipGradOpMaker : public framework::SingleGradOpMaker<T> {
void
Apply
(
GradOpPtr
<
T
>
op
)
const
override
{
op
->
SetType
(
"clip_grad"
);
op
->
SetInput
(
"X"
,
this
->
Input
(
"X"
));
if
(
this
->
HasInput
(
"Min"
))
{
op
->
SetInput
(
"Min"
,
this
->
Input
(
"Min"
));
}
if
(
this
->
HasInput
(
"Max"
))
{
op
->
SetInput
(
"Max"
,
this
->
Input
(
"Max"
));
}
op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
this
->
OutputGrad
(
"Out"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
this
->
InputGrad
(
"X"
));
op
->
SetAttrMap
(
this
->
Attrs
());
...
...
paddle/fluid/operators/clip_op.h
浏览文件 @
07330866
...
...
@@ -60,8 +60,36 @@ template <typename DeviceContext, typename T>
class
ClipKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
max
=
context
.
Attr
<
T
>
(
"max"
);
auto
min
=
context
.
Attr
<
T
>
(
"min"
);
auto
max
=
static_cast
<
T
>
(
context
.
Attr
<
float
>
(
"max"
));
Tensor
max_cpu
;
if
(
context
.
HasInput
(
"Max"
))
{
auto
*
max_t
=
context
.
Input
<
Tensor
>
(
"Max"
);
auto
*
max_data
=
max_t
->
data
<
T
>
();
if
(
platform
::
is_gpu_place
(
max_t
->
place
()))
{
TensorCopySync
(
*
max_t
,
platform
::
CPUPlace
(),
&
max_cpu
);
max_data
=
max_cpu
.
data
<
T
>
();
}
max
=
max_data
[
0
];
}
max
=
static_cast
<
T
>
(
max
);
auto
min
=
context
.
Attr
<
float
>
(
"min"
);
Tensor
min_cpu
;
if
(
context
.
HasInput
(
"Min"
))
{
auto
*
min_t
=
context
.
Input
<
Tensor
>
(
"Min"
);
auto
*
min_data
=
min_t
->
data
<
T
>
();
if
(
platform
::
is_gpu_place
(
min_t
->
place
()))
{
TensorCopySync
(
*
min_t
,
platform
::
CPUPlace
(),
&
min_cpu
);
min_data
=
min_cpu
.
data
<
T
>
();
}
min
=
min_data
[
0
];
}
min
=
static_cast
<
T
>
(
min
);
PADDLE_ENFORCE_LT
(
min
,
max
,
platform
::
errors
::
InvalidArgument
(
"max should be greater than min. "
"But received min = %f, max = %f"
,
min
,
max
));
auto
*
x_var
=
context
.
InputVar
(
"X"
);
if
(
x_var
->
IsType
<
framework
::
LoDTensor
>
())
{
auto
*
x
=
context
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
...
...
@@ -75,8 +103,9 @@ class ClipKernel : public framework::OpKernel<T> {
}
else
if
(
x_var
->
IsType
<
framework
::
SelectedRows
>
())
{
auto
*
x
=
context
.
Input
<
framework
::
SelectedRows
>
(
"X"
);
auto
*
out
=
context
.
Output
<
framework
::
SelectedRows
>
(
"Out"
);
PADDLE_ENFORCE_NE
(
x
,
out
,
"Inplace clip is not allowed when x is SelectedRows"
);
PADDLE_ENFORCE_NE
(
x
,
out
,
platform
::
errors
::
InvalidArgument
(
"Inplace clip is not allowed when x is SelectedRows"
));
math
::
scatter
::
MergeAdd
<
DeviceContext
,
T
>
merge_func
;
merge_func
(
context
.
template
device_context
<
DeviceContext
>(),
*
x
,
out
);
auto
*
out_tensor
=
out
->
mutable_value
();
...
...
@@ -95,8 +124,32 @@ template <typename DeviceContext, typename T>
class
ClipGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
max
=
context
.
Attr
<
T
>
(
"max"
);
auto
min
=
context
.
Attr
<
T
>
(
"min"
);
auto
max
=
static_cast
<
T
>
(
context
.
Attr
<
float
>
(
"max"
));
Tensor
max_cpu
;
if
(
context
.
HasInput
(
"Max"
))
{
auto
*
max_t
=
context
.
Input
<
Tensor
>
(
"Max"
);
auto
*
max_data
=
max_t
->
data
<
T
>
();
if
(
platform
::
is_gpu_place
(
max_t
->
place
()))
{
TensorCopySync
(
*
max_t
,
platform
::
CPUPlace
(),
&
max_cpu
);
max_data
=
max_cpu
.
data
<
T
>
();
}
max
=
max_data
[
0
];
}
max
=
static_cast
<
T
>
(
max
);
auto
min
=
context
.
Attr
<
float
>
(
"min"
);
Tensor
min_cpu
;
if
(
context
.
HasInput
(
"Min"
))
{
auto
*
min_t
=
context
.
Input
<
Tensor
>
(
"Min"
);
auto
*
min_data
=
min_t
->
data
<
T
>
();
if
(
platform
::
is_gpu_place
(
min_t
->
place
()))
{
TensorCopySync
(
*
min_t
,
platform
::
CPUPlace
(),
&
min_cpu
);
min_data
=
min_cpu
.
data
<
T
>
();
}
min
=
min_data
[
0
];
}
min
=
static_cast
<
T
>
(
min
);
auto
*
d_out
=
context
.
Input
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_x
=
...
...
python/paddle/__init__.py
浏览文件 @
07330866
...
...
@@ -145,6 +145,7 @@ from .tensor.math import log1p #DEFINE_ALIAS
# from .tensor.math import erf #DEFINE_ALIAS
from
.tensor.math
import
addcmul
#DEFINE_ALIAS
from
.tensor.math
import
addmm
#DEFINE_ALIAS
from
.tensor.math
import
clamp
#DEFINE_ALIAS
# from .tensor.attribute import rank #DEFINE_ALIAS
# from .tensor.attribute import shape #DEFINE_ALIAS
# from .tensor.io import save #DEFINE_ALIAS
...
...
python/paddle/fluid/tests/unittests/test_clamp.py
0 → 100644
浏览文件 @
07330866
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
paddle.tensor
as
tensor
import
paddle.fluid
as
fluid
import
numpy
as
np
import
unittest
class
TestClampAPI
(
unittest
.
TestCase
):
def
test_clamp
(
self
):
data_shape
=
[
1
,
9
,
9
,
4
]
data
=
np
.
random
.
random
(
data_shape
).
astype
(
'float32'
)
images
=
fluid
.
data
(
name
=
'image'
,
shape
=
data_shape
,
dtype
=
'float32'
)
min
=
fluid
.
data
(
name
=
'min'
,
shape
=
[
1
],
dtype
=
'float32'
)
max
=
fluid
.
data
(
name
=
'max'
,
shape
=
[
1
],
dtype
=
'float32'
)
place
=
fluid
.
CUDAPlace
(
0
)
if
fluid
.
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
out_1
=
tensor
.
clamp
(
images
,
min
=
min
,
max
=
max
)
out_2
=
tensor
.
clamp
(
images
,
min
=
0.2
,
max
=
0.9
)
out_3
=
tensor
.
clamp
(
images
,
min
=
0.3
)
out_4
=
tensor
.
clamp
(
images
,
max
=
0.7
)
out_5
=
tensor
.
clamp
(
images
,
min
=
min
)
out_6
=
tensor
.
clamp
(
images
,
max
=
max
)
res1
,
res2
,
res3
,
res4
,
res5
,
res6
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"image"
:
data
,
"min"
:
np
.
array
([
0.2
]).
astype
(
'float32'
),
"max"
:
np
.
array
([
0.8
]).
astype
(
'float32'
)
},
fetch_list
=
[
out_1
,
out_2
,
out_3
,
out_4
,
out_5
,
out_6
])
self
.
assertTrue
(
np
.
allclose
(
res1
,
data
.
clip
(
0.2
,
0.8
)))
self
.
assertTrue
(
np
.
allclose
(
res2
,
data
.
clip
(
0.2
,
0.9
)))
self
.
assertTrue
(
np
.
allclose
(
res3
,
data
.
clip
(
min
=
0.3
)))
self
.
assertTrue
(
np
.
allclose
(
res4
,
data
.
clip
(
max
=
0.7
)))
self
.
assertTrue
(
np
.
allclose
(
res5
,
data
.
clip
(
min
=
0.2
)))
self
.
assertTrue
(
np
.
allclose
(
res6
,
data
.
clip
(
max
=
0.8
)))
class
TestClampError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
x1
=
fluid
.
layers
.
data
(
name
=
'x1'
,
shape
=
[
1
],
dtype
=
"int16"
)
x2
=
fluid
.
layers
.
data
(
name
=
'x2'
,
shape
=
[
1
],
dtype
=
"int8"
)
self
.
assertRaises
(
TypeError
,
tensor
.
clamp
,
x
=
x1
,
min
=
0.2
,
max
=
0.8
)
self
.
assertRaises
(
TypeError
,
tensor
.
clamp
,
x
=
x2
,
min
=
0.2
,
max
=
0.8
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_clip_op.py
浏览文件 @
07330866
...
...
@@ -24,6 +24,7 @@ from op_test import OpTest
class
TestClipOp
(
OpTest
):
def
setUp
(
self
):
self
.
max_relative_error
=
0.006
self
.
inputs
=
{}
self
.
initTestCase
()
input
=
np
.
random
.
random
(
self
.
shape
).
astype
(
"float32"
)
input
[
np
.
abs
(
input
-
self
.
min
)
<
self
.
max_relative_error
]
=
0.5
...
...
@@ -33,10 +34,21 @@ class TestClipOp(OpTest):
self
.
attrs
=
{}
self
.
attrs
[
'min'
]
=
self
.
min
self
.
attrs
[
'max'
]
=
self
.
max
self
.
outputs
=
{
'Out'
:
np
.
clip
(
self
.
inputs
[
'X'
],
self
.
attrs
[
'min'
],
self
.
attrs
[
'max'
])
}
if
'Min'
in
self
.
inputs
:
min_v
=
self
.
inputs
[
'Min'
]
else
:
min_v
=
self
.
attrs
[
'min'
]
if
'Max'
in
self
.
inputs
:
max_v
=
self
.
inputs
[
'Max'
]
else
:
max_v
=
self
.
attrs
[
'max'
]
input
=
np
.
random
.
random
(
self
.
shape
).
astype
(
"float32"
)
input
[
np
.
abs
(
input
-
min_v
)
<
self
.
max_relative_error
]
=
0.5
input
[
np
.
abs
(
input
-
max_v
)
<
self
.
max_relative_error
]
=
0.5
self
.
inputs
[
'X'
]
=
input
self
.
outputs
=
{
'Out'
:
np
.
clip
(
self
.
inputs
[
'X'
],
min_v
,
max_v
)}
def
test_check_output
(
self
):
self
.
check_output
()
...
...
@@ -46,8 +58,10 @@ class TestClipOp(OpTest):
def
initTestCase
(
self
):
self
.
shape
=
(
10
,
10
)
self
.
max
=
0.7
self
.
min
=
0.1
self
.
max
=
0.8
self
.
min
=
0.3
self
.
inputs
[
'Max'
]
=
np
.
array
([
0.8
]).
astype
(
'float32'
)
self
.
inputs
[
'Min'
]
=
np
.
array
([
0.1
]).
astype
(
'float32'
)
class
TestCase1
(
TestClipOp
):
...
...
@@ -71,6 +85,15 @@ class TestCase3(TestClipOp):
self
.
min
=
0.2
class
TestCase4
(
TestClipOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
4
,
8
,
8
)
self
.
max
=
0.7
self
.
min
=
0.2
self
.
inputs
[
'Max'
]
=
np
.
array
([
0.8
]).
astype
(
'float32'
)
self
.
inputs
[
'Min'
]
=
np
.
array
([
0.3
]).
astype
(
'float32'
)
class
TestClipOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
...
...
python/paddle/tensor/__init__.py
浏览文件 @
07330866
...
...
@@ -123,6 +123,7 @@ from .math import log1p #DEFINE_ALIAS
# from .math import erf #DEFINE_ALIAS
from
.math
import
addcmul
#DEFINE_ALIAS
from
.math
import
addmm
#DEFINE_ALIAS
from
.math
import
clamp
#DEFINE_ALIAS
# from .attribute import rank #DEFINE_ALIAS
# from .attribute import shape #DEFINE_ALIAS
# from .io import save #DEFINE_ALIAS
...
...
python/paddle/tensor/math.py
浏览文件 @
07330866
...
...
@@ -21,6 +21,7 @@ from paddle.common_ops_import import *
from
..fluid
import
layers
from
..fluid.framework
import
core
,
_varbase_creator
from
..fluid.layers.layer_function_generator
import
_generate_doc_string_
import
sys
# TODO: define math functions
# yapf: disable
...
...
@@ -76,7 +77,8 @@ __all__ = [
'log1p'
,
# 'erf',
'addcmul'
,
'addmm'
'addmm'
,
'clamp'
,
]
# yapf: enable.
...
...
@@ -1302,6 +1304,7 @@ def addcmul(input, tensor1, tensor2, value=1.0, out=None, name=None):
Examples:
.. code-block:: python
import paddle
import paddle.fluid as fluid
input = fluid.data(name='input', dtype='float32', shape=[3, 4])
...
...
@@ -1323,3 +1326,89 @@ def addcmul(input, tensor1, tensor2, value=1.0, out=None, name=None):
else
:
out
=
layers
.
elementwise_add
(
input
,
layers
.
elementwise_mul
(
tensor1
,
tensor2
)
*
value
)
return
out
def
clamp
(
input
,
min
=
None
,
max
=
None
,
output
=
None
,
name
=
None
):
"""
**clampe layer**
This operator clamps all elements in input into the range [ min, max ] and return
a resulting tensor as the following equation:
.. math::
Out = MIN(MAX(x, min), max)
Args:
input (Variable): An input N-D Tensor or LoDTensor
with data type float32, float64.
min (float32|Variable): The lower bound with type ``float32`` or a ``Tensor``
with shape [1] and type ``int32``, ``float32``, ``float64``.
max (float32|Variable): The upper bound with type ``float32`` or a ``Tensor``
with shape [1] and type ``int32``, ``float32``, ``float64``.
output (Variable, optional): A tensor or LoDTensor. If :attr:`output` is None,
a new tensor will be created as :attr:`output`. Default: None.
name (str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
Returns:
Variable: A Tensor or LodTensor with the same data type and data shape as input's.
Examples:
.. code-block:: python
import paddle
import paddle.fluid as fluid
import numpy as np
in1 = np.array([[1.2,3.5],
[4.5,6.4]]).astype('float32')
with fluid.dygraph.guard():
x1 = fluid.dygraph.to_variable(in1)
out1 = paddle.tensor.clamp(x1, min=3.5, max=5.0)
out2 = paddle.tensor.clamp(x1, min=2.5)
print(out1.numpy())
# [[3.5, 3.5]
# [4.5, 5.0]]
print(out2.numpy())
# [[2.5, 3.5]
# [[4.5, 6.4]
"""
assert
min
is
not
None
or
max
is
not
None
,
"either min or max should be defined."
if
min
is
not
None
:
check_type
(
min
,
'min'
,
(
float
,
Variable
),
'clamp'
)
if
isinstance
(
min
,
Variable
):
check_dtype
(
min
.
dtype
,
'min'
,
[
'float32'
,
'float64'
,
'int32'
],
'clamp'
,
'(When the type of min in clamp is Variable.)'
)
if
max
is
not
None
:
check_type
(
max
,
'max'
,
(
float
,
Variable
),
'clamp'
)
if
isinstance
(
max
,
Variable
):
check_dtype
(
max
.
dtype
,
'max'
,
[
'float32'
,
'float64'
,
'int32'
],
'clamp'
,
'(When the type of max in clamp is Variable.)'
)
inputs
=
{
'X'
:
input
}
attrs
=
{
'min'
:
sys
.
float_info
.
min
,
'max'
:
sys
.
float_info
.
max
}
if
isinstance
(
min
,
Variable
):
min
.
stop_gradient
=
True
inputs
[
'Min'
]
=
min
elif
min
is
not
None
:
attrs
[
'min'
]
=
min
if
isinstance
(
max
,
Variable
):
max
.
stop_gradient
=
True
inputs
[
'Max'
]
=
max
elif
max
is
not
None
:
attrs
[
'max'
]
=
max
helper
=
LayerHelper
(
'clamp'
,
**
locals
())
if
output
is
None
:
output
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
())
helper
.
append_op
(
type
=
'clip'
,
inputs
=
inputs
,
outputs
=
{
'Out'
:
[
output
]},
attrs
=
attrs
)
return
output
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录