Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
06fe2801
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
06fe2801
编写于
1月 02, 2018
作者:
T
Travis CI
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Deploy to GitHub Pages:
9cfa5ce3
上级
0648d71d
变更
4
展开全部
显示空白变更内容
内联
并排
Showing
4 changed file
with
112 addition
and
6 deletion
+112
-6
develop/doc/api/v2/fluid/layers.html
develop/doc/api/v2/fluid/layers.html
+55
-2
develop/doc/searchindex.js
develop/doc/searchindex.js
+1
-1
develop/doc_cn/api/v2/fluid/layers.html
develop/doc_cn/api/v2/fluid/layers.html
+55
-2
develop/doc_cn/searchindex.js
develop/doc_cn/searchindex.js
+1
-1
未找到文件。
develop/doc/api/v2/fluid/layers.html
浏览文件 @
06fe2801
...
@@ -1225,8 +1225,61 @@ the BatchNorm layer using the configurations from the input parameters.</p>
...
@@ -1225,8 +1225,61 @@ the BatchNorm layer using the configurations from the input parameters.</p>
<dl
class=
"function"
>
<dl
class=
"function"
>
<dt>
<dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
lod_rank_table
</code><span
class=
"sig-paren"
>
(
</span><em>
x
</em>
,
<em>
level=0
</em><span
class=
"sig-paren"
>
)
</span></dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
lod_rank_table
</code><span
class=
"sig-paren"
>
(
</span><em>
x
</em>
,
<em>
level=0
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
This function creates an operator for creating a LOD_RANK_TABLE
<dd><p>
LoD Rank Table Operator. Given an input variable
<strong>
x
</strong>
and a level number
using the input x.
</p>
of LoD, this layer creates a LodRankTable object. A LoDRankTable object
contains a list of bi-element tuples. Each tuple consists of an index and
a length, both of which are int type. Reffering to specified level of LoD,
the index is the sequence index number and the length representes the
sequence length. Please note that the list is ranked in descending order by
the length. The following is an example:
</p>
<blockquote>
<div><div
class=
"highlight-text"
><div
class=
"highlight"
><pre><span></span>
x is a LoDTensor:
x.lod = [[0, 2, 3],
[0, 5, 6, 7]]
x.data = [a, b, c, d, e, f, g]
1. set level to 0:
Create lod rank table:
lod_rank_table_obj = lod_rank_table(x, level=0)
Get:
lod_rank_table_obj.items() = [(0, 2), (1, 1)]
2. set level to 1:
Create lod rank table:
lod_rank_table_obj = lod_rank_table(x, level=1)
Get:
lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
</pre></div>
</div>
</div></blockquote>
<table
class=
"docutils field-list"
frame=
"void"
rules=
"none"
>
<col
class=
"field-name"
/>
<col
class=
"field-body"
/>
<tbody
valign=
"top"
>
<tr
class=
"field-odd field"
><th
class=
"field-name"
>
Parameters:
</th><td
class=
"field-body"
><ul
class=
"first simple"
>
<li><strong>
x
</strong>
(
<em>
Variable
</em>
)
–
Input variable, a LoDTensor based which to create the lod
rank table.
</li>
<li><strong>
level
</strong>
(
<em>
int
</em>
)
–
Specify the LoD level, on which to create the lod rank
table.
</li>
</ul>
</td>
</tr>
<tr
class=
"field-even field"
><th
class=
"field-name"
>
Returns:
</th><td
class=
"field-body"
><p
class=
"first"
>
The created LoDRankTable object.
</p>
</td>
</tr>
<tr
class=
"field-odd field"
><th
class=
"field-name"
>
Return type:
</th><td
class=
"field-body"
><p
class=
"first last"
>
Variable
</p>
</td>
</tr>
</tbody>
</table>
<p
class=
"rubric"
>
Examples
</p>
<div
class=
"highlight-python"
><div
class=
"highlight"
><pre><span></span><span
class=
"n"
>
x
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
fluid
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
layers
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
data
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
name
</span><span
class=
"o"
>
=
</span><span
class=
"s1"
>
'
x
'
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
shape
</span><span
class=
"o"
>
=
</span><span
class=
"p"
>
[
</span><span
class=
"mi"
>
10
</span><span
class=
"p"
>
],
</span>
<span
class=
"n"
>
dtype
</span><span
class=
"o"
>
=
</span><span
class=
"s1"
>
'
float32
'
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
lod_level
</span><span
class=
"o"
>
=
</span><span
class=
"mi"
>
1
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
out
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
layers
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
lod_rank_table
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
x
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
x
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
level
</span><span
class=
"o"
>
=
</span><span
class=
"mi"
>
0
</span><span
class=
"p"
>
)
</span>
</pre></div>
</div>
</dd></dl>
</dd></dl>
</div>
</div>
...
...
develop/doc/searchindex.js
浏览文件 @
06fe2801
因为 它太大了无法显示 source diff 。你可以改为
查看blob
。
develop/doc_cn/api/v2/fluid/layers.html
浏览文件 @
06fe2801
...
@@ -1238,8 +1238,61 @@ the BatchNorm layer using the configurations from the input parameters.</p>
...
@@ -1238,8 +1238,61 @@ the BatchNorm layer using the configurations from the input parameters.</p>
<dl
class=
"function"
>
<dl
class=
"function"
>
<dt>
<dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
lod_rank_table
</code><span
class=
"sig-paren"
>
(
</span><em>
x
</em>
,
<em>
level=0
</em><span
class=
"sig-paren"
>
)
</span></dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
lod_rank_table
</code><span
class=
"sig-paren"
>
(
</span><em>
x
</em>
,
<em>
level=0
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
This function creates an operator for creating a LOD_RANK_TABLE
<dd><p>
LoD Rank Table Operator. Given an input variable
<strong>
x
</strong>
and a level number
using the input x.
</p>
of LoD, this layer creates a LodRankTable object. A LoDRankTable object
contains a list of bi-element tuples. Each tuple consists of an index and
a length, both of which are int type. Reffering to specified level of LoD,
the index is the sequence index number and the length representes the
sequence length. Please note that the list is ranked in descending order by
the length. The following is an example:
</p>
<blockquote>
<div><div
class=
"highlight-text"
><div
class=
"highlight"
><pre><span></span>
x is a LoDTensor:
x.lod = [[0, 2, 3],
[0, 5, 6, 7]]
x.data = [a, b, c, d, e, f, g]
1. set level to 0:
Create lod rank table:
lod_rank_table_obj = lod_rank_table(x, level=0)
Get:
lod_rank_table_obj.items() = [(0, 2), (1, 1)]
2. set level to 1:
Create lod rank table:
lod_rank_table_obj = lod_rank_table(x, level=1)
Get:
lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
</pre></div>
</div>
</div></blockquote>
<table
class=
"docutils field-list"
frame=
"void"
rules=
"none"
>
<col
class=
"field-name"
/>
<col
class=
"field-body"
/>
<tbody
valign=
"top"
>
<tr
class=
"field-odd field"
><th
class=
"field-name"
>
参数:
</th><td
class=
"field-body"
><ul
class=
"first simple"
>
<li><strong>
x
</strong>
(
<em>
Variable
</em>
)
–
Input variable, a LoDTensor based which to create the lod
rank table.
</li>
<li><strong>
level
</strong>
(
<em>
int
</em>
)
–
Specify the LoD level, on which to create the lod rank
table.
</li>
</ul>
</td>
</tr>
<tr
class=
"field-even field"
><th
class=
"field-name"
>
返回:
</th><td
class=
"field-body"
><p
class=
"first"
>
The created LoDRankTable object.
</p>
</td>
</tr>
<tr
class=
"field-odd field"
><th
class=
"field-name"
>
返回类型:
</th><td
class=
"field-body"
><p
class=
"first last"
>
Variable
</p>
</td>
</tr>
</tbody>
</table>
<p
class=
"rubric"
>
Examples
</p>
<div
class=
"highlight-python"
><div
class=
"highlight"
><pre><span></span><span
class=
"n"
>
x
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
fluid
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
layers
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
data
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
name
</span><span
class=
"o"
>
=
</span><span
class=
"s1"
>
'
x
'
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
shape
</span><span
class=
"o"
>
=
</span><span
class=
"p"
>
[
</span><span
class=
"mi"
>
10
</span><span
class=
"p"
>
],
</span>
<span
class=
"n"
>
dtype
</span><span
class=
"o"
>
=
</span><span
class=
"s1"
>
'
float32
'
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
lod_level
</span><span
class=
"o"
>
=
</span><span
class=
"mi"
>
1
</span><span
class=
"p"
>
)
</span>
<span
class=
"n"
>
out
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
layers
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
lod_rank_table
</span><span
class=
"p"
>
(
</span><span
class=
"n"
>
x
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
x
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
level
</span><span
class=
"o"
>
=
</span><span
class=
"mi"
>
0
</span><span
class=
"p"
>
)
</span>
</pre></div>
</div>
</dd></dl>
</dd></dl>
</div>
</div>
...
...
develop/doc_cn/searchindex.js
浏览文件 @
06fe2801
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录