Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
0672d330
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0672d330
编写于
6月 13, 2017
作者:
H
hedaoyuan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Use the TensorShape to reconstruct the arguments of the Im2ColFunctor and Col2ImFunctor interfaces.
上级
2acb84fe
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
145 addition
and
67 deletion
+145
-67
paddle/function/Im2Col.h
paddle/function/Im2Col.h
+92
-0
paddle/function/ImageExpandOp.cpp
paddle/function/ImageExpandOp.cpp
+53
-67
未找到文件。
paddle/function/Im2Col.h
0 → 100644
浏览文件 @
0672d330
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
namespace
paddle
{
/* The storage format of the coldata in the Im2ColFunctor and Col2ImFunctor. */
enum
ColFormat
{
kCFO
=
0
,
kOCF
=
1
};
/*
* \brief Converts the image data of three dimensions(CHW) into a colData of
* five dimensions in the Im2ColFunctor calculation,
* And in the Col2ImFunctor calculation, it is reversed.
*
* \param imData Image data of NCHW format.
* The shape of imData is:
* [inputChannels, inputHeight, inputWidth].
* \param colData colData data.
*
* If the template argument Format is kCFO, the shape of colData is:
* [inputChannels, filterHeight, filterWidth, outputHeight, outputWidth]
* So, it is easy to reshape into a convolution matrix for convolution
* calculation based on matrix multiplication.
* The shape of convolution matrix is [height, width], where the height is equal
* inputChannels * filterHeight * filterWidth, and the width is equal
* outputHeight * outputWidth.
*
* Reshape:
* shape of colData shape of sequence
* [inputChannels,
* filterHeight,
* filterWidth, ======> [seqLength, stepSize]
* outputHeight,
* outputWidth]
*
* If the template argument Format is kOCF, the shape of colData is:
* [outputHeight, outputWidth, inputChannels, filterHeight, filterWidth]
* So, it is easy to reshape into a sequence matrix for rnn calculation.
* The shape of sequence matrix is [seqLength, stepSize], where the seqLength
* is equal outputHeight * outputWidth, and the stepSize is equal
* inputChannels * filterHeight * filterWidth.
*
* Reshape:
* shape of colData shape of sequence
* [outputHeight,
* outputWidth,
* inputChannels, ======> [seqLength, stepSize]
* filterHeight,
* filterWidth]
*
* \note The caller needs to ensure that imShape.inputChannels is equal to
* colShape.inputChannels.
*/
template
<
ColFormat
Format
,
DeviceType
Device
,
class
T
>
class
Im2ColFunctor
{
public:
void
operator
()(
const
T
*
imData
,
const
TensorShape
&
imShape
,
T
*
colData
,
const
TensorShape
&
colShape
,
int
strideHeight
,
int
strideWidth
,
int
paddingHeight
,
int
paddingWidth
);
};
template
<
ColFormat
Format
,
DeviceType
Device
,
class
T
>
class
Col2ImFunctor
{
public:
void
operator
()(
T
*
imData
,
const
TensorShape
&
imShape
,
const
T
*
colData
,
const
TensorShape
&
colShape
,
int
strideHeight
,
int
strideWidth
,
int
paddingHeight
,
int
paddingWidth
);
};
}
// namespace paddle
paddle/function/ImageExpandOp.cpp
浏览文件 @
0672d330
...
@@ -13,31 +13,33 @@ See the License for the specific language governing permissions and
...
@@ -13,31 +13,33 @@ See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include "Function.h"
#include "Function.h"
#include "
GemmConvOp
.h"
#include "
Im2Col
.h"
namespace
paddle
{
namespace
paddle
{
/*
/*
* im
Data = [input_channels, input_height, input_w
idth]
* im
Shape = [inputChannels, inputHeight, inputW
idth]
* col
Data = [output_height, output_width,
* col
Shape =
*
input_channels, filter_height, filter_w
idth]
*
[outputHeight, outputWidth, inputChannels, filterHeight, filterW
idth]
*/
*/
template
<
class
T
>
template
<
class
T
>
class
Im2ColFunctor
<
kOCF
,
DEVICE_TYPE_CPU
,
T
>
{
class
Im2ColFunctor
<
kOCF
,
DEVICE_TYPE_CPU
,
T
>
{
public:
public:
void
operator
()(
const
T
*
imData
,
void
operator
()(
const
T
*
imData
,
int
inputChannels
,
const
TensorShape
&
imShape
,
int
inputHeight
,
T
*
colData
,
int
inputWidth
,
const
TensorShape
&
colShape
,
int
filterHeight
,
int
filterWidth
,
int
strideHeight
,
int
strideHeight
,
int
strideWidth
,
int
strideWidth
,
int
paddingHeight
,
int
paddingHeight
,
int
paddingWidth
,
int
paddingWidth
)
{
int
outputHeight
,
int
inputChannels
=
imShape
[
0
];
int
outputWidth
,
int
inputHeight
=
imShape
[
1
];
T
*
colData
)
{
int
inputWidth
=
imShape
[
2
];
int
filterHeight
=
colShape
[
3
];
int
filterWidth
=
colShape
[
4
];
int
outputHeight
=
colShape
[
0
];
int
outputWidth
=
colShape
[
1
];
for
(
int
outputH
=
0
;
outputH
<
outputHeight
;
++
outputH
)
{
for
(
int
outputH
=
0
;
outputH
<
outputHeight
;
++
outputH
)
{
for
(
int
outputW
=
0
;
outputW
<
outputWidth
;
++
outputW
)
{
for
(
int
outputW
=
0
;
outputW
<
outputWidth
;
++
outputW
)
{
for
(
int
channel
=
0
;
channel
<
inputChannels
;
++
channel
)
{
for
(
int
channel
=
0
;
channel
<
inputChannels
;
++
channel
)
{
...
@@ -55,7 +57,7 @@ public:
...
@@ -55,7 +57,7 @@ public:
filterW
;
filterW
;
if
(
imRowOffset
<
0
||
imRowOffset
>=
inputHeight
||
if
(
imRowOffset
<
0
||
imRowOffset
>=
inputHeight
||
imColOffset
<
0
||
imColOffset
>=
inputWidth
)
{
imColOffset
<
0
||
imColOffset
>=
inputWidth
)
{
colData
[
colDataOffset
]
=
T
(
0
);
colData
[
colDataOffset
]
=
float
(
0
);
}
else
{
}
else
{
int
imDataOffset
=
int
imDataOffset
=
(
channel
*
inputHeight
+
imRowOffset
)
*
inputWidth
+
(
channel
*
inputHeight
+
imRowOffset
)
*
inputWidth
+
...
@@ -70,22 +72,29 @@ public:
...
@@ -70,22 +72,29 @@ public:
}
}
};
};
/*
* imShape = [inputChannels, inputHeight, inputWidth]
* colShape =
* [outputHeight, outputWidth, inputChannels, filterHeight, filterWidth]
*/
template
<
class
T
>
template
<
class
T
>
class
Col2ImFunctor
<
kOCF
,
DEVICE_TYPE_CPU
,
T
>
{
class
Col2ImFunctor
<
kOCF
,
DEVICE_TYPE_CPU
,
T
>
{
public:
public:
void
operator
()(
const
T
*
colData
,
void
operator
()(
T
*
imData
,
int
inputChannels
,
const
TensorShape
&
imShape
,
int
inputHeight
,
const
T
*
colData
,
int
inputWidth
,
const
TensorShape
&
colShape
,
int
filterHeight
,
int
filterWidth
,
int
strideHeight
,
int
strideHeight
,
int
strideWidth
,
int
strideWidth
,
int
paddingHeight
,
int
paddingHeight
,
int
paddingWidth
,
int
paddingWidth
)
{
int
outputHeight
,
int
inputChannels
=
imShape
[
0
];
int
outputWidth
,
int
inputHeight
=
imShape
[
1
];
T
*
imData
)
{
int
inputWidth
=
imShape
[
2
];
int
filterHeight
=
colShape
[
3
];
int
filterWidth
=
colShape
[
4
];
int
outputHeight
=
colShape
[
0
];
int
outputWidth
=
colShape
[
1
];
for
(
int
outputH
=
0
;
outputH
<
outputHeight
;
++
outputH
)
{
for
(
int
outputH
=
0
;
outputH
<
outputHeight
;
++
outputH
)
{
for
(
int
outputW
=
0
;
outputW
<
outputWidth
;
++
outputW
)
{
for
(
int
outputW
=
0
;
outputW
<
outputWidth
;
++
outputW
)
{
for
(
int
channel
=
0
;
channel
<
inputChannels
;
++
channel
)
{
for
(
int
channel
=
0
;
channel
<
inputChannels
;
++
channel
)
{
...
@@ -146,7 +155,7 @@ public:
...
@@ -146,7 +155,7 @@ public:
virtual
void
calc
(
const
BufferArgs
&
inputs
,
const
BufferArgs
&
outputs
)
{}
virtual
void
calc
(
const
BufferArgs
&
inputs
,
const
BufferArgs
&
outputs
)
{}
void
check
(
const
TensorShape
&
image
,
const
TensorShape
&
sequence
)
{
void
check
(
const
TensorShape
&
image
,
const
TensorShape
&
sequence
)
const
{
// image shape should be 4-dimensional.
// image shape should be 4-dimensional.
CHECK_EQ
(
image
.
ndims
(),
(
size_t
)
4
);
CHECK_EQ
(
image
.
ndims
(),
(
size_t
)
4
);
// sequence shape should be 3-dimensional.
// sequence shape should be 3-dimensional.
...
@@ -159,7 +168,7 @@ public:
...
@@ -159,7 +168,7 @@ public:
// Calculate the shape of colData based on the shape of the image
// Calculate the shape of colData based on the shape of the image
// and the shape of the sequence.
// and the shape of the sequence.
TensorShape
getColShape
(
const
TensorShape
&
image
,
TensorShape
getColShape
(
const
TensorShape
&
image
,
const
TensorShape
&
sequence
)
{
const
TensorShape
&
sequence
)
const
{
size_t
inputChannels
=
image
[
1
];
size_t
inputChannels
=
image
[
1
];
size_t
inputHeight
=
image
[
2
];
size_t
inputHeight
=
image
[
2
];
size_t
inputWidth
=
image
[
3
];
size_t
inputWidth
=
image
[
3
];
...
@@ -174,8 +183,7 @@ public:
...
@@ -174,8 +183,7 @@ public:
CHECK_EQ
(
seqLength
,
outputHeight
*
outputWidth
);
CHECK_EQ
(
seqLength
,
outputHeight
*
outputWidth
);
CHECK_EQ
(
stepSize
,
inputChannels
*
blockH
()
*
blockW
());
CHECK_EQ
(
stepSize
,
inputChannels
*
blockH
()
*
blockW
());
// [output_height, output_width,
// [outputHeight, outputWidth, inputChannels, filterHeight, filterWidth]
// input_channels, filter_height, filter_width]
return
TensorShape
({
outputHeight
,
return
TensorShape
({
outputHeight
,
outputWidth
,
outputWidth
,
inputChannels
,
inputChannels
,
...
@@ -215,40 +223,29 @@ public:
...
@@ -215,40 +223,29 @@ public:
const
TensorShape
&
sequence
=
outputs
[
0
].
shape
();
const
TensorShape
&
sequence
=
outputs
[
0
].
shape
();
check
(
image
,
sequence
);
check
(
image
,
sequence
);
TensorShape
imShape
=
TensorShape
({
image
[
1
],
image
[
2
],
image
[
3
]});
TensorShape
colShape
=
getColShape
(
image
,
sequence
);
TensorShape
colShape
=
getColShape
(
image
,
sequence
);
size_t
batchSize
=
image
[
0
];
size_t
batchSize
=
image
[
0
];
size_t
inputChannels
=
image
[
1
];
size_t
inputHeight
=
image
[
2
];
size_t
inputWidth
=
image
[
3
];
size_t
seqLength
=
sequence
[
1
];
size_t
stepSize
=
sequence
[
2
];
size_t
outputHeight
=
colShape
[
0
];
size_t
outputWidth
=
colShape
[
1
];
real
*
imageData
=
inputs
[
0
].
data
<
real
>
();
real
*
imageData
=
inputs
[
0
].
data
<
real
>
();
real
*
seqData
=
outputs
[
0
].
data
<
real
>
();
real
*
seqData
=
outputs
[
0
].
data
<
real
>
();
Im2ColFunctor
<
kOCF
,
Device
,
real
>
im2col
;
Im2ColFunctor
<
kOCF
,
Device
,
real
>
im2col
;
for
(
size_t
i
=
0
;
i
<
batchSize
;
i
++
)
{
for
(
size_t
i
=
0
;
i
<
batchSize
;
i
++
)
{
// The result of im2col is [output
_height, output_w
idth,
// The result of im2col is [output
Height, outputW
idth,
// input
_channels, filter_height, filter_w
idth], and it is easy to
// input
Channels, filterHeight, filterW
idth], and it is easy to
// reshape into [seqLength, stepSize], where seqLength is equal
// reshape into [seqLength, stepSize], where seqLength is equal
// output_height * output_width, stepSize is equal
// output_height * output_width, stepSize is equal
// input_channels * filter_height * filter_width
// input_channels * filter_height * filter_width
im2col
(
imageData
,
im2col
(
imageData
,
inputChannels
,
imShape
,
inputHeight
,
seqData
,
inputWidth
,
colShape
,
blockH
(),
blockW
(),
strideH
(),
strideH
(),
strideW
(),
strideW
(),
paddingH
(),
paddingH
(),
paddingW
(),
paddingW
());
outputHeight
,
imageData
+=
imShape
.
getElements
();
outputWidth
,
seqData
+=
colShape
.
getElements
();
seqData
);
imageData
+=
inputChannels
*
inputHeight
*
inputWidth
;
seqData
+=
seqLength
*
stepSize
;
}
}
}
}
};
};
...
@@ -270,35 +267,24 @@ public:
...
@@ -270,35 +267,24 @@ public:
const
TensorShape
&
sequence
=
inputs
[
0
].
shape
();
const
TensorShape
&
sequence
=
inputs
[
0
].
shape
();
check
(
image
,
sequence
);
check
(
image
,
sequence
);
TensorShape
imShape
=
TensorShape
({
image
[
1
],
image
[
2
],
image
[
3
]});
TensorShape
colShape
=
getColShape
(
image
,
sequence
);
TensorShape
colShape
=
getColShape
(
image
,
sequence
);
size_t
batchSize
=
image
[
0
];
size_t
batchSize
=
image
[
0
];
size_t
inputChannels
=
image
[
1
];
size_t
inputHeight
=
image
[
2
];
size_t
inputWidth
=
image
[
3
];
size_t
seqLength
=
sequence
[
1
];
size_t
stepSize
=
sequence
[
2
];
size_t
outputHeight
=
colShape
[
0
];
size_t
outputWidth
=
colShape
[
1
];
real
*
imageData
=
outputs
[
0
].
data
<
real
>
();
real
*
imageData
=
outputs
[
0
].
data
<
real
>
();
real
*
seqData
=
inputs
[
0
].
data
<
real
>
();
real
*
seqData
=
inputs
[
0
].
data
<
real
>
();
Col2ImFunctor
<
kOCF
,
Device
,
real
>
col2im
;
Col2ImFunctor
<
kOCF
,
Device
,
real
>
col2im
;
for
(
size_t
i
=
0
;
i
<
batchSize
;
i
++
)
{
for
(
size_t
i
=
0
;
i
<
batchSize
;
i
++
)
{
col2im
(
seqData
,
col2im
(
imageData
,
inputChannels
,
imShape
,
inputHeight
,
seqData
,
inputWidth
,
colShape
,
blockH
(),
blockW
(),
strideH
(),
strideH
(),
strideW
(),
strideW
(),
paddingH
(),
paddingH
(),
paddingW
(),
paddingW
());
outputHeight
,
imageData
+=
imShape
.
getElements
();
outputWidth
,
seqData
+=
colShape
.
getElements
();
imageData
);
imageData
+=
inputChannels
*
inputHeight
*
inputWidth
;
seqData
+=
seqLength
*
stepSize
;
}
}
}
}
};
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录