Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
06063b70
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
06063b70
编写于
11月 08, 2019
作者:
L
LielinJiang
提交者:
whs
11月 08, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add op locality_aware_nms, test=develop (#20976)
上级
fc385777
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
1006 addition
and
79 deletion
+1006
-79
paddle/fluid/operators/detection/CMakeLists.txt
paddle/fluid/operators/detection/CMakeLists.txt
+1
-0
paddle/fluid/operators/detection/locality_aware_nms_op.cc
paddle/fluid/operators/detection/locality_aware_nms_op.cc
+459
-0
paddle/fluid/operators/detection/multiclass_nms_op.cc
paddle/fluid/operators/detection/multiclass_nms_op.cc
+1
-79
paddle/fluid/operators/detection/nms_util.h
paddle/fluid/operators/detection/nms_util.h
+103
-0
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+119
-0
python/paddle/fluid/tests/unittests/test_locality_aware_nms_op.py
...addle/fluid/tests/unittests/test_locality_aware_nms_op.py
+323
-0
未找到文件。
paddle/fluid/operators/detection/CMakeLists.txt
浏览文件 @
06063b70
...
...
@@ -21,6 +21,7 @@ detection_library(iou_similarity_op SRCS iou_similarity_op.cc
iou_similarity_op.cu
)
detection_library
(
mine_hard_examples_op SRCS mine_hard_examples_op.cc
)
detection_library
(
multiclass_nms_op SRCS multiclass_nms_op.cc poly_util.cc gpc.cc
)
detection_library
(
locality_aware_nms_op SRCS locality_aware_nms_op.cc poly_util.cc gpc.cc
)
detection_library
(
prior_box_op SRCS prior_box_op.cc prior_box_op.cu
)
detection_library
(
density_prior_box_op SRCS density_prior_box_op.cc density_prior_box_op.cu
)
detection_library
(
anchor_generator_op SRCS anchor_generator_op.cc
...
...
paddle/fluid/operators/detection/locality_aware_nms_op.cc
0 → 100644
浏览文件 @
06063b70
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
limitations under the License. */
#include <glog/logging.h>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detection/nms_util.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
class
LocalityAwareNMSOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"BBoxes"
),
true
,
"Input(BBoxes) of MultiClassNMS should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Scores"
),
true
,
"Input(Scores) of MultiClassNMS should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"Out"
),
true
,
"Output(Out) of MultiClassNMS should not be null."
);
auto
box_dims
=
ctx
->
GetInputDim
(
"BBoxes"
);
auto
score_dims
=
ctx
->
GetInputDim
(
"Scores"
);
auto
score_size
=
score_dims
.
size
();
if
(
ctx
->
IsRuntime
())
{
PADDLE_ENFORCE_EQ
(
score_size
,
3
,
"The rank of Input(Scores) must be 3"
);
PADDLE_ENFORCE_EQ
(
box_dims
.
size
(),
3
,
"The rank of Input(BBoxes) must be 3"
);
PADDLE_ENFORCE_EQ
(
box_dims
[
2
]
==
4
||
box_dims
[
2
]
==
8
||
box_dims
[
2
]
==
16
||
box_dims
[
2
]
==
24
||
box_dims
[
2
]
==
32
,
true
,
"The last dimension of Input(BBoxes) must be 4 or 8, "
"represents the layout of coordinate "
"[xmin, ymin, xmax, ymax] or "
"4 points: [x1, y1, x2, y2, x3, y3, x4, y4] or "
"8 points: [xi, yi] i= 1,2,...,8 or "
"12 points: [xi, yi] i= 1,2,...,12 or "
"16 points: [xi, yi] i= 1,2,...,16"
);
PADDLE_ENFORCE_EQ
(
box_dims
[
1
],
score_dims
[
2
],
"The 2nd dimension of Input(BBoxes) must be equal to "
"last dimension of Input(Scores), which represents the "
"predicted bboxes."
);
}
// Here the box_dims[0] is not the real dimension of output.
// It will be rewritten in the computing kernel.
ctx
->
SetOutputDim
(
"Out"
,
{
box_dims
[
1
],
box_dims
[
2
]
+
2
});
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"Scores"
),
platform
::
CPUPlace
());
}
};
template
<
class
T
>
void
PolyWeightedMerge
(
const
T
*
box1
,
T
*
box2
,
const
T
score1
,
const
T
score2
,
const
size_t
box_size
)
{
for
(
size_t
i
=
0
;
i
<
box_size
;
++
i
)
{
box2
[
i
]
=
(
box1
[
i
]
*
score1
+
box2
[
i
]
*
score2
)
/
(
score1
+
score2
);
}
}
template
<
class
T
>
void
GetMaxScoreIndexWithLocalityAware
(
T
*
scores
,
T
*
bbox_data
,
int64_t
box_size
,
const
T
threshold
,
int
top_k
,
int64_t
num_boxes
,
std
::
vector
<
std
::
pair
<
T
,
int
>>*
sorted_indices
,
const
T
nms_threshold
,
const
bool
normalized
)
{
std
::
vector
<
bool
>
skip
(
num_boxes
,
true
);
int
index
=
-
1
;
for
(
int64_t
i
=
0
;
i
<
num_boxes
;
++
i
)
{
if
(
index
>
-
1
)
{
T
overlap
=
T
(
0.
);
if
(
box_size
==
4
)
{
overlap
=
JaccardOverlap
<
T
>
(
bbox_data
+
i
*
box_size
,
bbox_data
+
index
*
box_size
,
normalized
);
}
// 8: [x1 y1 x2 y2 x3 y3 x4 y4] or 16, 24, 32
if
(
box_size
==
8
||
box_size
==
16
||
box_size
==
24
||
box_size
==
32
)
{
overlap
=
PolyIoU
<
T
>
(
bbox_data
+
i
*
box_size
,
bbox_data
+
index
*
box_size
,
box_size
,
normalized
);
}
if
(
overlap
>
nms_threshold
)
{
PolyWeightedMerge
(
bbox_data
+
i
*
box_size
,
bbox_data
+
index
*
box_size
,
scores
[
i
],
scores
[
index
],
box_size
);
scores
[
index
]
+=
scores
[
i
];
}
else
{
skip
[
index
]
=
false
;
index
=
i
;
}
}
else
{
index
=
i
;
}
}
if
(
index
>
-
1
)
{
skip
[
index
]
=
false
;
}
for
(
int64_t
i
=
0
;
i
<
num_boxes
;
++
i
)
{
if
(
scores
[
i
]
>
threshold
&&
skip
[
i
]
==
false
)
{
sorted_indices
->
push_back
(
std
::
make_pair
(
scores
[
i
],
i
));
}
}
// Sort the score pair according to the scores in descending order
std
::
stable_sort
(
sorted_indices
->
begin
(),
sorted_indices
->
end
(),
SortScorePairDescend
<
int
>
);
// Keep top_k scores if needed.
if
(
top_k
>
-
1
&&
top_k
<
static_cast
<
int
>
(
sorted_indices
->
size
()))
{
sorted_indices
->
resize
(
top_k
);
}
}
template
<
typename
T
>
class
LocalityAwareNMSKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
LocalityAwareNMSFast
(
Tensor
*
bbox
,
Tensor
*
scores
,
const
T
score_threshold
,
const
T
nms_threshold
,
const
T
eta
,
const
int64_t
top_k
,
std
::
vector
<
int
>*
selected_indices
,
const
bool
normalized
)
const
{
// The total boxes for each instance.
int64_t
num_boxes
=
bbox
->
dims
()[
0
];
// 4: [xmin ymin xmax ymax]
// 8: [x1 y1 x2 y2 x3 y3 x4 y4]
// 16, 24, or 32: [x1 y1 x2 y2 ... xn yn], n = 8, 12 or 16
int64_t
box_size
=
bbox
->
dims
()[
1
];
std
::
vector
<
std
::
pair
<
T
,
int
>>
sorted_indices
;
T
adaptive_threshold
=
nms_threshold
;
T
*
bbox_data
=
bbox
->
data
<
T
>
();
T
*
scores_data
=
scores
->
data
<
T
>
();
GetMaxScoreIndexWithLocalityAware
(
scores_data
,
bbox_data
,
box_size
,
score_threshold
,
top_k
,
num_boxes
,
&
sorted_indices
,
nms_threshold
,
normalized
);
selected_indices
->
clear
();
while
(
sorted_indices
.
size
()
!=
0
)
{
const
int
idx
=
sorted_indices
.
front
().
second
;
bool
keep
=
true
;
for
(
size_t
k
=
0
;
k
<
selected_indices
->
size
();
++
k
)
{
if
(
keep
)
{
const
int
kept_idx
=
(
*
selected_indices
)[
k
];
T
overlap
=
T
(
0.
);
// 4: [xmin ymin xmax ymax]
if
(
box_size
==
4
)
{
overlap
=
JaccardOverlap
<
T
>
(
bbox_data
+
idx
*
box_size
,
bbox_data
+
kept_idx
*
box_size
,
normalized
);
}
// 8: [x1 y1 x2 y2 x3 y3 x4 y4] or 16, 24, 32
if
(
box_size
==
8
||
box_size
==
16
||
box_size
==
24
||
box_size
==
32
)
{
overlap
=
PolyIoU
<
T
>
(
bbox_data
+
idx
*
box_size
,
bbox_data
+
kept_idx
*
box_size
,
box_size
,
normalized
);
}
keep
=
overlap
<=
adaptive_threshold
;
}
else
{
break
;
}
}
if
(
keep
)
{
selected_indices
->
push_back
(
idx
);
}
sorted_indices
.
erase
(
sorted_indices
.
begin
());
if
(
keep
&&
eta
<
1
&&
adaptive_threshold
>
0.5
)
{
adaptive_threshold
*=
eta
;
}
}
// delete bbox_data;
}
void
LocalityAwareNMS
(
const
framework
::
ExecutionContext
&
ctx
,
Tensor
*
scores
,
Tensor
*
bboxes
,
const
int
scores_size
,
std
::
map
<
int
,
std
::
vector
<
int
>>*
indices
,
int
*
num_nmsed_out
)
const
{
int64_t
background_label
=
ctx
.
Attr
<
int
>
(
"background_label"
);
int64_t
nms_top_k
=
ctx
.
Attr
<
int
>
(
"nms_top_k"
);
int64_t
keep_top_k
=
ctx
.
Attr
<
int
>
(
"keep_top_k"
);
bool
normalized
=
ctx
.
Attr
<
bool
>
(
"normalized"
);
T
nms_threshold
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"nms_threshold"
));
T
nms_eta
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"nms_eta"
));
T
score_threshold
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"score_threshold"
));
int
num_det
=
0
;
int64_t
class_num
=
scores
->
dims
()[
0
];
Tensor
bbox_slice
,
score_slice
;
for
(
int64_t
c
=
0
;
c
<
class_num
;
++
c
)
{
if
(
c
==
background_label
)
continue
;
score_slice
=
scores
->
Slice
(
c
,
c
+
1
);
bbox_slice
=
*
bboxes
;
LocalityAwareNMSFast
(
&
bbox_slice
,
&
score_slice
,
score_threshold
,
nms_threshold
,
nms_eta
,
nms_top_k
,
&
((
*
indices
)[
c
]),
normalized
);
num_det
+=
(
*
indices
)[
c
].
size
();
}
*
num_nmsed_out
=
num_det
;
const
T
*
scores_data
=
scores
->
data
<
T
>
();
if
(
keep_top_k
>
-
1
&&
num_det
>
keep_top_k
)
{
const
T
*
sdata
;
std
::
vector
<
std
::
pair
<
float
,
std
::
pair
<
int
,
int
>>>
score_index_pairs
;
for
(
const
auto
&
it
:
*
indices
)
{
int
label
=
it
.
first
;
sdata
=
scores_data
+
label
*
scores
->
dims
()[
1
];
const
std
::
vector
<
int
>&
label_indices
=
it
.
second
;
for
(
size_t
j
=
0
;
j
<
label_indices
.
size
();
++
j
)
{
int
idx
=
label_indices
[
j
];
score_index_pairs
.
push_back
(
std
::
make_pair
(
sdata
[
idx
],
std
::
make_pair
(
label
,
idx
)));
}
}
// Keep top k results per image.
std
::
stable_sort
(
score_index_pairs
.
begin
(),
score_index_pairs
.
end
(),
SortScorePairDescend
<
std
::
pair
<
int
,
int
>>
);
score_index_pairs
.
resize
(
keep_top_k
);
// Store the new indices.
std
::
map
<
int
,
std
::
vector
<
int
>>
new_indices
;
for
(
size_t
j
=
0
;
j
<
score_index_pairs
.
size
();
++
j
)
{
int
label
=
score_index_pairs
[
j
].
second
.
first
;
int
idx
=
score_index_pairs
[
j
].
second
.
second
;
new_indices
[
label
].
push_back
(
idx
);
}
new_indices
.
swap
(
*
indices
);
*
num_nmsed_out
=
keep_top_k
;
}
}
void
LocalityAwareNMSOutput
(
const
platform
::
DeviceContext
&
ctx
,
const
Tensor
&
scores
,
const
Tensor
&
bboxes
,
const
std
::
map
<
int
,
std
::
vector
<
int
>>&
selected_indices
,
const
int
scores_size
,
Tensor
*
outs
,
int
*
oindices
=
nullptr
,
const
int
offset
=
0
)
const
{
int64_t
predict_dim
=
scores
.
dims
()[
1
];
int64_t
box_size
=
bboxes
.
dims
()[
1
];
if
(
scores_size
==
2
)
{
box_size
=
bboxes
.
dims
()[
2
];
}
int64_t
out_dim
=
box_size
+
2
;
auto
*
scores_data
=
scores
.
data
<
T
>
();
auto
*
bboxes_data
=
bboxes
.
data
<
T
>
();
auto
*
odata
=
outs
->
data
<
T
>
();
const
T
*
sdata
;
Tensor
bbox
;
bbox
.
Resize
({
scores
.
dims
()[
0
],
box_size
});
int
count
=
0
;
for
(
const
auto
&
it
:
selected_indices
)
{
int
label
=
it
.
first
;
const
std
::
vector
<
int
>&
indices
=
it
.
second
;
sdata
=
scores_data
+
label
*
predict_dim
;
for
(
size_t
j
=
0
;
j
<
indices
.
size
();
++
j
)
{
int
idx
=
indices
[
j
];
odata
[
count
*
out_dim
]
=
label
;
// label
const
T
*
bdata
;
bdata
=
bboxes_data
+
idx
*
box_size
;
odata
[
count
*
out_dim
+
1
]
=
sdata
[
idx
];
// score
if
(
oindices
!=
nullptr
)
{
oindices
[
count
]
=
offset
+
idx
;
}
// xmin, ymin, xmax, ymax or multi-points coordinates
std
::
memcpy
(
odata
+
count
*
out_dim
+
2
,
bdata
,
box_size
*
sizeof
(
T
));
count
++
;
}
}
}
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
boxes_input
=
ctx
.
Input
<
LoDTensor
>
(
"BBoxes"
);
auto
*
scores_input
=
ctx
.
Input
<
LoDTensor
>
(
"Scores"
);
auto
*
outs
=
ctx
.
Output
<
LoDTensor
>
(
"Out"
);
auto
score_dims
=
scores_input
->
dims
();
auto
score_size
=
score_dims
.
size
();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>();
LoDTensor
scores
;
LoDTensor
boxes
;
TensorCopySync
(
*
scores_input
,
platform
::
CPUPlace
(),
&
scores
);
TensorCopySync
(
*
boxes_input
,
platform
::
CPUPlace
(),
&
boxes
);
std
::
vector
<
std
::
map
<
int
,
std
::
vector
<
int
>>>
all_indices
;
std
::
vector
<
size_t
>
batch_starts
=
{
0
};
int64_t
batch_size
=
score_dims
[
0
];
int64_t
box_dim
=
boxes
.
dims
()[
2
];
int64_t
out_dim
=
box_dim
+
2
;
int
num_nmsed_out
=
0
;
Tensor
boxes_slice
,
scores_slice
;
int
n
=
batch_size
;
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
scores_slice
=
scores
.
Slice
(
i
,
i
+
1
);
scores_slice
.
Resize
({
score_dims
[
1
],
score_dims
[
2
]});
boxes_slice
=
boxes
.
Slice
(
i
,
i
+
1
);
boxes_slice
.
Resize
({
score_dims
[
2
],
box_dim
});
std
::
map
<
int
,
std
::
vector
<
int
>>
indices
;
LocalityAwareNMS
(
ctx
,
&
scores_slice
,
&
boxes_slice
,
score_size
,
&
indices
,
&
num_nmsed_out
);
all_indices
.
push_back
(
indices
);
batch_starts
.
push_back
(
batch_starts
.
back
()
+
num_nmsed_out
);
}
int
num_kept
=
batch_starts
.
back
();
if
(
num_kept
==
0
)
{
T
*
od
=
outs
->
mutable_data
<
T
>
({
1
,
1
},
ctx
.
GetPlace
());
od
[
0
]
=
-
1
;
batch_starts
=
{
0
,
1
};
}
else
{
outs
->
mutable_data
<
T
>
({
num_kept
,
out_dim
},
ctx
.
GetPlace
());
int
offset
=
0
;
int
*
oindices
=
nullptr
;
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
scores_slice
=
scores
.
Slice
(
i
,
i
+
1
);
boxes_slice
=
boxes
.
Slice
(
i
,
i
+
1
);
scores_slice
.
Resize
({
score_dims
[
1
],
score_dims
[
2
]});
boxes_slice
.
Resize
({
score_dims
[
2
],
box_dim
});
int64_t
s
=
batch_starts
[
i
];
int64_t
e
=
batch_starts
[
i
+
1
];
if
(
e
>
s
)
{
Tensor
out
=
outs
->
Slice
(
s
,
e
);
LocalityAwareNMSOutput
(
dev_ctx
,
scores_slice
,
boxes_slice
,
all_indices
[
i
],
score_dims
.
size
(),
&
out
,
oindices
,
offset
);
}
}
}
framework
::
LoD
lod
;
lod
.
emplace_back
(
batch_starts
);
outs
->
set_lod
(
lod
);
}
};
class
LocalityAwareNMSOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"BBoxes"
,
"Two types of bboxes are supported:"
"1. (Tensor) A 3-D Tensor with shape "
"[N, M, 4 or 8 16 24 32] represents the "
"predicted locations of M bounding bboxes, N is the batch size. "
"Each bounding box has four coordinate values and the layout is "
"[xmin, ymin, xmax, ymax], when box size equals to 4."
);
AddInput
(
"Scores"
,
"Two types of scores are supported:"
"1. (Tensor) A 3-D Tensor with shape [N, C, M] represents the "
"predicted confidence predictions. N is the batch size, C is the "
"class number, M is number of bounding boxes. For each category "
"there are total M scores which corresponding M bounding boxes. "
" Please note, M is equal to the 2nd dimension of BBoxes. "
);
AddAttr
<
int
>
(
"background_label"
,
"(int, default: -1) "
"The index of background label, the background label will be ignored. "
"If set to -1, then all categories will be considered."
)
.
SetDefault
(
-
1
);
AddAttr
<
float
>
(
"score_threshold"
,
"(float) "
"Threshold to filter out bounding boxes with low "
"confidence score. If not provided, consider all boxes."
);
AddAttr
<
int
>
(
"nms_top_k"
,
"(int64_t) "
"Maximum number of detections to be kept according to the "
"confidences aftern the filtering detections based on "
"score_threshold"
);
AddAttr
<
float
>
(
"nms_threshold"
,
"(float, default: 0.3) "
"The threshold to be used in NMS."
)
.
SetDefault
(
0.3
);
AddAttr
<
float
>
(
"nms_eta"
,
"(float) "
"The parameter for adaptive NMS."
)
.
SetDefault
(
1.0
);
AddAttr
<
int
>
(
"keep_top_k"
,
"(int64_t) "
"Number of total bboxes to be kept per image after NMS "
"step. -1 means keeping all bboxes after NMS step."
);
AddAttr
<
bool
>
(
"normalized"
,
"(bool, default true) "
"Whether detections are normalized."
)
.
SetDefault
(
true
);
AddOutput
(
"Out"
,
"(LoDTensor) A 2-D LoDTensor with shape [No, 6] represents the "
"detections. Each row has 6 values: "
"[label, confidence, xmin, ymin, xmax, ymax] or "
"(LoDTensor) A 2-D LoDTensor with shape [No, 10] represents the "
"detections. Each row has 10 values: "
"[label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the "
"total number of detections in this mini-batch."
"For each instance, "
"the offsets in first dimension are called LoD, the number of "
"offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
"no detected bbox."
);
AddComment
(
R"DOC(
This operator is to do locality-aware non maximum suppression (NMS) on a batched
of boxes and scores.
Firstly, this operator merge box and score according their IOU(intersection over union).
In the NMS step, this operator greedily selects a subset of detection bounding
boxes that have high scores larger than score_threshold, if providing this
threshold, then selects the largest nms_top_k confidences scores if nms_top_k
is larger than -1. Then this operator pruns away boxes that have high IOU
(intersection over union) overlap with already selected boxes by adaptive
threshold NMS based on parameters of nms_threshold and nms_eta.
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
per image if keep_top_k is larger than -1.
This operator support multi-class and batched inputs. It applying NMS
independently for each class. The outputs is a 2-D LoDTenosr, for each
image, the offsets in first dimension of LoDTensor are called LoD, the number
of offset is N + 1, where N is the batch size. If LoD[i + 1] - LoD[i] == 0,
means there is no detected bbox for this image.
Please get more information from the following papers:
https://arxiv.org/abs/1704.03155.
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
locality_aware_nms
,
ops
::
LocalityAwareNMSOp
,
ops
::
LocalityAwareNMSOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OP_CPU_KERNEL
(
locality_aware_nms
,
ops
::
LocalityAwareNMSKernel
<
float
>
,
ops
::
LocalityAwareNMSKernel
<
double
>
);
paddle/fluid/operators/detection/multiclass_nms_op.cc
浏览文件 @
06063b70
...
...
@@ -13,7 +13,7 @@ limitations under the License. */
#include <glog/logging.h>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detection/
poly
_util.h"
#include "paddle/fluid/operators/detection/
nms
_util.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -85,84 +85,6 @@ class MultiClassNMSOp : public framework::OperatorWithKernel {
}
};
template
<
class
T
>
bool
SortScorePairDescend
(
const
std
::
pair
<
float
,
T
>&
pair1
,
const
std
::
pair
<
float
,
T
>&
pair2
)
{
return
pair1
.
first
>
pair2
.
first
;
}
template
<
class
T
>
static
inline
void
GetMaxScoreIndex
(
const
std
::
vector
<
T
>&
scores
,
const
T
threshold
,
int
top_k
,
std
::
vector
<
std
::
pair
<
T
,
int
>>*
sorted_indices
)
{
for
(
size_t
i
=
0
;
i
<
scores
.
size
();
++
i
)
{
if
(
scores
[
i
]
>
threshold
)
{
sorted_indices
->
push_back
(
std
::
make_pair
(
scores
[
i
],
i
));
}
}
// Sort the score pair according to the scores in descending order
std
::
stable_sort
(
sorted_indices
->
begin
(),
sorted_indices
->
end
(),
SortScorePairDescend
<
int
>
);
// Keep top_k scores if needed.
if
(
top_k
>
-
1
&&
top_k
<
static_cast
<
int
>
(
sorted_indices
->
size
()))
{
sorted_indices
->
resize
(
top_k
);
}
}
template
<
class
T
>
static
inline
T
BBoxArea
(
const
T
*
box
,
const
bool
normalized
)
{
if
(
box
[
2
]
<
box
[
0
]
||
box
[
3
]
<
box
[
1
])
{
// If coordinate values are is invalid
// (e.g. xmax < xmin or ymax < ymin), return 0.
return
static_cast
<
T
>
(
0.
);
}
else
{
const
T
w
=
box
[
2
]
-
box
[
0
];
const
T
h
=
box
[
3
]
-
box
[
1
];
if
(
normalized
)
{
return
w
*
h
;
}
else
{
// If coordinate values are not within range [0, 1].
return
(
w
+
1
)
*
(
h
+
1
);
}
}
}
template
<
class
T
>
static
inline
T
JaccardOverlap
(
const
T
*
box1
,
const
T
*
box2
,
const
bool
normalized
)
{
if
(
box2
[
0
]
>
box1
[
2
]
||
box2
[
2
]
<
box1
[
0
]
||
box2
[
1
]
>
box1
[
3
]
||
box2
[
3
]
<
box1
[
1
])
{
return
static_cast
<
T
>
(
0.
);
}
else
{
const
T
inter_xmin
=
std
::
max
(
box1
[
0
],
box2
[
0
]);
const
T
inter_ymin
=
std
::
max
(
box1
[
1
],
box2
[
1
]);
const
T
inter_xmax
=
std
::
min
(
box1
[
2
],
box2
[
2
]);
const
T
inter_ymax
=
std
::
min
(
box1
[
3
],
box2
[
3
]);
T
norm
=
normalized
?
static_cast
<
T
>
(
0.
)
:
static_cast
<
T
>
(
1.
);
T
inter_w
=
inter_xmax
-
inter_xmin
+
norm
;
T
inter_h
=
inter_ymax
-
inter_ymin
+
norm
;
const
T
inter_area
=
inter_w
*
inter_h
;
const
T
bbox1_area
=
BBoxArea
<
T
>
(
box1
,
normalized
);
const
T
bbox2_area
=
BBoxArea
<
T
>
(
box2
,
normalized
);
return
inter_area
/
(
bbox1_area
+
bbox2_area
-
inter_area
);
}
}
template
<
class
T
>
T
PolyIoU
(
const
T
*
box1
,
const
T
*
box2
,
const
size_t
box_size
,
const
bool
normalized
)
{
T
bbox1_area
=
PolyArea
<
T
>
(
box1
,
box_size
,
normalized
);
T
bbox2_area
=
PolyArea
<
T
>
(
box2
,
box_size
,
normalized
);
T
inter_area
=
PolyOverlapArea
<
T
>
(
box1
,
box2
,
box_size
,
normalized
);
if
(
bbox1_area
==
0
||
bbox2_area
==
0
||
inter_area
==
0
)
{
// If coordinate values are invalid
// if area size <= 0, return 0.
return
T
(
0.
);
}
else
{
return
inter_area
/
(
bbox1_area
+
bbox2_area
-
inter_area
);
}
}
template
<
class
T
>
void
SliceOneClass
(
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Tensor
&
items
,
const
int
class_id
,
...
...
paddle/fluid/operators/detection/nms_util.h
0 → 100644
浏览文件 @
06063b70
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <utility>
#include <vector>
#include "paddle/fluid/operators/detection/poly_util.h"
namespace
paddle
{
namespace
operators
{
template
<
class
T
>
bool
SortScorePairDescend
(
const
std
::
pair
<
float
,
T
>&
pair1
,
const
std
::
pair
<
float
,
T
>&
pair2
)
{
return
pair1
.
first
>
pair2
.
first
;
}
template
<
class
T
>
static
inline
void
GetMaxScoreIndex
(
const
std
::
vector
<
T
>&
scores
,
const
T
threshold
,
int
top_k
,
std
::
vector
<
std
::
pair
<
T
,
int
>>*
sorted_indices
)
{
for
(
size_t
i
=
0
;
i
<
scores
.
size
();
++
i
)
{
if
(
scores
[
i
]
>
threshold
)
{
sorted_indices
->
push_back
(
std
::
make_pair
(
scores
[
i
],
i
));
}
}
// Sort the score pair according to the scores in descending order
std
::
stable_sort
(
sorted_indices
->
begin
(),
sorted_indices
->
end
(),
SortScorePairDescend
<
int
>
);
// Keep top_k scores if needed.
if
(
top_k
>
-
1
&&
top_k
<
static_cast
<
int
>
(
sorted_indices
->
size
()))
{
sorted_indices
->
resize
(
top_k
);
}
}
template
<
class
T
>
static
inline
T
BBoxArea
(
const
T
*
box
,
const
bool
normalized
)
{
if
(
box
[
2
]
<
box
[
0
]
||
box
[
3
]
<
box
[
1
])
{
// If coordinate values are is invalid
// (e.g. xmax < xmin or ymax < ymin), return 0.
return
static_cast
<
T
>
(
0.
);
}
else
{
const
T
w
=
box
[
2
]
-
box
[
0
];
const
T
h
=
box
[
3
]
-
box
[
1
];
if
(
normalized
)
{
return
w
*
h
;
}
else
{
// If coordinate values are not within range [0, 1].
return
(
w
+
1
)
*
(
h
+
1
);
}
}
}
template
<
class
T
>
static
inline
T
JaccardOverlap
(
const
T
*
box1
,
const
T
*
box2
,
const
bool
normalized
)
{
if
(
box2
[
0
]
>
box1
[
2
]
||
box2
[
2
]
<
box1
[
0
]
||
box2
[
1
]
>
box1
[
3
]
||
box2
[
3
]
<
box1
[
1
])
{
return
static_cast
<
T
>
(
0.
);
}
else
{
const
T
inter_xmin
=
std
::
max
(
box1
[
0
],
box2
[
0
]);
const
T
inter_ymin
=
std
::
max
(
box1
[
1
],
box2
[
1
]);
const
T
inter_xmax
=
std
::
min
(
box1
[
2
],
box2
[
2
]);
const
T
inter_ymax
=
std
::
min
(
box1
[
3
],
box2
[
3
]);
T
norm
=
normalized
?
static_cast
<
T
>
(
0.
)
:
static_cast
<
T
>
(
1.
);
T
inter_w
=
inter_xmax
-
inter_xmin
+
norm
;
T
inter_h
=
inter_ymax
-
inter_ymin
+
norm
;
const
T
inter_area
=
inter_w
*
inter_h
;
const
T
bbox1_area
=
BBoxArea
<
T
>
(
box1
,
normalized
);
const
T
bbox2_area
=
BBoxArea
<
T
>
(
box2
,
normalized
);
return
inter_area
/
(
bbox1_area
+
bbox2_area
-
inter_area
);
}
}
template
<
class
T
>
T
PolyIoU
(
const
T
*
box1
,
const
T
*
box2
,
const
size_t
box_size
,
const
bool
normalized
)
{
T
bbox1_area
=
PolyArea
<
T
>
(
box1
,
box_size
,
normalized
);
T
bbox2_area
=
PolyArea
<
T
>
(
box2
,
box_size
,
normalized
);
T
inter_area
=
PolyOverlapArea
<
T
>
(
box1
,
box2
,
box_size
,
normalized
);
if
(
bbox1_area
==
0
||
bbox2_area
==
0
||
inter_area
==
0
)
{
// If coordinate values are invalid
// if area size <= 0, return 0.
return
T
(
0.
);
}
else
{
return
inter_area
/
(
bbox1_area
+
bbox2_area
-
inter_area
);
}
}
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/layers/detection.py
浏览文件 @
06063b70
...
...
@@ -53,6 +53,7 @@ __all__ = [
'yolo_box'
,
'box_clip'
,
'multiclass_nms'
,
'locality_aware_nms'
,
'retinanet_detection_output'
,
'distribute_fpn_proposals'
,
'box_decoder_and_assign'
,
...
...
@@ -3147,6 +3148,124 @@ def multiclass_nms(bboxes,
return
output
def
locality_aware_nms
(
bboxes
,
scores
,
score_threshold
,
nms_top_k
,
keep_top_k
,
nms_threshold
=
0.3
,
normalized
=
True
,
nms_eta
=
1.
,
background_label
=-
1
,
name
=
None
):
"""
**Local Aware NMS**
`Local Aware NMS <https://arxiv.org/abs/1704.03155>`_ is to do locality-aware non maximum
suppression (LANMS) on boxes and scores.
Firstly, this operator merge box and score according their IOU
(intersection over union). In the NMS step, this operator greedily selects a
subset of detection bounding boxes that have high scores larger than score_threshold,
if providing this threshold, then selects the largest nms_top_k confidences scores
if nms_top_k is larger than -1. Then this operator pruns away boxes that have high
IOU overlap with already selected boxes by adaptive threshold NMS based on parameters
of nms_threshold and nms_eta.
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
per image if keep_top_k is larger than -1.
Args:
bboxes (Variable): A 3-D Tensor with shape [N, M, 4 or 8 16 24 32]
represents the predicted locations of M bounding
bboxes, N is the batch size. Each bounding box
has four coordinate values and the layout is
[xmin, ymin, xmax, ymax], when box size equals to 4.
The data type is float32 or float64.
scores (Variable): A 3-D Tensor with shape [N, C, M] represents the
predicted confidence predictions. N is the batch
size, C is the class number, M is number of bounding
boxes. Now only support 1 class. For each category
there are total M scores which corresponding M bounding
boxes. Please note, M is equal to the 2nd dimension of
BBoxes. The data type is float32 or float64.
background_label (int): The index of background label, the background
label will be ignored. If set to -1, then all
categories will be considered. Default: -1
score_threshold (float): Threshold to filter out bounding boxes with
low confidence score. If not provided,
consider all boxes.
nms_top_k (int): Maximum number of detections to be kept according to
the confidences aftern the filtering detections based
on score_threshold.
nms_threshold (float): The threshold to be used in NMS. Default: 0.3
nms_eta (float): The threshold to be used in NMS. Default: 1.0
keep_top_k (int): Number of total bboxes to be kept per image after NMS
step. -1 means keeping all bboxes after NMS step.
normalized (bool): Whether detections are normalized. Default: True
name(str): Name of the locality aware nms op, please refer to :ref:`api_guide_Name` .
Default: None.
Returns:
Variable: A 2-D LoDTensor with shape [No, 6] represents the detections.
Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
or A 2-D LoDTensor with shape [No, 10] represents the detections.
Each row has 10 values:
[label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the
total number of detections. If there is no detected boxes for all
images, lod will be set to {1} and Out only contains one value
which is -1.
(After version 1.3, when no boxes detected, the lod is changed
from {0} to {1}). The data type is float32 or float64.
Examples:
.. code-block:: python
import paddle.fluid as fluid
boxes = fluid.data(name='bboxes', shape=[None, 81, 8],
dtype='float32')
scores = fluid.data(name='scores', shape=[None, 1, 81],
dtype='float32')
out = fluid.layers.locality_aware_nms(bboxes=boxes,
scores=scores,
score_threshold=0.5,
nms_top_k=400,
nms_threshold=0.3,
keep_top_k=200,
normalized=False)
"""
shape
=
scores
.
shape
assert
len
(
shape
)
==
3
,
"dim size of scores must be 3"
assert
shape
[
1
]
==
1
,
"locality_aware_nms only support one class, Tensor score shape must be [N, 1, M]"
helper
=
LayerHelper
(
'locality_aware_nms'
,
**
locals
())
output
=
helper
.
create_variable_for_type_inference
(
dtype
=
bboxes
.
dtype
)
out
=
{
'Out'
:
output
}
helper
.
append_op
(
type
=
"locality_aware_nms"
,
inputs
=
{
'BBoxes'
:
bboxes
,
'Scores'
:
scores
},
attrs
=
{
'background_label'
:
background_label
,
'score_threshold'
:
score_threshold
,
'nms_top_k'
:
nms_top_k
,
'nms_threshold'
:
nms_threshold
,
'nms_eta'
:
nms_eta
,
'keep_top_k'
:
keep_top_k
,
'nms_eta'
:
nms_eta
,
'normalized'
:
normalized
},
outputs
=
{
'Out'
:
output
})
output
.
stop_gradient
=
True
return
output
def
distribute_fpn_proposals
(
fpn_rois
,
min_level
,
max_level
,
...
...
python/paddle/fluid/tests/unittests/test_locality_aware_nms_op.py
0 → 100644
浏览文件 @
06063b70
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
copy
from
op_test
import
OpTest
from
test_multiclass_nms_op
import
iou
import
paddle.fluid
as
fluid
def
weight_merge
(
box1
,
box2
,
score1
,
score2
):
for
i
in
range
(
len
(
box1
)):
box2
[
i
]
=
(
box1
[
i
]
*
score1
+
box2
[
i
]
*
score2
)
/
(
score1
+
score2
)
def
nms
(
boxes
,
scores
,
score_threshold
,
nms_threshold
,
top_k
=
200
,
normalized
=
True
,
eta
=
1.0
):
"""Apply non-maximum suppression at test time to avoid detecting too many
overlapping bounding boxes for a given object.
Args:
boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
scores: (tensor) The class predscores for the img, Shape:[num_priors].
score_threshold: (float) The confidence thresh for filtering low
confidence boxes.
nms_threshold: (float) The overlap thresh for suppressing unnecessary
boxes.
top_k: (int) The maximum number of box preds to consider.
eta: (float) The parameter for adaptive NMS.
Return:
The indices of the kept boxes with respect to num_priors.
"""
index
=
-
1
for
i
in
range
(
boxes
.
shape
[
0
]):
if
index
>
-
1
and
iou
(
boxes
[
i
],
boxes
[
index
],
normalized
)
>
nms_threshold
:
weight_merge
(
boxes
[
i
],
boxes
[
index
],
scores
[
i
],
scores
[
index
])
scores
[
index
]
+=
scores
[
i
]
scores
[
i
]
=
score_threshold
-
1.
else
:
index
=
i
all_scores
=
copy
.
deepcopy
(
scores
)
all_scores
=
all_scores
.
flatten
()
selected_indices
=
np
.
argwhere
(
all_scores
>
score_threshold
)
selected_indices
=
selected_indices
.
flatten
()
all_scores
=
all_scores
[
selected_indices
]
sorted_indices
=
np
.
argsort
(
-
all_scores
,
axis
=
0
,
kind
=
'mergesort'
)
sorted_scores
=
all_scores
[
sorted_indices
]
sorted_indices
=
selected_indices
[
sorted_indices
]
if
top_k
>
-
1
and
top_k
<
sorted_indices
.
shape
[
0
]:
sorted_indices
=
sorted_indices
[:
top_k
]
sorted_scores
=
sorted_scores
[:
top_k
]
selected_indices
=
[]
adaptive_threshold
=
nms_threshold
for
i
in
range
(
sorted_scores
.
shape
[
0
]):
idx
=
sorted_indices
[
i
]
keep
=
True
for
k
in
range
(
len
(
selected_indices
)):
if
keep
:
kept_idx
=
selected_indices
[
k
]
overlap
=
iou
(
boxes
[
idx
],
boxes
[
kept_idx
],
normalized
)
keep
=
True
if
overlap
<=
adaptive_threshold
else
False
else
:
break
if
keep
:
selected_indices
.
append
(
idx
)
if
keep
and
eta
<
1
and
adaptive_threshold
>
0.5
:
adaptive_threshold
*=
eta
return
selected_indices
def
multiclass_nms
(
boxes
,
scores
,
background
,
score_threshold
,
nms_threshold
,
nms_top_k
,
keep_top_k
,
normalized
,
shared
):
if
shared
:
class_num
=
scores
.
shape
[
0
]
priorbox_num
=
scores
.
shape
[
1
]
else
:
box_num
=
scores
.
shape
[
0
]
class_num
=
scores
.
shape
[
1
]
selected_indices
=
{}
num_det
=
0
for
c
in
range
(
class_num
):
if
c
==
background
:
continue
if
shared
:
indices
=
nms
(
boxes
,
scores
[
c
],
score_threshold
,
nms_threshold
,
nms_top_k
,
normalized
)
else
:
indices
=
nms
(
boxes
[:,
c
,
:],
scores
[:,
c
],
score_threshold
,
nms_threshold
,
nms_top_k
,
normalized
)
selected_indices
[
c
]
=
indices
num_det
+=
len
(
indices
)
if
keep_top_k
>
-
1
and
num_det
>
keep_top_k
:
score_index
=
[]
for
c
,
indices
in
selected_indices
.
items
():
for
idx
in
indices
:
if
shared
:
score_index
.
append
((
scores
[
c
][
idx
],
c
,
idx
))
else
:
score_index
.
append
((
scores
[
idx
][
c
],
c
,
idx
))
sorted_score_index
=
sorted
(
score_index
,
key
=
lambda
tup
:
tup
[
0
],
reverse
=
True
)
sorted_score_index
=
sorted_score_index
[:
keep_top_k
]
selected_indices
=
{}
for
_
,
c
,
_
in
sorted_score_index
:
selected_indices
[
c
]
=
[]
for
s
,
c
,
idx
in
sorted_score_index
:
selected_indices
[
c
].
append
(
idx
)
if
not
shared
:
for
labels
in
selected_indices
:
selected_indices
[
labels
].
sort
()
num_det
=
keep_top_k
return
selected_indices
,
num_det
def
batched_multiclass_nms
(
boxes
,
scores
,
background
,
score_threshold
,
nms_threshold
,
nms_top_k
,
keep_top_k
,
normalized
=
True
):
batch_size
=
scores
.
shape
[
0
]
num_boxes
=
scores
.
shape
[
2
]
det_outs
=
[]
lod
=
[]
for
n
in
range
(
batch_size
):
nmsed_outs
,
nmsed_num
=
multiclass_nms
(
boxes
[
n
],
scores
[
n
],
background
,
score_threshold
,
nms_threshold
,
nms_top_k
,
keep_top_k
,
normalized
,
shared
=
True
)
lod
.
append
(
nmsed_num
)
if
nmsed_num
==
0
:
continue
tmp_det_out
=
[]
for
c
,
indices
in
nmsed_outs
.
items
():
for
idx
in
indices
:
xmin
,
ymin
,
xmax
,
ymax
=
boxes
[
n
][
idx
][:]
tmp_det_out
.
append
([
c
,
scores
[
n
][
c
][
idx
],
xmin
,
ymin
,
xmax
,
ymax
,
idx
+
n
*
num_boxes
])
sorted_det_out
=
sorted
(
tmp_det_out
,
key
=
lambda
tup
:
tup
[
0
],
reverse
=
False
)
det_outs
.
extend
(
sorted_det_out
)
return
det_outs
,
lod
class
TestLocalAwareNMSOp
(
OpTest
):
def
set_argument
(
self
):
self
.
score_threshold
=
0.01
def
setUp
(
self
):
self
.
set_argument
()
N
=
10
M
=
1200
C
=
1
BOX_SIZE
=
4
background
=
-
1
nms_threshold
=
0.3
nms_top_k
=
400
keep_top_k
=
10
score_threshold
=
self
.
score_threshold
scores
=
np
.
random
.
random
((
N
*
M
,
C
)).
astype
(
'float32'
)
def
softmax
(
x
):
shiftx
=
x
-
np
.
max
(
x
).
clip
(
-
64.
)
exps
=
np
.
exp
(
shiftx
)
return
exps
/
np
.
sum
(
exps
)
scores
=
np
.
apply_along_axis
(
softmax
,
1
,
scores
)
scores
=
np
.
reshape
(
scores
,
(
N
,
M
,
C
))
scores
=
np
.
transpose
(
scores
,
(
0
,
2
,
1
))
boxes
=
np
.
random
.
random
((
N
,
M
,
BOX_SIZE
)).
astype
(
'float32'
)
boxes
[:,
:,
0
:
2
]
=
boxes
[:,
:,
0
:
2
]
*
0.5
boxes
[:,
:,
2
:
4
]
=
boxes
[:,
:,
2
:
4
]
*
0.5
+
0.5
boxes_copy
=
copy
.
deepcopy
(
boxes
)
scores_copy
=
copy
.
deepcopy
(
scores
)
det_outs
,
lod
=
batched_multiclass_nms
(
boxes_copy
,
scores_copy
,
background
,
score_threshold
,
nms_threshold
,
nms_top_k
,
keep_top_k
)
lod
=
[
1
]
if
not
det_outs
else
lod
det_outs
=
[[
-
1
,
0
]]
if
not
det_outs
else
det_outs
det_outs
=
np
.
array
(
det_outs
)
nmsed_outs
=
det_outs
[:,
:
-
1
].
astype
(
'float32'
)
self
.
op_type
=
'locality_aware_nms'
self
.
inputs
=
{
'BBoxes'
:
boxes
,
'Scores'
:
scores
}
self
.
outputs
=
{
'Out'
:
(
nmsed_outs
,
[
lod
])}
self
.
attrs
=
{
'background_label'
:
background
,
'nms_threshold'
:
nms_threshold
,
'nms_top_k'
:
nms_top_k
,
'keep_top_k'
:
keep_top_k
,
'score_threshold'
:
score_threshold
,
'nms_eta'
:
1.0
,
'normalized'
:
True
,
}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestLocalAwareNMSOpNoBoxes
(
TestLocalAwareNMSOp
):
def
set_argument
(
self
):
self
.
score_threshold
=
2.0
class
TestLocalAwareNMSOp4Points
(
OpTest
):
def
set_argument
(
self
):
self
.
score_threshold
=
0.01
def
setUp
(
self
):
self
.
set_argument
()
N
=
2
M
=
2
C
=
1
BOX_SIZE
=
8
nms_top_k
=
400
keep_top_k
=
200
nms_threshold
=
0.3
score_threshold
=
self
.
score_threshold
scores
=
np
.
array
([[[
0.76319082
,
0.73770091
]],
[[
0.68513154
,
0.45952697
]]])
boxes
=
np
.
array
([[[
0.42078365
,
0.58117018
,
2.92776169
,
3.28557757
,
4.24344318
,
0.92196165
,
2.72370856
,
-
1.66141214
],
[
0.13856006
,
1.86871034
,
2.81287224
,
3.61381734
,
4.5505249
,
0.51766346
,
2.75630304
,
-
1.91459389
]],
[[
1.57533883
,
1.3217477
,
3.07904942
,
3.89512545
,
4.78680923
,
1.96914586
,
3.539482
,
-
1.59739244
],
[
0.55084125
,
1.71596215
,
2.52476074
,
3.18940435
,
5.09035159
,
0.91959482
,
3.71442385
,
-
0.57299128
]]])
det_outs
=
np
.
array
([[
0.
,
1.5008917
,
0.28206837
,
1.2140071
,
2.8712926
,
3.4469104
,
4.3943763
,
0.7232457
,
2.7397292
,
-
1.7858533
],
[
0.
,
1.1446586
,
1.1640508
,
1.4800063
,
2.856528
,
3.6118112
,
4.908667
,
1.5478
,
3.609713
,
-
1.1861432
]])
lod
=
[
1
,
1
]
nmsed_outs
=
det_outs
.
astype
(
'float32'
)
self
.
op_type
=
'locality_aware_nms'
self
.
inputs
=
{
'BBoxes'
:
boxes
.
astype
(
'float32'
),
'Scores'
:
scores
.
astype
(
'float32'
)
}
self
.
outputs
=
{
'Out'
:
(
nmsed_outs
,
[
lod
])}
self
.
attrs
=
{
'score_threshold'
:
score_threshold
,
'nms_threshold'
:
nms_threshold
,
'nms_top_k'
:
nms_top_k
,
'keep_top_k'
:
keep_top_k
,
'background_label'
:
-
1
,
'normalized'
:
False
}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestLocalityAwareNMSAPI
(
OpTest
):
def
test_api
(
self
):
boxes
=
fluid
.
data
(
name
=
'bboxes'
,
shape
=
[
None
,
81
,
8
],
dtype
=
'float32'
)
scores
=
fluid
.
data
(
name
=
'scores'
,
shape
=
[
None
,
1
,
81
],
dtype
=
'float32'
)
fluid
.
layers
.
locality_aware_nms
(
bboxes
=
boxes
,
scores
=
scores
,
score_threshold
=
0.5
,
nms_top_k
=
400
,
nms_threshold
=
0.3
,
keep_top_k
=
200
,
normalized
=
False
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录