Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
04bcc13f
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
04bcc13f
编写于
11月 19, 2020
作者:
W
Wojciech Uss
提交者:
GitHub
11月 19, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add multi_gru op and tests (#28591)
* Add multi_gru op and tests * removed redundant disable_dygraph()
上级
fe2cf39f
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
1189 addition
and
0 deletion
+1189
-0
paddle/fluid/operators/fused/mkldnn/multi_gru_mkldnn_op.cc
paddle/fluid/operators/fused/mkldnn/multi_gru_mkldnn_op.cc
+694
-0
paddle/fluid/operators/fused/multi_gru_op.cc
paddle/fluid/operators/fused/multi_gru_op.cc
+203
-0
paddle/fluid/operators/fused/multi_gru_op.h
paddle/fluid/operators/fused/multi_gru_op.h
+43
-0
python/paddle/fluid/tests/unittests/mkldnn/test_multi_gru_mkldnn_op.py
.../fluid/tests/unittests/mkldnn/test_multi_gru_mkldnn_op.py
+248
-0
tools/static_mode_white_list.py
tools/static_mode_white_list.py
+1
-0
未找到文件。
paddle/fluid/operators/fused/mkldnn/multi_gru_mkldnn_op.cc
0 → 100644
浏览文件 @
04bcc13f
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <initializer_list>
#include <iostream>
#include <memory>
#include "dnnl.hpp"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/operators/fused/multi_gru_op.h"
#include "paddle/fluid/platform/errors.h"
#include "paddle/fluid/platform/mkldnn_reuse.h"
namespace
paddle
{
namespace
operators
{
using
paddle
::
framework
::
LoDTensor
;
using
paddle
::
framework
::
Tensor
;
using
paddle
::
platform
::
CPUDeviceContext
;
using
paddle
::
platform
::
CreateKey
;
using
paddle
::
platform
::
MKLDNNGetDataType
;
using
paddle
::
platform
::
MKLDNNMemDesc
;
using
platform
::
to_void_cast
;
using
framework
::
vectorize
;
using
Direction
=
dnnl
::
rnn_direction
;
namespace
{
// oneDNN RNN dimensions
const
int64_t
D
=
1
;
// Directions
const
int64_t
L
=
1
;
// Layers (PP supports only 1 stacked layer)
const
int64_t
G
=
3
;
// Number of Gates, 3 for GRU
constexpr
Direction
L2R
=
Direction
::
unidirectional_left2right
;
constexpr
Direction
R2L
=
Direction
::
unidirectional_right2left
;
constexpr
const
char
*
dir2str
(
Direction
dir
)
{
return
dir
==
L2R
?
"LR"
:
"RL"
;
}
}
// namespace
template
<
typename
T
,
typename
T_out
=
T
>
class
MultiGRUHandler
{
public:
MultiGRUHandler
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
,
const
platform
::
MKLDNNDeviceContext
&
dev_ctx
)
:
dev_ctx_
(
dev_ctx
),
engine_
(
dev_ctx
.
GetEngine
()),
place_
(
ctx
.
GetPlace
()),
origin_mode_
(
ctx
.
Attr
<
bool
>
(
"origin_mode"
)),
layers_
(
ctx
.
Attr
<
int
>
(
"layers"
)),
concat_pds_
(
layers_
,
std
::
shared_ptr
<
dnnl
::
concat
::
primitive_desc
>
()),
x_
(
ctx
.
Input
<
LoDTensor
>
(
"X"
)),
weights_x_
(
ctx
.
MultiInput
<
Tensor
>
(
"WeightX"
)),
weights_h_
(
ctx
.
MultiInput
<
Tensor
>
(
"WeightH"
)),
biases_
(
ctx
.
MultiInput
<
Tensor
>
(
"Bias"
)),
hidden_
(
ctx
.
Output
<
LoDTensor
>
(
"Hidden"
)),
x_lod_
(
x_
->
lod
()[
0
])
{
PADDLE_ENFORCE_EQ
(
weights_x_
.
size
(),
layers_
*
2
,
platform
::
errors
::
InvalidArgument
(
"The number of WeightX inputs does "
"not match the number of layers."
));
PADDLE_ENFORCE_EQ
(
weights_h_
.
size
(),
layers_
*
2
,
platform
::
errors
::
InvalidArgument
(
"The number of WeightH inputs does "
"not match the number of layers."
));
if
(
biases_
.
size
()
>
0
)
PADDLE_ENFORCE_EQ
(
biases_
.
size
(),
layers_
*
2
,
platform
::
errors
::
InvalidArgument
(
"The number of Bias inputs does "
"not match the number of layers."
));
// oneDNN kernel has hardcoded activation functions
PADDLE_ENFORCE_EQ
(
ctx
.
Attr
<
std
::
string
>
(
"gate_activation"
),
"sigmoid"
,
platform
::
errors
::
Unimplemented
(
"oneDNN fusion_gru supports only sigmoid as a gate activation."
));
PADDLE_ENFORCE_EQ
(
ctx
.
Attr
<
std
::
string
>
(
"activation"
),
"tanh"
,
platform
::
errors
::
Unimplemented
(
"oneDNN fusion_gru supports only tanh as an activation."
));
N_
=
x_lod_
.
size
()
-
1
;
// Number of sentences (batches)
Ti_
=
// Max length of the sentence in a batch
[
this
]()
{
size_t
res
=
0
;
for
(
size_t
i
=
0
;
i
<
(
x_lod_
.
size
()
-
1
);
++
i
)
{
res
=
std
::
max
(
res
,
x_lod_
[
i
+
1
]
-
x_lod_
[
i
]);
}
return
res
;
}();
// Weights come in pairs, with the same dimensions within a pair
for
(
int
layer
=
0
;
layer
<
layers_
;
++
layer
)
{
ICs
.
push_back
(
vectorize
(
weights_x_
[
2
*
layer
]
->
dims
())[
0
]);
OCs
.
push_back
(
vectorize
(
weights_h_
[
2
*
layer
]
->
dims
())[
0
]);
}
const
std
::
string
unique_name
=
ctx
.
OutputName
(
"Hidden"
);
// Create memory key without Ti because weights, bias and h0 memories
// do not depend on Ti size but primitive and input/output memory do
if
(
platform
::
MKLDNNDeviceContext
::
tls
().
get_cur_mkldnn_session_id
()
!=
platform
::
MKLDNNDeviceContextThreadLocals
::
kMKLDNNSessionID_Default
)
{
memory_key_
=
CreateKey
(
unique_name
,
MKLDNNGetDataType
<
T
>
());
}
else
{
memory_key_
=
CreateKey
(
unique_name
,
MKLDNNGetDataType
<
T
>
(),
"-t:"
,
platform
::
ThreadIDasStr
());
}
key_
=
memory_key_
;
key_
.
append
(
"T"
).
append
(
std
::
to_string
(
Ti_
));
// Is it int8 kernel
const
bool
is_int8
=
std
::
is_same
<
T
,
uint8_t
>::
value
;
// Create attributes for each oneDNN gru
for
(
int
i
=
0
;
i
<
2
*
layers_
;
++
i
)
{
attrs_
.
push_back
(
dnnl
::
primitive_attr
());
}
if
(
is_int8
)
{
// Add int8 attributes
const
auto
scale_weights
=
ctx
.
MultiInput
<
LoDTensor
>
(
"Scale_weights"
);
PADDLE_ENFORCE_EQ
(
scale_weights
.
size
(),
layers_
*
2
,
platform
::
errors
::
InvalidArgument
(
"The number of weight scale inputs does "
"not match the number of layers. Expected: %d. Actual: %d"
,
layers_
*
2
,
scale_weights
.
size
()));
const
float
scale_data
=
ctx
.
Attr
<
float
>
(
"Scale_data"
);
const
float
shift_data
=
ctx
.
Attr
<
float
>
(
"Shift_data"
);
const
int
weights_scale_mask
=
0
+
(
1
<<
3
)
// bit, indicating the unique scales for `g` dim in `ldigo`
+
(
1
<<
4
);
// bit, indicating the unique scales for `o` dim in `ldigo`
int
w_scale_num
=
scale_weights
.
size
();
for
(
int
i
=
0
;
i
<
w_scale_num
;
++
i
)
{
attrs_
[
i
].
set_rnn_data_qparams
(
scale_data
,
shift_data
);
const
auto
scale_weights_data
=
std
::
vector
<
float
>
(
scale_weights
[
i
]
->
data
<
float
>
(),
scale_weights
[
i
]
->
data
<
float
>
()
+
scale_weights
[
i
]
->
numel
());
attrs_
[
i
].
set_rnn_weights_qparams
(
weights_scale_mask
,
scale_weights_data
);
}
}
for
(
int
layer
=
0
;
layer
<
layers_
;
++
layer
)
{
AcquireGruPrimitiveDescriptor
(
layer
,
L2R
);
AcquireGruPrimitiveDescriptor
(
layer
,
R2L
);
AcquireConcatPrimitiveDescriptor
(
layer
);
}
}
void
AcquireGruPrimitiveDescriptor
(
int
layer
,
Direction
dir
)
{
auto
pd_key
=
key_
;
pd_key
.
append
(
"@gru_pd"
).
append
(
dir2str
(
dir
)).
append
(
std
::
to_string
(
layer
));
auto
pd
=
std
::
static_pointer_cast
<
dnnl
::
gru_forward
::
primitive_desc
>
(
dev_ctx_
.
GetBlob
(
pd_key
));
if
(
pd
==
nullptr
)
{
const
bool
is_int8
=
std
::
is_same
<
T
,
uint8_t
>::
value
;
// Weights for int8 kernel are of a type s8
const
auto
weights_dt
=
is_int8
?
dnnl
::
memory
::
data_type
::
s8
:
dnnl
::
memory
::
data_type
::
f32
;
auto
x_md
=
MKLDNNMemDesc
({
Ti_
,
N_
,
ICs
[
layer
]},
MKLDNNGetDataType
<
T
>
(),
MKLDNNMemoryFormat
::
ntc
);
auto
h0_md
=
MKLDNNMemDesc
({
L
,
D
,
N_
,
OCs
[
layer
]},
MKLDNNGetDataType
<
T
>
(),
MKLDNNMemoryFormat
::
ldnc
);
auto
wx_md
=
MKLDNNMemDesc
({
L
,
D
,
ICs
[
layer
],
G
,
OCs
[
layer
]},
weights_dt
,
MKLDNNMemoryFormat
::
any
);
auto
wh_md
=
MKLDNNMemDesc
({
L
,
D
,
OCs
[
layer
],
G
,
OCs
[
layer
]},
weights_dt
,
MKLDNNMemoryFormat
::
any
);
auto
b_md
=
MKLDNNMemDesc
({
L
,
D
,
G
,
OCs
[
layer
]},
MKLDNNGetDataType
<
float
>
(),
MKLDNNMemoryFormat
::
ldgo
);
auto
h_md
=
MKLDNNMemDesc
({
Ti_
,
N_
,
OCs
[
layer
]},
(
layer
==
layers_
-
1
)
?
MKLDNNGetDataType
<
T_out
>
()
:
MKLDNNGetDataType
<
T
>
(),
MKLDNNMemoryFormat
::
ntc
);
auto
desc
=
std
::
make_shared
<
dnnl
::
gru_forward
::
desc
>
(
dnnl
::
prop_kind
::
forward_inference
,
dir
,
x_md
,
h0_md
,
wx_md
,
wh_md
,
b_md
,
h_md
,
dnnl
::
memory
::
desc
());
pd
=
std
::
make_shared
<
dnnl
::
gru_forward
::
primitive_desc
>
(
*
desc
,
attrs_
[
2
*
layer
+
(
dir
==
R2L
)],
engine_
);
PADDLE_ENFORCE_NOT_NULL
(
pd
,
platform
::
errors
::
InvalidArgument
(
"Primitive descriptor for gru_forward cannot be null."
));
dev_ctx_
.
SetBlob
(
pd_key
,
pd
);
}
gru_pds_
[{
layer
,
dir
}]
=
pd
;
}
void
AcquireConcatPrimitiveDescriptor
(
int
layer
)
{
auto
pd_key
=
key_
;
pd_key
.
append
(
"@c_pd"
).
append
(
std
::
to_string
(
layer
));
auto
pd
=
std
::
static_pointer_cast
<
dnnl
::
concat
::
primitive_desc
>
(
dev_ctx_
.
GetBlob
(
pd_key
));
if
(
pd
==
nullptr
)
{
const
int
axis
=
2
;
auto
in_md
=
MKLDNNMemDesc
({
Ti_
,
N_
,
OCs
[
layer
]},
(
layer
==
layers_
-
1
)
?
MKLDNNGetDataType
<
T_out
>
()
:
MKLDNNGetDataType
<
T
>
(),
MKLDNNMemoryFormat
::
ntc
);
std
::
vector
<
dnnl
::
memory
::
desc
>
src_mds
{
in_md
,
in_md
};
pd
=
std
::
make_shared
<
dnnl
::
concat
::
primitive_desc
>
(
axis
,
src_mds
,
engine_
);
dev_ctx_
.
SetBlob
(
pd_key
,
pd
);
}
concat_pds_
[
layer
]
=
pd
;
}
std
::
shared_ptr
<
dnnl
::
memory
>
AcquireInputMemoryWithReorder
()
{
auto
key
=
key_
;
key
.
append
(
"@x_m"
);
auto
memory_p
=
std
::
static_pointer_cast
<
dnnl
::
memory
>
(
dev_ctx_
.
GetBlob
(
key
));
if
(
!
memory_p
)
{
memory_p
=
std
::
make_shared
<
dnnl
::
memory
>
(
gru_pds_
[{
0
,
L2R
}]
->
src_desc
(),
engine_
);
dev_ctx_
.
SetBlob
(
key
,
memory_p
);
}
auto
*
x_data
=
to_void_cast
(
x_
->
data
<
T
>
());
auto
*
x_onednn_data
=
memory_p
->
get_data_handle
();
memset
(
x_onednn_data
,
0
,
sizeof
(
T
)
*
N_
*
Ti_
*
ICs
[
0
]);
if
(
platform
::
GetMKLDNNFormat
(
gru_pds_
[{
0
,
L2R
}]
->
src_desc
())
==
dnnl
::
memory
::
format_tag
::
ntc
)
{
reorderPPtoNTC
(
x_data
,
x_onednn_data
,
x_lod_
,
0
,
L2R
);
}
else
{
reorderPPtoTNC
(
x_data
,
x_onednn_data
,
x_lod_
,
0
,
L2R
);
}
return
memory_p
;
}
// Reorder input memory [WORDS, C] + LoD -> [N, T, C]
void
reorderPPtoNTC
(
void
*
input_data
,
void
*
output_data
,
std
::
vector
<
size_t
>
lod
,
int
layer
,
Direction
dir
)
{
auto
*
input_data_iter
=
reinterpret_cast
<
T
*>
(
input_data
);
auto
*
output_data_iter
=
reinterpret_cast
<
T
*>
(
output_data
);
for
(
int
n
=
0
;
n
<
N_
;
++
n
)
{
const
auto
num_elements
=
(
lod
[
n
+
1
]
-
lod
[
n
])
*
ICs
[
layer
];
const
auto
offset
=
dir
==
R2L
?
(
Ti_
*
ICs
[
layer
]
-
num_elements
)
:
0
;
memcpy
(
output_data_iter
+
n
*
Ti_
*
ICs
[
layer
]
+
offset
,
input_data_iter
,
sizeof
(
T
)
*
num_elements
);
input_data_iter
+=
num_elements
;
}
}
// Reorder input memory [WORDS, C] + LoD -> [T, N, C]
void
reorderPPtoTNC
(
void
*
input_data
,
void
*
output_data
,
std
::
vector
<
size_t
>
lod
,
int
layer
,
Direction
dir
)
{
auto
*
input_data_iter
=
reinterpret_cast
<
T
*>
(
input_data
);
auto
*
output_data_iter
=
reinterpret_cast
<
T
*>
(
output_data
);
for
(
int
n
=
0
;
n
<
N_
;
++
n
)
{
const
auto
num_elements
=
(
lod
[
n
+
1
]
-
lod
[
n
]);
const
auto
offset
=
dir
==
R2L
?
(
Ti_
-
num_elements
)
:
0
;
for
(
size_t
t
=
0
;
t
<
num_elements
;
++
t
)
{
memcpy
(
output_data_iter
+
(
t
+
offset
)
*
N_
*
ICs
[
layer
]
+
n
*
ICs
[
layer
],
input_data_iter
,
sizeof
(
T
)
*
ICs
[
layer
]);
input_data_iter
+=
ICs
[
layer
];
}
}
}
std
::
shared_ptr
<
dnnl
::
memory
>
executeSingleGru
(
std
::
shared_ptr
<
dnnl
::
memory
>
input_mem
,
int
layer
,
Direction
dir
)
{
auto
h0_mem
=
AcquireH0Memory
(
layer
,
dir
);
auto
wx_mem
=
AcquireWeightXMemory
(
layer
,
dir
);
auto
wh_mem
=
AcquireWeightHMemory
(
layer
,
dir
);
auto
b_mem
=
AcquireBiasMemory
(
layer
,
dir
);
auto
out_mem
=
AcquireGruOutputMemory
(
layer
,
dir
);
std
::
unordered_map
<
int
,
dnnl
::
memory
>
gru_args
=
{
{
DNNL_ARG_SRC_LAYER
,
*
input_mem
},
{
DNNL_ARG_SRC_ITER
,
*
h0_mem
},
{
DNNL_ARG_WEIGHTS_LAYER
,
*
wx_mem
},
{
DNNL_ARG_WEIGHTS_ITER
,
*
wh_mem
},
{
DNNL_ARG_BIAS
,
*
b_mem
},
{
DNNL_ARG_DST_LAYER
,
*
out_mem
}};
auto
gru_forward_p0
=
AcquireGruPrimitive
(
layer
,
dir
);
dnnl
::
stream
astream
(
engine_
);
gru_forward_p0
->
execute
(
astream
,
gru_args
);
astream
.
wait
();
return
out_mem
;
}
// TODO(grygielski) H0 is for now persistable
std
::
shared_ptr
<
dnnl
::
memory
>
AcquireH0Memory
(
int
layer
,
Direction
dir
)
{
auto
key
=
memory_key_
;
key
.
append
(
"@h0"
).
append
(
dir2str
(
dir
)).
append
(
std
::
to_string
(
layer
));
auto
memory_p
=
std
::
static_pointer_cast
<
dnnl
::
memory
>
(
dev_ctx_
.
GetBlob
(
key
));
if
(
!
memory_p
)
{
auto
user_h0_memory
=
dnnl
::
memory
();
user_h0_memory
=
dnnl
::
memory
({{
1
,
1
,
N_
,
OCs
[
layer
]},
MKLDNNGetDataType
<
float
>
(),
MKLDNNMemoryFormat
::
ldnc
},
engine_
);
memset
(
user_h0_memory
.
get_data_handle
(),
0
,
sizeof
(
float
)
*
N_
*
OCs
[
layer
]);
memory_p
=
std
::
make_shared
<
dnnl
::
memory
>
(
gru_pds_
[{
layer
,
dir
}]
->
src_iter_desc
(),
engine_
);
dnnl
::
stream
astream
(
engine_
);
dnnl
::
reorder
(
user_h0_memory
,
*
memory_p
,
attrs_
[
2
*
layer
+
(
dir
==
R2L
)])
.
execute
(
astream
,
user_h0_memory
,
*
memory_p
);
dev_ctx_
.
SetBlob
(
key
,
memory_p
);
}
return
memory_p
;
}
std
::
shared_ptr
<
dnnl
::
memory
>
AcquireWeightXMemory
(
int
layer
,
Direction
dir
)
{
auto
key
=
memory_key_
;
key
.
append
(
"@wx"
).
append
(
dir2str
(
dir
)).
append
(
std
::
to_string
(
layer
));
auto
memory_p
=
std
::
static_pointer_cast
<
dnnl
::
memory
>
(
dev_ctx_
.
GetBlob
(
key
));
if
(
!
memory_p
)
{
auto
user_md
=
MKLDNNMemDesc
({
1
,
1
,
ICs
[
layer
],
3
,
OCs
[
layer
]},
MKLDNNGetDataType
<
float
>
(),
MKLDNNMemoryFormat
::
ldigo
);
auto
user_memory
=
dnnl
::
memory
(
user_md
,
engine_
);
auto
*
weight_x_data
=
reinterpret_cast
<
float
*>
(
user_memory
.
get_data_handle
());
int
idx
=
layer
*
2
+
(
dir
==
R2L
);
memcpy
(
weight_x_data
,
weights_x_
[
idx
]
->
data
<
float
>
(),
sizeof
(
float
)
*
ICs
[
layer
]
*
3
*
OCs
[
layer
]);
if
(
origin_mode_
==
false
)
{
for
(
int64_t
i
=
0
;
i
<
ICs
[
layer
];
++
i
)
{
for
(
int64_t
j
=
0
;
j
<
OCs
[
layer
];
++
j
)
{
weight_x_data
[
j
]
*=
-
1
;
}
weight_x_data
+=
3
*
OCs
[
layer
];
}
}
memory_p
=
std
::
make_shared
<
dnnl
::
memory
>
(
gru_pds_
[{
layer
,
dir
}]
->
weights_layer_desc
(),
engine_
);
dnnl
::
stream
astream
(
engine_
);
dnnl
::
reorder
(
user_memory
,
*
memory_p
,
attrs_
[
2
*
layer
+
(
dir
==
R2L
)])
.
execute
(
astream
,
user_memory
,
*
memory_p
);
dev_ctx_
.
SetBlob
(
key
,
memory_p
);
}
return
memory_p
;
}
std
::
shared_ptr
<
dnnl
::
memory
>
AcquireWeightHMemory
(
int
layer
,
Direction
dir
)
{
auto
key
=
memory_key_
;
key
.
append
(
"@wh"
).
append
(
dir2str
(
dir
)).
append
(
std
::
to_string
(
layer
));
auto
memory_p
=
std
::
static_pointer_cast
<
dnnl
::
memory
>
(
dev_ctx_
.
GetBlob
(
key
));
if
(
!
memory_p
)
{
auto
user_md
=
MKLDNNMemDesc
({
1
,
1
,
OCs
[
layer
],
3
,
OCs
[
layer
]},
MKLDNNGetDataType
<
float
>
(),
MKLDNNMemoryFormat
::
ldigo
);
auto
user_memory
=
dnnl
::
memory
(
user_md
,
engine_
);
// Reorder weights_h from PP format [OC, 2OC] + [OC, OC] to
// oneDNN format [OC, 3OC]
auto
*
weight_h_data
=
reinterpret_cast
<
float
*>
(
user_memory
.
get_data_handle
());
int
idx
=
layer
*
2
+
(
dir
==
R2L
);
auto
*
user_weight_h_data
=
weights_h_
[
idx
]
->
data
<
float
>
();
auto
src1_iter
=
user_weight_h_data
;
auto
src2_iter
=
user_weight_h_data
+
2
*
OCs
[
layer
]
*
OCs
[
layer
];
for
(
int64_t
c
=
0
;
c
<
OCs
[
layer
];
++
c
)
{
memcpy
(
weight_h_data
,
src1_iter
,
2
*
OCs
[
layer
]
*
sizeof
(
float
));
memcpy
(
weight_h_data
+
2
*
OCs
[
layer
],
src2_iter
,
OCs
[
layer
]
*
sizeof
(
float
));
src1_iter
+=
2
*
OCs
[
layer
];
src2_iter
+=
OCs
[
layer
];
weight_h_data
+=
3
*
OCs
[
layer
];
}
weight_h_data
=
reinterpret_cast
<
float
*>
(
user_memory
.
get_data_handle
());
if
(
origin_mode_
==
false
)
{
for
(
int64_t
i
=
0
;
i
<
OCs
[
layer
];
++
i
)
{
for
(
int64_t
j
=
0
;
j
<
OCs
[
layer
];
++
j
)
{
weight_h_data
[
j
]
*=
-
1
;
}
weight_h_data
+=
3
*
OCs
[
layer
];
}
}
memory_p
=
std
::
make_shared
<
dnnl
::
memory
>
(
gru_pds_
[{
layer
,
dir
}]
->
weights_iter_desc
(),
engine_
);
dnnl
::
stream
astream
(
engine_
);
dnnl
::
reorder
(
user_memory
,
*
memory_p
,
attrs_
[
2
*
layer
+
(
dir
==
R2L
)])
.
execute
(
astream
,
user_memory
,
*
memory_p
);
dev_ctx_
.
SetBlob
(
key
,
memory_p
);
}
return
memory_p
;
}
std
::
shared_ptr
<
dnnl
::
memory
>
AcquireBiasMemory
(
int
layer
,
Direction
dir
)
{
auto
key
=
memory_key_
;
key
.
append
(
"@b"
).
append
(
dir2str
(
dir
)).
append
(
std
::
to_string
(
layer
));
auto
memory_p
=
std
::
static_pointer_cast
<
dnnl
::
memory
>
(
dev_ctx_
.
GetBlob
(
key
));
if
(
!
memory_p
)
{
memory_p
=
std
::
make_shared
<
dnnl
::
memory
>
(
gru_pds_
[{
layer
,
dir
}]
->
bias_desc
(),
engine_
);
auto
*
bias_data
=
reinterpret_cast
<
float
*>
(
memory_p
->
get_data_handle
());
int
idx
=
layer
*
2
+
(
dir
==
R2L
);
if
(
biases_
.
size
()
>
0
&&
biases_
[
idx
])
{
const
float
*
user_bias_data
=
biases_
[
idx
]
->
data
<
float
>
();
// Bias in oneDNN is always float
memcpy
(
bias_data
,
user_bias_data
,
sizeof
(
float
)
*
3
*
OCs
[
layer
]);
}
else
{
// oneDNN always need bias memory, if it's not provided in PP, let
// oneDNN allocate memory and set it to 0
memset
(
bias_data
,
0
,
sizeof
(
float
)
*
3
*
OCs
[
layer
]);
}
if
(
origin_mode_
==
false
&&
biases_
.
size
()
&&
biases_
[
idx
])
{
for
(
int64_t
i
=
0
;
i
<
OCs
[
layer
];
++
i
)
{
bias_data
[
i
]
*=
-
1
;
}
}
dev_ctx_
.
SetBlob
(
key
,
memory_p
);
}
return
memory_p
;
}
std
::
shared_ptr
<
dnnl
::
memory
>
AcquireGruOutputMemory
(
int
layer
,
Direction
dir
)
{
auto
key
=
key_
;
key
.
append
(
"@h_m"
).
append
(
dir2str
(
dir
)).
append
(
std
::
to_string
(
layer
));
auto
memory_p
=
std
::
static_pointer_cast
<
dnnl
::
memory
>
(
dev_ctx_
.
GetBlob
(
key
));
if
(
!
memory_p
)
{
memory_p
=
std
::
make_shared
<
dnnl
::
memory
>
(
gru_pds_
[{
layer
,
dir
}]
->
dst_desc
(),
engine_
);
dev_ctx_
.
SetBlob
(
key
,
memory_p
);
}
return
memory_p
;
}
std
::
shared_ptr
<
dnnl
::
gru_forward
>
AcquireGruPrimitive
(
int
layer
,
Direction
dir
)
{
auto
key
=
key_
;
key
.
append
(
"@gru_p"
).
append
(
dir2str
(
dir
)).
append
(
std
::
to_string
(
layer
));
auto
prim
=
std
::
static_pointer_cast
<
dnnl
::
gru_forward
>
(
dev_ctx_
.
GetBlob
(
key
));
if
(
prim
==
nullptr
)
{
prim
=
std
::
make_shared
<
dnnl
::
gru_forward
>
(
*
gru_pds_
[{
layer
,
dir
}]);
dev_ctx_
.
SetBlob
(
key
,
prim
);
}
return
prim
;
}
void
reorderInputL2RtoR2L
(
std
::
shared_ptr
<
dnnl
::
memory
>
mem
,
int
layer
)
{
auto
*
data
=
mem
->
get_data_handle
();
auto
*
data_iter
=
reinterpret_cast
<
T
*>
(
data
);
for
(
int
n
=
0
;
n
<
N_
;
++
n
)
{
const
auto
num_elements
=
(
x_lod_
[
n
+
1
]
-
x_lod_
[
n
])
*
ICs
[
layer
];
const
auto
offset
=
Ti_
*
ICs
[
layer
]
-
num_elements
;
memmove
(
data_iter
+
offset
,
data_iter
,
sizeof
(
T
)
*
num_elements
);
memset
(
data_iter
,
0
,
sizeof
(
T
)
*
offset
);
data_iter
+=
Ti_
*
ICs
[
layer
];
}
}
template
<
typename
K
>
void
reorderOutputR2LtoL2R
(
std
::
shared_ptr
<
dnnl
::
memory
>
mem
,
int
layer
)
{
auto
*
data
=
mem
->
get_data_handle
();
auto
*
data_iter
=
reinterpret_cast
<
K
*>
(
data
);
for
(
int
n
=
0
;
n
<
N_
;
++
n
)
{
const
auto
num_elements
=
(
x_lod_
[
n
+
1
]
-
x_lod_
[
n
])
*
OCs
[
layer
];
const
auto
offset
=
Ti_
*
OCs
[
layer
]
-
num_elements
;
memmove
(
data_iter
,
data_iter
+
offset
,
sizeof
(
K
)
*
num_elements
);
memset
(
data_iter
+
num_elements
,
0
,
sizeof
(
K
)
*
offset
);
data_iter
+=
Ti_
*
OCs
[
layer
];
}
}
std
::
shared_ptr
<
dnnl
::
memory
>
executeConcat
(
std
::
shared_ptr
<
dnnl
::
memory
>
mem1
,
std
::
shared_ptr
<
dnnl
::
memory
>
mem2
,
int
layer
)
{
auto
out_mem
=
AcquireConcatOutputMemory
(
layer
);
std
::
unordered_map
<
int
,
dnnl
::
memory
>
concat_args
{
{
DNNL_ARG_MULTIPLE_SRC
,
*
mem1
},
{
DNNL_ARG_MULTIPLE_SRC
+
1
,
*
mem2
},
{
DNNL_ARG_DST
,
*
out_mem
}};
auto
concat_p
=
AcquireConcatPrimitive
(
layer
);
dnnl
::
stream
astream
(
engine_
);
concat_p
->
execute
(
astream
,
concat_args
);
astream
.
wait
();
return
out_mem
;
}
std
::
shared_ptr
<
std
::
vector
<
dnnl
::
memory
>>
AcquireConcatInputMemories
(
int
layer
)
{
auto
key
=
key_
;
key
.
append
(
"@ci_m"
).
append
(
std
::
to_string
(
layer
));
auto
memory_p
=
std
::
static_pointer_cast
<
std
::
vector
<
dnnl
::
memory
>>
(
dev_ctx_
.
GetBlob
(
key
));
if
(
!
memory_p
)
{
std
::
vector
<
dnnl
::
memory
>
src_mems
{
dnnl
::
memory
(
concat_pds_
[
layer
]
->
src_desc
(
0
),
engine_
),
dnnl
::
memory
(
concat_pds_
[
layer
]
->
src_desc
(
1
),
engine_
)};
memory_p
=
std
::
make_shared
<
std
::
vector
<
dnnl
::
memory
>>
(
src_mems
);
dev_ctx_
.
SetBlob
(
key
,
memory_p
);
}
return
memory_p
;
}
std
::
shared_ptr
<
dnnl
::
memory
>
AcquireConcatOutputMemory
(
int
layer
)
{
auto
key
=
key_
;
key
.
append
(
"@co_m"
).
append
(
std
::
to_string
(
layer
));
auto
memory_p
=
std
::
static_pointer_cast
<
dnnl
::
memory
>
(
dev_ctx_
.
GetBlob
(
key
));
if
(
!
memory_p
)
{
memory_p
=
std
::
make_shared
<
dnnl
::
memory
>
(
concat_pds_
[
layer
]
->
dst_desc
(),
engine_
);
dev_ctx_
.
SetBlob
(
key
,
memory_p
);
}
return
memory_p
;
}
std
::
shared_ptr
<
dnnl
::
concat
>
AcquireConcatPrimitive
(
int
layer
)
{
auto
key
=
key_
;
key
.
append
(
"@c_p"
).
append
(
std
::
to_string
(
layer
));
auto
prim
=
std
::
static_pointer_cast
<
dnnl
::
concat
>
(
dev_ctx_
.
GetBlob
(
key
));
if
(
prim
==
nullptr
)
{
prim
=
std
::
make_shared
<
dnnl
::
concat
>
(
*
concat_pds_
[
layer
]);
dev_ctx_
.
SetBlob
(
key
,
prim
);
}
return
prim
;
}
template
<
typename
Tout
>
void
reorderOutput
(
std
::
shared_ptr
<
dnnl
::
memory
>
mem
,
int
layer
)
{
auto
*
data
=
mem
->
get_data_handle
();
auto
*
hidden_data
=
to_void_cast
(
hidden_
->
mutable_data
<
Tout
>
(
place_
));
if
(
isNTC
(
layers_
-
1
))
{
reorderNTCtoPP
(
data
,
hidden_data
,
layers_
-
1
);
}
else
{
reorderTNCtoPP
(
data
,
hidden_data
,
layers_
-
1
);
}
}
bool
isNTC
(
int
layer
)
{
return
(
platform
::
GetMKLDNNFormat
(
gru_pds_
[{
layer
,
L2R
}]
->
dst_desc
())
==
dnnl
::
memory
::
format_tag
::
ntc
);
}
int
getLayers
()
const
{
return
layers_
;
}
// Reorder output values to PP format [N, T, C] -> [WORDS, C]
void
reorderNTCtoPP
(
void
*
input_data
,
void
*
output_data
,
int
layer
)
{
auto
*
input_data_iter
=
reinterpret_cast
<
T_out
*>
(
input_data
);
auto
*
output_data_iter
=
reinterpret_cast
<
T_out
*>
(
output_data
);
auto
oc
=
OCs
[
layer
]
*
2
;
for
(
int
n
=
0
;
n
<
N_
;
++
n
)
{
const
auto
num_elements
=
(
x_lod_
[
n
+
1
]
-
x_lod_
[
n
])
*
oc
;
memcpy
(
output_data_iter
,
input_data_iter
+
n
*
Ti_
*
oc
,
sizeof
(
T_out
)
*
num_elements
);
output_data_iter
+=
num_elements
;
}
}
// Reorder output values to PP format [T, N, C] -> [WORDS, C]
void
reorderTNCtoPP
(
void
*
input_data
,
void
*
output_data
,
int
layer
)
{
auto
*
input_data_iter
=
reinterpret_cast
<
T_out
*>
(
input_data
);
auto
*
output_data_iter
=
reinterpret_cast
<
T_out
*>
(
output_data
);
for
(
int
n
=
0
;
n
<
N_
;
++
n
)
{
const
auto
num_elements
=
x_lod_
[
n
+
1
]
-
x_lod_
[
n
];
for
(
size_t
t
=
0
;
t
<
num_elements
;
++
t
)
{
memcpy
(
output_data_iter
,
input_data_iter
+
t
*
N_
*
OCs
[
layer
]
+
n
*
OCs
[
layer
],
sizeof
(
T_out
)
*
OCs
[
layer
]);
output_data_iter
+=
OCs
[
layer
];
}
}
}
private:
// RNN dimensions
// N - Batch Size
// Ti - Max sentence length
// ICs - Input Channels
// OCs - Output Channels
int64_t
N_
,
Ti_
;
std
::
vector
<
int64_t
>
ICs
,
OCs
;
const
platform
::
MKLDNNDeviceContext
&
dev_ctx_
;
const
dnnl
::
engine
engine_
;
const
platform
::
Place
place_
;
const
bool
origin_mode_
;
const
int
layers_
;
std
::
map
<
std
::
pair
<
int
,
Direction
>
,
std
::
shared_ptr
<
dnnl
::
gru_forward
::
primitive_desc
>>
gru_pds_
;
std
::
vector
<
std
::
shared_ptr
<
dnnl
::
concat
::
primitive_desc
>>
concat_pds_
;
std
::
string
key_
;
// Memory size of weights, bias and h0 does not depend
// on Ti size, thus we need another key to cache them
std
::
string
memory_key_
;
const
LoDTensor
*
x_
;
const
std
::
vector
<
const
Tensor
*>
weights_x_
;
const
std
::
vector
<
const
Tensor
*>
weights_h_
;
const
std
::
vector
<
const
Tensor
*>
biases_
;
LoDTensor
*
hidden_
;
std
::
vector
<
dnnl
::
primitive_attr
>
attrs_
;
const
paddle
::
framework
::
Vector
<
size_t
>&
x_lod_
;
};
template
<
typename
T
>
class
MultiGRUMKLDNNKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
bool
force_fp32_output
=
ctx
.
HasAttr
(
"force_fp32_output"
)
&&
ctx
.
Attr
<
bool
>
(
"force_fp32_output"
);
if
(
force_fp32_output
)
{
RunKernel
<
float
>
(
ctx
);
}
else
{
RunKernel
<
T
>
(
ctx
);
}
}
template
<
typename
Tout
=
T
>
void
RunKernel
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
MKLDNNDeviceContext
>();
MultiGRUHandler
<
T
,
Tout
>
handler
(
ctx
,
dev_ctx
);
int
layers
=
handler
.
getLayers
();
auto
input_mem
=
handler
.
AcquireInputMemoryWithReorder
();
for
(
int
layer
=
0
;
layer
<
layers
;
++
layer
)
{
auto
gru_out_L2R
=
handler
.
executeSingleGru
(
input_mem
,
layer
,
L2R
);
handler
.
reorderInputL2RtoR2L
(
input_mem
,
layer
);
auto
gru_out_R2L
=
handler
.
executeSingleGru
(
input_mem
,
layer
,
R2L
);
if
(
layer
<
layers
-
1
)
handler
.
template
reorderOutputR2LtoL2R
<
T
>(
gru_out_R2L
,
layer
);
else
handler
.
template
reorderOutputR2LtoL2R
<
Tout
>(
gru_out_R2L
,
layer
);
input_mem
=
handler
.
executeConcat
(
gru_out_L2R
,
gru_out_R2L
,
layer
);
}
handler
.
template
reorderOutput
<
Tout
>(
input_mem
,
layers
-
1
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_KERNEL
(
multi_gru
,
MKLDNN
,
paddle
::
platform
::
CPUPlace
,
ops
::
MultiGRUMKLDNNKernel
<
float
>
,
ops
::
MultiGRUMKLDNNKernel
<
uint8_t
>
);
paddle/fluid/operators/fused/multi_gru_op.cc
0 → 100644
浏览文件 @
04bcc13f
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/fused/multi_gru_op.h"
// #include "paddle/fluid/operators/fused/fusion_gru_op.h"
#include <cstring> // for memcpy
#include <string>
#include <vector>
#include "paddle/fluid/operators/jit/kernels.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/fc.h"
#include "paddle/fluid/operators/math/sequence2batch.h"
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace
paddle
{
namespace
operators
{
void
MultiGRUOp
::
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"multi_gru"
);
OP_INOUT_CHECK
(
ctx
->
HasInputs
(
"WeightX"
),
"Input"
,
"WeightX"
,
"multi_gru"
);
OP_INOUT_CHECK
(
ctx
->
HasInputs
(
"WeightH"
),
"Input"
,
"WeightH"
,
"multi_gru"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Hidden"
),
"Output"
,
"Hidden"
,
"multi_gru"
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
x_mat_dims
=
(
x_dims
.
size
()
==
3
&&
x_dims
[
1
]
==
1
)
?
framework
::
flatten_to_2d
(
x_dims
,
1
)
:
x_dims
;
PADDLE_ENFORCE_EQ
(
x_mat_dims
.
size
(),
2
,
platform
::
errors
::
InvalidArgument
(
"The size of input X dims should be 2, "
"or 3 with second dimension equal to "
"1, but now Input X dim is:[%s] "
,
x_dims
));
auto
layers
=
ctx
->
Attrs
().
Get
<
int
>
(
"layers"
);
auto
wx_dims
=
ctx
->
GetInputsDim
(
"WeightX"
);
for
(
int
i
:
{
0
,
1
})
{
PADDLE_ENFORCE_EQ
(
wx_dims
[
i
][
0
],
x_mat_dims
[
1
],
platform
::
errors
::
InvalidArgument
(
"The first dimension of flattened WeightX #%d"
"should equal to last dimension of flattened input X, but "
"received fattened WeightX dimension is:%d, flattened X dimension "
"is:%d"
,
i
,
wx_dims
[
i
][
0
],
x_mat_dims
[
1
]));
}
auto
wh_dims
=
ctx
->
GetInputsDim
(
"WeightH"
);
for
(
int
i
=
0
;
i
<
2
*
layers
;
++
i
)
{
PADDLE_ENFORCE_EQ
(
wx_dims
[
i
].
size
(),
2
,
platform
::
errors
::
InvalidArgument
(
"The rank of WeightX #%d should be 2, but received "
"WeightX dim size is:%d, WeightX dim is:[%s] "
,
i
,
wx_dims
[
i
].
size
(),
wx_dims
[
i
]));
PADDLE_ENFORCE_EQ
(
wh_dims
[
i
].
size
(),
2
,
platform
::
errors
::
InvalidArgument
(
"The rank of WeightH #%d should be 2, but received "
"WeightH dim size is:%d, WeightH dim is:[%s] "
,
i
,
wh_dims
[
i
].
size
(),
wh_dims
[
i
]));
int
frame_size
=
wh_dims
[
i
][
0
];
PADDLE_ENFORCE_EQ
(
wh_dims
[
i
][
1
],
3
*
frame_size
,
platform
::
errors
::
InvalidArgument
(
"The second dimension of WeightH #%d "
"should equal to 3 * frame_size, but received WeightH's "
"second dimension is: %d, frame size is:%d"
,
i
,
wh_dims
[
1
],
frame_size
));
PADDLE_ENFORCE_EQ
(
wx_dims
[
i
][
1
],
3
*
frame_size
,
platform
::
errors
::
InvalidArgument
(
"The second dimension of WeightX #%d "
"should equal to 3 * frame_size, but received WeightX's "
"second dimension is: %d, frame size is:%d"
,
i
,
wx_dims
[
i
][
1
],
frame_size
));
}
if
(
ctx
->
HasInputs
(
"Bias"
))
{
auto
b_dims
=
ctx
->
GetInputsDim
(
"Bias"
);
for
(
int
i
=
0
;
i
<
2
*
layers
;
++
i
)
{
int
frame_size
=
wh_dims
[
i
][
0
];
PADDLE_ENFORCE_EQ
(
b_dims
[
i
].
size
(),
2
,
platform
::
errors
::
InvalidArgument
(
"The rank of Bias #%d should be 2, but received "
"Bias rank is:%d, Bias dim is:[%s]"
,
i
,
b_dims
[
i
].
size
(),
b_dims
[
i
]));
PADDLE_ENFORCE_EQ
(
b_dims
[
i
][
0
],
1
,
platform
::
errors
::
InvalidArgument
(
"The first dimension of Bias #%d should be 1, but "
"received Bias first dim is:%d, Bias dim is:[%s]"
,
i
,
b_dims
[
i
][
0
],
b_dims
[
i
]));
PADDLE_ENFORCE_EQ
(
b_dims
[
i
][
1
],
frame_size
*
3
,
platform
::
errors
::
InvalidArgument
(
"The shape of Bias #%d must be [1, frame_size * 3], but "
"received bias dim is:[%s], frame size is:%d"
,
i
,
b_dims
[
i
],
frame_size
));
}
}
int
last_frame_size
=
wh_dims
.
back
()[
0
];
framework
::
DDim
out_dims
({
x_mat_dims
[
0
],
2
*
last_frame_size
});
ctx
->
SetOutputDim
(
"Hidden"
,
out_dims
);
ctx
->
ShareLoD
(
"X"
,
"Hidden"
);
}
framework
::
OpKernelType
MultiGRUOp
::
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
framework
::
LibraryType
library
=
framework
::
LibraryType
::
kMKLDNN
;
framework
::
DataLayout
layout
=
framework
::
DataLayout
::
kMKLDNN
;
return
framework
::
OpKernelType
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
),
ctx
.
GetPlace
(),
layout
,
library
);
}
void
MultiGRUOpMaker
::
Make
()
{
AddInput
(
"X"
,
"(LoDTensor) the input is an LodTensor, which support "
"variable-time length input sequence. The underlying tensor in "
"this LoDTensor is a matrix with shape (T X M), where T is the "
"total time steps in this mini-batch, M is the dim size of x."
);
AddInput
(
"WeightX"
,
"(MultiTensor) The FC weight with shape (M x 3D),"
"where M is the dim size of x, D is the hidden size. "
)
.
AsDuplicable
();
AddInput
(
"WeightH"
,
"(MultiTensor) (D x 3D) Same as GRUOp, where D is the hidden size. "
"This weight is not exactly D x 3D as: {W_update, W_reset, W_state}"
"Acutally they are D x 2D and D x D two part weights."
"{W_update, W_reset; W_state}"
"{D x (D + D); D x D}"
)
.
AsDuplicable
();
AddInput
(
"Bias"
,
"(MultiTensor, optional) (1 x 3D)."
"Almost same as GRUOp."
"Note: if have FC bias it should be added on this bias."
)
.
AsDuplicable
()
.
AsDispensable
();
AddInput
(
"Scale_weights"
,
"(MultiTensor, optional) Scale_weights to be used for int8 weights data."
"Only used with MKL-DNN INT8."
)
.
AsDuplicable
()
.
AsDispensable
();
AddOutput
(
"Hidden"
,
"(LoDTensor) (T x D) Same as GRUOp"
);
AddAttr
<
std
::
string
>
(
"activation"
,
"(string, default tanh) "
"The activation type used for output candidate {h}_t."
)
.
SetDefault
(
"tanh"
);
AddAttr
<
std
::
string
>
(
"gate_activation"
,
"(string, default sigmoid) "
"The activation type used in update gate and reset gate."
)
.
SetDefault
(
"sigmoid"
);
AddAttr
<
int
>
(
"layers"
,
"(int, default: 1) "
"Number of stacked GRU layers."
)
.
SetDefault
(
1
);
AddAttr
<
bool
>
(
"origin_mode"
,
"bool"
"use origin mode in article https://arxiv.org/abs/1412.3555"
)
.
SetDefault
(
false
);
AddAttr
<
std
::
string
>
(
"mkldnn_data_type"
,
"(string, default
\"
float32
\"
). Data type of mkldnn kernel"
)
.
SetDefault
(
"float32"
)
.
InEnum
({
"float32"
,
"int8"
,
"bfloat16"
});
AddAttr
<
float
>
(
"Scale_data"
,
"Scales to be used for int8 input/output data."
"Only used with MKL-DNN INT8."
)
.
SetDefault
({
1.
f
});
AddAttr
<
float
>
(
"Shift_data"
,
"Shifts to be used for int8 input/output data."
"Only used with MKL-DNN INT8."
)
.
SetDefault
({
0.
f
});
AddAttr
<
bool
>
(
"force_fp32_output"
,
"(bool, default: false) Force INT8 kernel output FP32, only "
"used in MKL-DNN INT8"
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
The Fusion complete GRU Operator.
This operator fuse the fully-connected operator into GRU,
more details can refer to GRU op.
)DOC"
);
}
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
multi_gru
,
ops
::
MultiGRUOp
,
ops
::
MultiGRUOpMaker
);
paddle/fluid/operators/fused/multi_gru_op.h
0 → 100644
浏览文件 @
04bcc13f
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
namespace
paddle
{
namespace
operators
{
using
framework
::
LoDTensor
;
using
framework
::
Tensor
;
using
framework
::
ExecutionContext
;
class
MultiGRUOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
;
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
ExecutionContext
&
ctx
)
const
override
;
};
class
MultiGRUOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
;
};
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/tests/unittests/mkldnn/test_multi_gru_mkldnn_op.py
0 → 100644
浏览文件 @
04bcc13f
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
from
paddle.fluid.tests.unittests.op_test
import
OpTest
from
paddle.fluid.tests.unittests.test_fusion_gru_op
import
fusion_gru
,
ACTIVATION
from
paddle.fluid.dygraph.base
import
disable_dygraph
def
multi_gru
(
x
,
# T x M
lod
,
# 1 x N
h0
,
# N x D
wx
,
# M x 3D
wh
,
# D x 3D
bias
,
# 1 x 3D
origin_mode
,
layers
):
act_state
=
ACTIVATION
[
'tanh'
]
act_gate
=
ACTIVATION
[
'sigmoid'
]
input
=
x
for
i
in
range
(
0
,
layers
*
2
,
2
):
_
,
_
,
_
,
gru1_out
=
fusion_gru
(
input
,
lod
,
h0
[
i
],
wx
[
i
],
wh
[
i
],
bias
[
i
],
False
,
origin_mode
,
act_state
,
act_gate
)
_
,
_
,
_
,
gru2_out
=
fusion_gru
(
input
,
lod
,
h0
[
i
+
1
],
wx
[
i
+
1
],
wh
[
i
+
1
],
bias
[
i
+
1
],
True
,
origin_mode
,
act_state
,
act_gate
)
input
=
np
.
concatenate
((
gru1_out
,
gru2_out
),
axis
=
1
)
return
input
class
TestMultiGruMkldnnOp
(
OpTest
):
def
set_confs
(
self
):
pass
def
set_dtype
(
self
):
pass
def
set_force_fp32_output
(
self
):
pass
def
setUp
(
self
):
self
.
op_type
=
"multi_gru"
self
.
lod
=
[[
2
,
4
,
3
]]
self
.
ICs
=
[
3
]
self
.
OCs
=
[
5
]
self
.
with_bias
=
True
self
.
layers
=
1
self
.
origin_mode
=
False
self
.
_cpu_only
=
True
self
.
error_margin
=
1e-5
self
.
set_confs
()
self
.
dtype
=
"float32"
self
.
set_dtype
()
self
.
force_fp32_output
=
False
self
.
set_force_fp32_output
()
is_int8
=
self
.
dtype
==
'int8'
scale_data
=
63
shift_data
=
64
T
=
sum
(
self
.
lod
[
0
])
N
=
len
(
self
.
lod
[
0
])
self
.
inputs
=
{}
if
is_int8
:
x_f32
=
np
.
random
.
rand
(
T
,
self
.
ICs
[
0
]).
astype
(
'float32'
)
*
2
-
1
x_u8
=
np
.
rint
(
x_f32
*
scale_data
+
shift_data
).
astype
(
np
.
uint8
)
self
.
inputs
[
'X'
]
=
(
x_u8
,
self
.
lod
)
else
:
x_f32
=
np
.
random
.
rand
(
T
,
self
.
ICs
[
0
]).
astype
(
'float32'
)
self
.
inputs
[
'X'
]
=
(
x_f32
,
self
.
lod
)
wx
=
[]
wh
=
[]
bias
=
[]
h0
=
[]
for
layer
in
range
(
self
.
layers
):
IC
=
self
.
ICs
[
layer
]
OC
=
self
.
OCs
[
layer
]
for
j
in
range
(
2
):
wx
.
append
(
np
.
random
.
rand
(
IC
,
3
*
OC
).
astype
(
'float32'
))
wh
.
append
(
np
.
random
.
rand
(
OC
,
3
*
OC
).
astype
(
'float32'
))
bias
.
append
(
np
.
random
.
rand
(
1
,
3
*
OC
).
astype
(
'float32'
)
if
self
.
with_bias
else
np
.
zeros
(
(
1
,
3
*
OC
),
dtype
=
'float32'
))
h0
.
append
(
np
.
zeros
((
N
,
OC
),
dtype
=
'float32'
))
self
.
inputs
[
'WeightX'
]
=
[(
'wx'
+
str
(
i
),
wx
[
i
])
for
i
in
range
(
self
.
layers
*
2
)]
self
.
inputs
[
'WeightH'
]
=
[(
'wh'
+
str
(
i
),
wh
[
i
])
for
i
in
range
(
self
.
layers
*
2
)]
if
self
.
with_bias
:
self
.
inputs
[
'Bias'
]
=
[(
'b'
+
str
(
i
),
bias
[
i
])
for
i
in
range
(
self
.
layers
*
2
)]
if
is_int8
:
s8_max
=
127.0
scale_weights
=
[]
for
layer
in
range
(
self
.
layers
):
OC
=
self
.
OCs
[
layer
]
for
j
in
range
(
2
):
scale_ur
=
s8_max
/
np
.
max
(
np
.
abs
(
np
.
concatenate
(
[
wx
[
2
*
layer
+
j
][:,
:
2
*
OC
],
wh
[
2
*
layer
+
j
]
.
flatten
()[:
2
*
OC
*
OC
].
reshape
(
OC
,
2
*
OC
)
],
axis
=
0
)),
axis
=
0
)
scale_o
=
s8_max
/
np
.
max
(
np
.
abs
(
np
.
concatenate
(
[
wx
[
2
*
layer
+
j
][:,
2
*
OC
:],
wh
[
2
*
layer
+
j
]
.
flatten
()[
2
*
OC
*
OC
:].
reshape
(
OC
,
OC
)
],
axis
=
0
)),
axis
=
0
)
scale_weights
.
append
(
np
.
concatenate
([
scale_ur
,
scale_o
]).
astype
(
'float32'
))
self
.
inputs
[
'Scale_weights'
]
=
[(
'w_scale'
+
str
(
i
),
scale_weights
[
i
])
for
i
in
range
(
self
.
layers
*
2
)]
self
.
error_margin
=
1e-1
if
self
.
force_fp32_output
else
1
hidden_f32
=
multi_gru
(
x_f32
,
self
.
lod
,
h0
,
wx
,
wh
,
bias
,
self
.
origin_mode
,
self
.
layers
)
if
self
.
dtype
==
'float32'
or
self
.
force_fp32_output
:
self
.
outputs
=
{
'Hidden'
:
(
hidden_f32
,
self
.
lod
)}
else
:
hidden_u8
=
np
.
rint
(
hidden_f32
*
scale_data
+
shift_data
).
astype
(
np
.
uint8
)
self
.
outputs
=
{
'Hidden'
:
(
hidden_u8
,
self
.
lod
)}
self
.
attrs
=
{
'activation'
:
'tanh'
,
'gate_activation'
:
'sigmoid'
,
'layers'
:
self
.
layers
,
'origin_mode'
:
self
.
origin_mode
,
'use_mkldnn'
:
True
,
}
if
is_int8
:
self
.
attrs
[
'force_fp32_output'
]
=
self
.
force_fp32_output
self
.
attrs
[
'Scale_data'
]
=
scale_data
self
.
attrs
[
'Shift_data'
]
=
shift_data
def
test_check_output
(
self
):
self
.
check_output
(
check_dygraph
=
False
,
atol
=
self
.
error_margin
)
class
TestMultiGruMkldnnOpNoBias
(
TestMultiGruMkldnnOp
):
def
set_confs
(
self
):
self
.
with_bias
=
False
class
TestMultiGruMkldnnOpLayers2
(
TestMultiGruMkldnnOp
):
def
set_confs
(
self
):
self
.
layers
=
2
self
.
ICs
=
[
2
,
6
]
self
.
OCs
=
[
3
,
8
]
class
TestMultiGruMkldnnOpLayers3
(
TestMultiGruMkldnnOp
):
def
set_confs
(
self
):
self
.
layers
=
3
self
.
ICs
=
[
2
,
6
,
12
]
self
.
OCs
=
[
3
,
6
,
14
]
class
TestMultiGruMkldnnOpOriginMode
(
TestMultiGruMkldnnOp
):
def
set_confs
(
self
):
self
.
origin_mode
=
True
class
TestMultiGruMkldnnInt8Op
(
TestMultiGruMkldnnOp
):
def
set_dtype
(
self
):
self
.
dtype
=
'int8'
class
TestMultiGruMkldnnInt8OpForceFP32Output
(
TestMultiGruMkldnnInt8Op
):
def
set_force_fp32_output
(
self
):
self
.
force_fp32_output
=
True
class
TestMultiGruMkldnnInt8OpNoBias
(
TestMultiGruMkldnnOpNoBias
):
def
set_dtype
(
self
):
self
.
dtype
=
'int8'
class
TestMultiGruMkldnnInt8OpNoBiasForceFP32Output
(
TestMultiGruMkldnnInt8OpNoBias
):
def
set_force_fp32_output
(
self
):
self
.
force_fp32_output
=
True
class
TestMultiGruMkldnnInt8OpLayers2
(
TestMultiGruMkldnnOpLayers2
):
def
set_dtype
(
self
):
self
.
dtype
=
'int8'
class
TestMultiGruMkldnnInt8OpLayers2ForceFP32Output
(
TestMultiGruMkldnnInt8OpLayers2
):
def
set_force_fp32_output
(
self
):
self
.
force_fp32_output
=
True
class
TestMultiGruMkldnnInt8OpLayers3
(
TestMultiGruMkldnnOpLayers3
):
def
set_dtype
(
self
):
self
.
dtype
=
'int8'
class
TestMultiGruMkldnnInt8OpLayers3ForceFP32Output
(
TestMultiGruMkldnnInt8OpLayers3
):
def
set_force_fp32_output
(
self
):
self
.
force_fp32_output
=
True
class
TestMultiGruMkldnnInt8OpOriginMode
(
TestMultiGruMkldnnOpOriginMode
):
def
set_dtype
(
self
):
self
.
dtype
=
'int8'
class
TestMultiGruMkldnnInt8OpOriginModeForceFP32Output
(
TestMultiGruMkldnnInt8OpOriginMode
):
def
set_force_fp32_output
(
self
):
self
.
force_fp32_output
=
True
if
__name__
==
"__main__"
:
unittest
.
main
()
tools/static_mode_white_list.py
浏览文件 @
04bcc13f
...
...
@@ -598,6 +598,7 @@ STATIC_MODE_TESTING_LIST = [
'test_lrn_mkldnn_op'
,
'test_matmul_mkldnn_op'
,
'test_mul_int8_mkldnn_op'
,
'test_multi_gru_mkldnn_op'
,
'test_pool2d_int8_mkldnn_op'
,
'test_pool2d_mkldnn_op'
,
'test_quantize_mkldnn_op'
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录