未验证 提交 04bcc13f 编写于 作者: W Wojciech Uss 提交者: GitHub

Add multi_gru op and tests (#28591)

* Add multi_gru op and tests

* removed redundant disable_dygraph()
上级 fe2cf39f
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <initializer_list>
#include <iostream>
#include <memory>
#include "dnnl.hpp"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/operators/fused/multi_gru_op.h"
#include "paddle/fluid/platform/errors.h"
#include "paddle/fluid/platform/mkldnn_reuse.h"
namespace paddle {
namespace operators {
using paddle::framework::LoDTensor;
using paddle::framework::Tensor;
using paddle::platform::CPUDeviceContext;
using paddle::platform::CreateKey;
using paddle::platform::MKLDNNGetDataType;
using paddle::platform::MKLDNNMemDesc;
using platform::to_void_cast;
using framework::vectorize;
using Direction = dnnl::rnn_direction;
namespace {
// oneDNN RNN dimensions
const int64_t D = 1; // Directions
const int64_t L = 1; // Layers (PP supports only 1 stacked layer)
const int64_t G = 3; // Number of Gates, 3 for GRU
constexpr Direction L2R = Direction::unidirectional_left2right;
constexpr Direction R2L = Direction::unidirectional_right2left;
constexpr const char* dir2str(Direction dir) {
return dir == L2R ? "LR" : "RL";
}
} // namespace
template <typename T, typename T_out = T>
class MultiGRUHandler {
public:
MultiGRUHandler(const paddle::framework::ExecutionContext& ctx,
const platform::MKLDNNDeviceContext& dev_ctx)
: dev_ctx_(dev_ctx),
engine_(dev_ctx.GetEngine()),
place_(ctx.GetPlace()),
origin_mode_(ctx.Attr<bool>("origin_mode")),
layers_(ctx.Attr<int>("layers")),
concat_pds_(layers_, std::shared_ptr<dnnl::concat::primitive_desc>()),
x_(ctx.Input<LoDTensor>("X")),
weights_x_(ctx.MultiInput<Tensor>("WeightX")),
weights_h_(ctx.MultiInput<Tensor>("WeightH")),
biases_(ctx.MultiInput<Tensor>("Bias")),
hidden_(ctx.Output<LoDTensor>("Hidden")),
x_lod_(x_->lod()[0]) {
PADDLE_ENFORCE_EQ(
weights_x_.size(), layers_ * 2,
platform::errors::InvalidArgument("The number of WeightX inputs does "
"not match the number of layers."));
PADDLE_ENFORCE_EQ(
weights_h_.size(), layers_ * 2,
platform::errors::InvalidArgument("The number of WeightH inputs does "
"not match the number of layers."));
if (biases_.size() > 0)
PADDLE_ENFORCE_EQ(
biases_.size(), layers_ * 2,
platform::errors::InvalidArgument("The number of Bias inputs does "
"not match the number of layers."));
// oneDNN kernel has hardcoded activation functions
PADDLE_ENFORCE_EQ(
ctx.Attr<std::string>("gate_activation"), "sigmoid",
platform::errors::Unimplemented(
"oneDNN fusion_gru supports only sigmoid as a gate activation."));
PADDLE_ENFORCE_EQ(
ctx.Attr<std::string>("activation"), "tanh",
platform::errors::Unimplemented(
"oneDNN fusion_gru supports only tanh as an activation."));
N_ = x_lod_.size() - 1; // Number of sentences (batches)
Ti_ = // Max length of the sentence in a batch
[this]() {
size_t res = 0;
for (size_t i = 0; i < (x_lod_.size() - 1); ++i) {
res = std::max(res, x_lod_[i + 1] - x_lod_[i]);
}
return res;
}();
// Weights come in pairs, with the same dimensions within a pair
for (int layer = 0; layer < layers_; ++layer) {
ICs.push_back(vectorize(weights_x_[2 * layer]->dims())[0]);
OCs.push_back(vectorize(weights_h_[2 * layer]->dims())[0]);
}
const std::string unique_name = ctx.OutputName("Hidden");
// Create memory key without Ti because weights, bias and h0 memories
// do not depend on Ti size but primitive and input/output memory do
if (platform::MKLDNNDeviceContext::tls().get_cur_mkldnn_session_id() !=
platform::MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_Default) {
memory_key_ = CreateKey(unique_name, MKLDNNGetDataType<T>());
} else {
memory_key_ = CreateKey(unique_name, MKLDNNGetDataType<T>(), "-t:",
platform::ThreadIDasStr());
}
key_ = memory_key_;
key_.append("T").append(std::to_string(Ti_));
// Is it int8 kernel
const bool is_int8 = std::is_same<T, uint8_t>::value;
// Create attributes for each oneDNN gru
for (int i = 0; i < 2 * layers_; ++i) {
attrs_.push_back(dnnl::primitive_attr());
}
if (is_int8) {
// Add int8 attributes
const auto scale_weights = ctx.MultiInput<LoDTensor>("Scale_weights");
PADDLE_ENFORCE_EQ(
scale_weights.size(), layers_ * 2,
platform::errors::InvalidArgument(
"The number of weight scale inputs does "
"not match the number of layers. Expected: %d. Actual: %d",
layers_ * 2, scale_weights.size()));
const float scale_data = ctx.Attr<float>("Scale_data");
const float shift_data = ctx.Attr<float>("Shift_data");
const int weights_scale_mask =
0 +
(1 << 3) // bit, indicating the unique scales for `g` dim in `ldigo`
+
(1 << 4); // bit, indicating the unique scales for `o` dim in `ldigo`
int w_scale_num = scale_weights.size();
for (int i = 0; i < w_scale_num; ++i) {
attrs_[i].set_rnn_data_qparams(scale_data, shift_data);
const auto scale_weights_data = std::vector<float>(
scale_weights[i]->data<float>(),
scale_weights[i]->data<float>() + scale_weights[i]->numel());
attrs_[i].set_rnn_weights_qparams(weights_scale_mask,
scale_weights_data);
}
}
for (int layer = 0; layer < layers_; ++layer) {
AcquireGruPrimitiveDescriptor(layer, L2R);
AcquireGruPrimitiveDescriptor(layer, R2L);
AcquireConcatPrimitiveDescriptor(layer);
}
}
void AcquireGruPrimitiveDescriptor(int layer, Direction dir) {
auto pd_key = key_;
pd_key.append("@gru_pd").append(dir2str(dir)).append(std::to_string(layer));
auto pd = std::static_pointer_cast<dnnl::gru_forward::primitive_desc>(
dev_ctx_.GetBlob(pd_key));
if (pd == nullptr) {
const bool is_int8 = std::is_same<T, uint8_t>::value;
// Weights for int8 kernel are of a type s8
const auto weights_dt =
is_int8 ? dnnl::memory::data_type::s8 : dnnl::memory::data_type::f32;
auto x_md = MKLDNNMemDesc({Ti_, N_, ICs[layer]}, MKLDNNGetDataType<T>(),
MKLDNNMemoryFormat::ntc);
auto h0_md = MKLDNNMemDesc({L, D, N_, OCs[layer]}, MKLDNNGetDataType<T>(),
MKLDNNMemoryFormat::ldnc);
auto wx_md = MKLDNNMemDesc({L, D, ICs[layer], G, OCs[layer]}, weights_dt,
MKLDNNMemoryFormat::any);
auto wh_md = MKLDNNMemDesc({L, D, OCs[layer], G, OCs[layer]}, weights_dt,
MKLDNNMemoryFormat::any);
auto b_md =
MKLDNNMemDesc({L, D, G, OCs[layer]}, MKLDNNGetDataType<float>(),
MKLDNNMemoryFormat::ldgo);
auto h_md =
MKLDNNMemDesc({Ti_, N_, OCs[layer]},
(layer == layers_ - 1) ? MKLDNNGetDataType<T_out>()
: MKLDNNGetDataType<T>(),
MKLDNNMemoryFormat::ntc);
auto desc = std::make_shared<dnnl::gru_forward::desc>(
dnnl::prop_kind::forward_inference, dir, x_md, h0_md, wx_md, wh_md,
b_md, h_md, dnnl::memory::desc());
pd = std::make_shared<dnnl::gru_forward::primitive_desc>(
*desc, attrs_[2 * layer + (dir == R2L)], engine_);
PADDLE_ENFORCE_NOT_NULL(
pd, platform::errors::InvalidArgument(
"Primitive descriptor for gru_forward cannot be null."));
dev_ctx_.SetBlob(pd_key, pd);
}
gru_pds_[{layer, dir}] = pd;
}
void AcquireConcatPrimitiveDescriptor(int layer) {
auto pd_key = key_;
pd_key.append("@c_pd").append(std::to_string(layer));
auto pd = std::static_pointer_cast<dnnl::concat::primitive_desc>(
dev_ctx_.GetBlob(pd_key));
if (pd == nullptr) {
const int axis = 2;
auto in_md =
MKLDNNMemDesc({Ti_, N_, OCs[layer]},
(layer == layers_ - 1) ? MKLDNNGetDataType<T_out>()
: MKLDNNGetDataType<T>(),
MKLDNNMemoryFormat::ntc);
std::vector<dnnl::memory::desc> src_mds{in_md, in_md};
pd = std::make_shared<dnnl::concat::primitive_desc>(axis, src_mds,
engine_);
dev_ctx_.SetBlob(pd_key, pd);
}
concat_pds_[layer] = pd;
}
std::shared_ptr<dnnl::memory> AcquireInputMemoryWithReorder() {
auto key = key_;
key.append("@x_m");
auto memory_p =
std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(key));
if (!memory_p) {
memory_p = std::make_shared<dnnl::memory>(gru_pds_[{0, L2R}]->src_desc(),
engine_);
dev_ctx_.SetBlob(key, memory_p);
}
auto* x_data = to_void_cast(x_->data<T>());
auto* x_onednn_data = memory_p->get_data_handle();
memset(x_onednn_data, 0, sizeof(T) * N_ * Ti_ * ICs[0]);
if (platform::GetMKLDNNFormat(gru_pds_[{0, L2R}]->src_desc()) ==
dnnl::memory::format_tag::ntc) {
reorderPPtoNTC(x_data, x_onednn_data, x_lod_, 0, L2R);
} else {
reorderPPtoTNC(x_data, x_onednn_data, x_lod_, 0, L2R);
}
return memory_p;
}
// Reorder input memory [WORDS, C] + LoD -> [N, T, C]
void reorderPPtoNTC(void* input_data, void* output_data,
std::vector<size_t> lod, int layer, Direction dir) {
auto* input_data_iter = reinterpret_cast<T*>(input_data);
auto* output_data_iter = reinterpret_cast<T*>(output_data);
for (int n = 0; n < N_; ++n) {
const auto num_elements = (lod[n + 1] - lod[n]) * ICs[layer];
const auto offset = dir == R2L ? (Ti_ * ICs[layer] - num_elements) : 0;
memcpy(output_data_iter + n * Ti_ * ICs[layer] + offset, input_data_iter,
sizeof(T) * num_elements);
input_data_iter += num_elements;
}
}
// Reorder input memory [WORDS, C] + LoD -> [T, N, C]
void reorderPPtoTNC(void* input_data, void* output_data,
std::vector<size_t> lod, int layer, Direction dir) {
auto* input_data_iter = reinterpret_cast<T*>(input_data);
auto* output_data_iter = reinterpret_cast<T*>(output_data);
for (int n = 0; n < N_; ++n) {
const auto num_elements = (lod[n + 1] - lod[n]);
const auto offset = dir == R2L ? (Ti_ - num_elements) : 0;
for (size_t t = 0; t < num_elements; ++t) {
memcpy(
output_data_iter + (t + offset) * N_ * ICs[layer] + n * ICs[layer],
input_data_iter, sizeof(T) * ICs[layer]);
input_data_iter += ICs[layer];
}
}
}
std::shared_ptr<dnnl::memory> executeSingleGru(
std::shared_ptr<dnnl::memory> input_mem, int layer, Direction dir) {
auto h0_mem = AcquireH0Memory(layer, dir);
auto wx_mem = AcquireWeightXMemory(layer, dir);
auto wh_mem = AcquireWeightHMemory(layer, dir);
auto b_mem = AcquireBiasMemory(layer, dir);
auto out_mem = AcquireGruOutputMemory(layer, dir);
std::unordered_map<int, dnnl::memory> gru_args = {
{DNNL_ARG_SRC_LAYER, *input_mem}, {DNNL_ARG_SRC_ITER, *h0_mem},
{DNNL_ARG_WEIGHTS_LAYER, *wx_mem}, {DNNL_ARG_WEIGHTS_ITER, *wh_mem},
{DNNL_ARG_BIAS, *b_mem}, {DNNL_ARG_DST_LAYER, *out_mem}};
auto gru_forward_p0 = AcquireGruPrimitive(layer, dir);
dnnl::stream astream(engine_);
gru_forward_p0->execute(astream, gru_args);
astream.wait();
return out_mem;
}
// TODO(grygielski) H0 is for now persistable
std::shared_ptr<dnnl::memory> AcquireH0Memory(int layer, Direction dir) {
auto key = memory_key_;
key.append("@h0").append(dir2str(dir)).append(std::to_string(layer));
auto memory_p =
std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(key));
if (!memory_p) {
auto user_h0_memory = dnnl::memory();
user_h0_memory = dnnl::memory({{1, 1, N_, OCs[layer]},
MKLDNNGetDataType<float>(),
MKLDNNMemoryFormat::ldnc},
engine_);
memset(user_h0_memory.get_data_handle(), 0,
sizeof(float) * N_ * OCs[layer]);
memory_p = std::make_shared<dnnl::memory>(
gru_pds_[{layer, dir}]->src_iter_desc(), engine_);
dnnl::stream astream(engine_);
dnnl::reorder(user_h0_memory, *memory_p, attrs_[2 * layer + (dir == R2L)])
.execute(astream, user_h0_memory, *memory_p);
dev_ctx_.SetBlob(key, memory_p);
}
return memory_p;
}
std::shared_ptr<dnnl::memory> AcquireWeightXMemory(int layer, Direction dir) {
auto key = memory_key_;
key.append("@wx").append(dir2str(dir)).append(std::to_string(layer));
auto memory_p =
std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(key));
if (!memory_p) {
auto user_md =
MKLDNNMemDesc({1, 1, ICs[layer], 3, OCs[layer]},
MKLDNNGetDataType<float>(), MKLDNNMemoryFormat::ldigo);
auto user_memory = dnnl::memory(user_md, engine_);
auto* weight_x_data =
reinterpret_cast<float*>(user_memory.get_data_handle());
int idx = layer * 2 + (dir == R2L);
memcpy(weight_x_data, weights_x_[idx]->data<float>(),
sizeof(float) * ICs[layer] * 3 * OCs[layer]);
if (origin_mode_ == false) {
for (int64_t i = 0; i < ICs[layer]; ++i) {
for (int64_t j = 0; j < OCs[layer]; ++j) {
weight_x_data[j] *= -1;
}
weight_x_data += 3 * OCs[layer];
}
}
memory_p = std::make_shared<dnnl::memory>(
gru_pds_[{layer, dir}]->weights_layer_desc(), engine_);
dnnl::stream astream(engine_);
dnnl::reorder(user_memory, *memory_p, attrs_[2 * layer + (dir == R2L)])
.execute(astream, user_memory, *memory_p);
dev_ctx_.SetBlob(key, memory_p);
}
return memory_p;
}
std::shared_ptr<dnnl::memory> AcquireWeightHMemory(int layer, Direction dir) {
auto key = memory_key_;
key.append("@wh").append(dir2str(dir)).append(std::to_string(layer));
auto memory_p =
std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(key));
if (!memory_p) {
auto user_md =
MKLDNNMemDesc({1, 1, OCs[layer], 3, OCs[layer]},
MKLDNNGetDataType<float>(), MKLDNNMemoryFormat::ldigo);
auto user_memory = dnnl::memory(user_md, engine_);
// Reorder weights_h from PP format [OC, 2OC] + [OC, OC] to
// oneDNN format [OC, 3OC]
auto* weight_h_data =
reinterpret_cast<float*>(user_memory.get_data_handle());
int idx = layer * 2 + (dir == R2L);
auto* user_weight_h_data = weights_h_[idx]->data<float>();
auto src1_iter = user_weight_h_data;
auto src2_iter = user_weight_h_data + 2 * OCs[layer] * OCs[layer];
for (int64_t c = 0; c < OCs[layer]; ++c) {
memcpy(weight_h_data, src1_iter, 2 * OCs[layer] * sizeof(float));
memcpy(weight_h_data + 2 * OCs[layer], src2_iter,
OCs[layer] * sizeof(float));
src1_iter += 2 * OCs[layer];
src2_iter += OCs[layer];
weight_h_data += 3 * OCs[layer];
}
weight_h_data = reinterpret_cast<float*>(user_memory.get_data_handle());
if (origin_mode_ == false) {
for (int64_t i = 0; i < OCs[layer]; ++i) {
for (int64_t j = 0; j < OCs[layer]; ++j) {
weight_h_data[j] *= -1;
}
weight_h_data += 3 * OCs[layer];
}
}
memory_p = std::make_shared<dnnl::memory>(
gru_pds_[{layer, dir}]->weights_iter_desc(), engine_);
dnnl::stream astream(engine_);
dnnl::reorder(user_memory, *memory_p, attrs_[2 * layer + (dir == R2L)])
.execute(astream, user_memory, *memory_p);
dev_ctx_.SetBlob(key, memory_p);
}
return memory_p;
}
std::shared_ptr<dnnl::memory> AcquireBiasMemory(int layer, Direction dir) {
auto key = memory_key_;
key.append("@b").append(dir2str(dir)).append(std::to_string(layer));
auto memory_p =
std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(key));
if (!memory_p) {
memory_p = std::make_shared<dnnl::memory>(
gru_pds_[{layer, dir}]->bias_desc(), engine_);
auto* bias_data = reinterpret_cast<float*>(memory_p->get_data_handle());
int idx = layer * 2 + (dir == R2L);
if (biases_.size() > 0 && biases_[idx]) {
const float* user_bias_data =
biases_[idx]->data<float>(); // Bias in oneDNN is always float
memcpy(bias_data, user_bias_data, sizeof(float) * 3 * OCs[layer]);
} else {
// oneDNN always need bias memory, if it's not provided in PP, let
// oneDNN allocate memory and set it to 0
memset(bias_data, 0, sizeof(float) * 3 * OCs[layer]);
}
if (origin_mode_ == false && biases_.size() && biases_[idx]) {
for (int64_t i = 0; i < OCs[layer]; ++i) {
bias_data[i] *= -1;
}
}
dev_ctx_.SetBlob(key, memory_p);
}
return memory_p;
}
std::shared_ptr<dnnl::memory> AcquireGruOutputMemory(int layer,
Direction dir) {
auto key = key_;
key.append("@h_m").append(dir2str(dir)).append(std::to_string(layer));
auto memory_p =
std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(key));
if (!memory_p) {
memory_p = std::make_shared<dnnl::memory>(
gru_pds_[{layer, dir}]->dst_desc(), engine_);
dev_ctx_.SetBlob(key, memory_p);
}
return memory_p;
}
std::shared_ptr<dnnl::gru_forward> AcquireGruPrimitive(int layer,
Direction dir) {
auto key = key_;
key.append("@gru_p").append(dir2str(dir)).append(std::to_string(layer));
auto prim =
std::static_pointer_cast<dnnl::gru_forward>(dev_ctx_.GetBlob(key));
if (prim == nullptr) {
prim = std::make_shared<dnnl::gru_forward>(*gru_pds_[{layer, dir}]);
dev_ctx_.SetBlob(key, prim);
}
return prim;
}
void reorderInputL2RtoR2L(std::shared_ptr<dnnl::memory> mem, int layer) {
auto* data = mem->get_data_handle();
auto* data_iter = reinterpret_cast<T*>(data);
for (int n = 0; n < N_; ++n) {
const auto num_elements = (x_lod_[n + 1] - x_lod_[n]) * ICs[layer];
const auto offset = Ti_ * ICs[layer] - num_elements;
memmove(data_iter + offset, data_iter, sizeof(T) * num_elements);
memset(data_iter, 0, sizeof(T) * offset);
data_iter += Ti_ * ICs[layer];
}
}
template <typename K>
void reorderOutputR2LtoL2R(std::shared_ptr<dnnl::memory> mem, int layer) {
auto* data = mem->get_data_handle();
auto* data_iter = reinterpret_cast<K*>(data);
for (int n = 0; n < N_; ++n) {
const auto num_elements = (x_lod_[n + 1] - x_lod_[n]) * OCs[layer];
const auto offset = Ti_ * OCs[layer] - num_elements;
memmove(data_iter, data_iter + offset, sizeof(K) * num_elements);
memset(data_iter + num_elements, 0, sizeof(K) * offset);
data_iter += Ti_ * OCs[layer];
}
}
std::shared_ptr<dnnl::memory> executeConcat(
std::shared_ptr<dnnl::memory> mem1, std::shared_ptr<dnnl::memory> mem2,
int layer) {
auto out_mem = AcquireConcatOutputMemory(layer);
std::unordered_map<int, dnnl::memory> concat_args{
{DNNL_ARG_MULTIPLE_SRC, *mem1},
{DNNL_ARG_MULTIPLE_SRC + 1, *mem2},
{DNNL_ARG_DST, *out_mem}};
auto concat_p = AcquireConcatPrimitive(layer);
dnnl::stream astream(engine_);
concat_p->execute(astream, concat_args);
astream.wait();
return out_mem;
}
std::shared_ptr<std::vector<dnnl::memory>> AcquireConcatInputMemories(
int layer) {
auto key = key_;
key.append("@ci_m").append(std::to_string(layer));
auto memory_p = std::static_pointer_cast<std::vector<dnnl::memory>>(
dev_ctx_.GetBlob(key));
if (!memory_p) {
std::vector<dnnl::memory> src_mems{
dnnl::memory(concat_pds_[layer]->src_desc(0), engine_),
dnnl::memory(concat_pds_[layer]->src_desc(1), engine_)};
memory_p = std::make_shared<std::vector<dnnl::memory>>(src_mems);
dev_ctx_.SetBlob(key, memory_p);
}
return memory_p;
}
std::shared_ptr<dnnl::memory> AcquireConcatOutputMemory(int layer) {
auto key = key_;
key.append("@co_m").append(std::to_string(layer));
auto memory_p =
std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(key));
if (!memory_p) {
memory_p = std::make_shared<dnnl::memory>(concat_pds_[layer]->dst_desc(),
engine_);
dev_ctx_.SetBlob(key, memory_p);
}
return memory_p;
}
std::shared_ptr<dnnl::concat> AcquireConcatPrimitive(int layer) {
auto key = key_;
key.append("@c_p").append(std::to_string(layer));
auto prim = std::static_pointer_cast<dnnl::concat>(dev_ctx_.GetBlob(key));
if (prim == nullptr) {
prim = std::make_shared<dnnl::concat>(*concat_pds_[layer]);
dev_ctx_.SetBlob(key, prim);
}
return prim;
}
template <typename Tout>
void reorderOutput(std::shared_ptr<dnnl::memory> mem, int layer) {
auto* data = mem->get_data_handle();
auto* hidden_data = to_void_cast(hidden_->mutable_data<Tout>(place_));
if (isNTC(layers_ - 1)) {
reorderNTCtoPP(data, hidden_data, layers_ - 1);
} else {
reorderTNCtoPP(data, hidden_data, layers_ - 1);
}
}
bool isNTC(int layer) {
return (platform::GetMKLDNNFormat(gru_pds_[{layer, L2R}]->dst_desc()) ==
dnnl::memory::format_tag::ntc);
}
int getLayers() const { return layers_; }
// Reorder output values to PP format [N, T, C] -> [WORDS, C]
void reorderNTCtoPP(void* input_data, void* output_data, int layer) {
auto* input_data_iter = reinterpret_cast<T_out*>(input_data);
auto* output_data_iter = reinterpret_cast<T_out*>(output_data);
auto oc = OCs[layer] * 2;
for (int n = 0; n < N_; ++n) {
const auto num_elements = (x_lod_[n + 1] - x_lod_[n]) * oc;
memcpy(output_data_iter, input_data_iter + n * Ti_ * oc,
sizeof(T_out) * num_elements);
output_data_iter += num_elements;
}
}
// Reorder output values to PP format [T, N, C] -> [WORDS, C]
void reorderTNCtoPP(void* input_data, void* output_data, int layer) {
auto* input_data_iter = reinterpret_cast<T_out*>(input_data);
auto* output_data_iter = reinterpret_cast<T_out*>(output_data);
for (int n = 0; n < N_; ++n) {
const auto num_elements = x_lod_[n + 1] - x_lod_[n];
for (size_t t = 0; t < num_elements; ++t) {
memcpy(output_data_iter,
input_data_iter + t * N_ * OCs[layer] + n * OCs[layer],
sizeof(T_out) * OCs[layer]);
output_data_iter += OCs[layer];
}
}
}
private:
// RNN dimensions
// N - Batch Size
// Ti - Max sentence length
// ICs - Input Channels
// OCs - Output Channels
int64_t N_, Ti_;
std::vector<int64_t> ICs, OCs;
const platform::MKLDNNDeviceContext& dev_ctx_;
const dnnl::engine engine_;
const platform::Place place_;
const bool origin_mode_;
const int layers_;
std::map<std::pair<int, Direction>,
std::shared_ptr<dnnl::gru_forward::primitive_desc>>
gru_pds_;
std::vector<std::shared_ptr<dnnl::concat::primitive_desc>> concat_pds_;
std::string key_;
// Memory size of weights, bias and h0 does not depend
// on Ti size, thus we need another key to cache them
std::string memory_key_;
const LoDTensor* x_;
const std::vector<const Tensor*> weights_x_;
const std::vector<const Tensor*> weights_h_;
const std::vector<const Tensor*> biases_;
LoDTensor* hidden_;
std::vector<dnnl::primitive_attr> attrs_;
const paddle::framework::Vector<size_t>& x_lod_;
};
template <typename T>
class MultiGRUMKLDNNKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
const bool force_fp32_output =
ctx.HasAttr("force_fp32_output") && ctx.Attr<bool>("force_fp32_output");
if (force_fp32_output) {
RunKernel<float>(ctx);
} else {
RunKernel<T>(ctx);
}
}
template <typename Tout = T>
void RunKernel(const framework::ExecutionContext& ctx) const {
auto& dev_ctx =
ctx.template device_context<platform::MKLDNNDeviceContext>();
MultiGRUHandler<T, Tout> handler(ctx, dev_ctx);
int layers = handler.getLayers();
auto input_mem = handler.AcquireInputMemoryWithReorder();
for (int layer = 0; layer < layers; ++layer) {
auto gru_out_L2R = handler.executeSingleGru(input_mem, layer, L2R);
handler.reorderInputL2RtoR2L(input_mem, layer);
auto gru_out_R2L = handler.executeSingleGru(input_mem, layer, R2L);
if (layer < layers - 1)
handler.template reorderOutputR2LtoL2R<T>(gru_out_R2L, layer);
else
handler.template reorderOutputR2LtoL2R<Tout>(gru_out_R2L, layer);
input_mem = handler.executeConcat(gru_out_L2R, gru_out_R2L, layer);
}
handler.template reorderOutput<Tout>(input_mem, layers - 1);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_KERNEL(multi_gru, MKLDNN, paddle::platform::CPUPlace,
ops::MultiGRUMKLDNNKernel<float>,
ops::MultiGRUMKLDNNKernel<uint8_t>);
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/fused/multi_gru_op.h"
// #include "paddle/fluid/operators/fused/fusion_gru_op.h"
#include <cstring> // for memcpy
#include <string>
#include <vector>
#include "paddle/fluid/operators/jit/kernels.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/fc.h"
#include "paddle/fluid/operators/math/sequence2batch.h"
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace paddle {
namespace operators {
void MultiGRUOp::InferShape(framework::InferShapeContext* ctx) const {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "multi_gru");
OP_INOUT_CHECK(ctx->HasInputs("WeightX"), "Input", "WeightX", "multi_gru");
OP_INOUT_CHECK(ctx->HasInputs("WeightH"), "Input", "WeightH", "multi_gru");
OP_INOUT_CHECK(ctx->HasOutput("Hidden"), "Output", "Hidden", "multi_gru");
auto x_dims = ctx->GetInputDim("X");
auto x_mat_dims = (x_dims.size() == 3 && x_dims[1] == 1)
? framework::flatten_to_2d(x_dims, 1)
: x_dims;
PADDLE_ENFORCE_EQ(
x_mat_dims.size(), 2,
platform::errors::InvalidArgument("The size of input X dims should be 2, "
"or 3 with second dimension equal to "
"1, but now Input X dim is:[%s] ",
x_dims));
auto layers = ctx->Attrs().Get<int>("layers");
auto wx_dims = ctx->GetInputsDim("WeightX");
for (int i : {0, 1}) {
PADDLE_ENFORCE_EQ(
wx_dims[i][0], x_mat_dims[1],
platform::errors::InvalidArgument(
"The first dimension of flattened WeightX #%d"
"should equal to last dimension of flattened input X, but "
"received fattened WeightX dimension is:%d, flattened X dimension "
"is:%d",
i, wx_dims[i][0], x_mat_dims[1]));
}
auto wh_dims = ctx->GetInputsDim("WeightH");
for (int i = 0; i < 2 * layers; ++i) {
PADDLE_ENFORCE_EQ(wx_dims[i].size(), 2,
platform::errors::InvalidArgument(
"The rank of WeightX #%d should be 2, but received "
"WeightX dim size is:%d, WeightX dim is:[%s] ",
i, wx_dims[i].size(), wx_dims[i]));
PADDLE_ENFORCE_EQ(wh_dims[i].size(), 2,
platform::errors::InvalidArgument(
"The rank of WeightH #%d should be 2, but received "
"WeightH dim size is:%d, WeightH dim is:[%s] ",
i, wh_dims[i].size(), wh_dims[i]));
int frame_size = wh_dims[i][0];
PADDLE_ENFORCE_EQ(
wh_dims[i][1], 3 * frame_size,
platform::errors::InvalidArgument(
"The second dimension of WeightH #%d "
"should equal to 3 * frame_size, but received WeightH's "
"second dimension is: %d, frame size is:%d",
i, wh_dims[1], frame_size));
PADDLE_ENFORCE_EQ(
wx_dims[i][1], 3 * frame_size,
platform::errors::InvalidArgument(
"The second dimension of WeightX #%d "
"should equal to 3 * frame_size, but received WeightX's "
"second dimension is: %d, frame size is:%d",
i, wx_dims[i][1], frame_size));
}
if (ctx->HasInputs("Bias")) {
auto b_dims = ctx->GetInputsDim("Bias");
for (int i = 0; i < 2 * layers; ++i) {
int frame_size = wh_dims[i][0];
PADDLE_ENFORCE_EQ(b_dims[i].size(), 2,
platform::errors::InvalidArgument(
"The rank of Bias #%d should be 2, but received "
"Bias rank is:%d, Bias dim is:[%s]",
i, b_dims[i].size(), b_dims[i]));
PADDLE_ENFORCE_EQ(b_dims[i][0], 1,
platform::errors::InvalidArgument(
"The first dimension of Bias #%d should be 1, but "
"received Bias first dim is:%d, Bias dim is:[%s]",
i, b_dims[i][0], b_dims[i]));
PADDLE_ENFORCE_EQ(
b_dims[i][1], frame_size * 3,
platform::errors::InvalidArgument(
"The shape of Bias #%d must be [1, frame_size * 3], but "
"received bias dim is:[%s], frame size is:%d",
i, b_dims[i], frame_size));
}
}
int last_frame_size = wh_dims.back()[0];
framework::DDim out_dims({x_mat_dims[0], 2 * last_frame_size});
ctx->SetOutputDim("Hidden", out_dims);
ctx->ShareLoD("X", "Hidden");
}
framework::OpKernelType MultiGRUOp::GetExpectedKernelType(
const framework::ExecutionContext& ctx) const {
framework::LibraryType library = framework::LibraryType::kMKLDNN;
framework::DataLayout layout = framework::DataLayout::kMKLDNN;
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(), layout,
library);
}
void MultiGRUOpMaker::Make() {
AddInput("X",
"(LoDTensor) the input is an LodTensor, which support "
"variable-time length input sequence. The underlying tensor in "
"this LoDTensor is a matrix with shape (T X M), where T is the "
"total time steps in this mini-batch, M is the dim size of x.");
AddInput("WeightX",
"(MultiTensor) The FC weight with shape (M x 3D),"
"where M is the dim size of x, D is the hidden size. ")
.AsDuplicable();
AddInput("WeightH",
"(MultiTensor) (D x 3D) Same as GRUOp, where D is the hidden size. "
"This weight is not exactly D x 3D as: {W_update, W_reset, W_state}"
"Acutally they are D x 2D and D x D two part weights."
"{W_update, W_reset; W_state}"
"{D x (D + D); D x D}")
.AsDuplicable();
AddInput("Bias",
"(MultiTensor, optional) (1 x 3D)."
"Almost same as GRUOp."
"Note: if have FC bias it should be added on this bias.")
.AsDuplicable()
.AsDispensable();
AddInput(
"Scale_weights",
"(MultiTensor, optional) Scale_weights to be used for int8 weights data."
"Only used with MKL-DNN INT8.")
.AsDuplicable()
.AsDispensable();
AddOutput("Hidden", "(LoDTensor) (T x D) Same as GRUOp");
AddAttr<std::string>("activation",
"(string, default tanh) "
"The activation type used for output candidate {h}_t.")
.SetDefault("tanh");
AddAttr<std::string>(
"gate_activation",
"(string, default sigmoid) "
"The activation type used in update gate and reset gate.")
.SetDefault("sigmoid");
AddAttr<int>("layers",
"(int, default: 1) "
"Number of stacked GRU layers.")
.SetDefault(1);
AddAttr<bool>("origin_mode",
"bool"
"use origin mode in article https://arxiv.org/abs/1412.3555")
.SetDefault(false);
AddAttr<std::string>(
"mkldnn_data_type",
"(string, default \"float32\"). Data type of mkldnn kernel")
.SetDefault("float32")
.InEnum({"float32", "int8", "bfloat16"});
AddAttr<float>("Scale_data",
"Scales to be used for int8 input/output data."
"Only used with MKL-DNN INT8.")
.SetDefault({1.f});
AddAttr<float>("Shift_data",
"Shifts to be used for int8 input/output data."
"Only used with MKL-DNN INT8.")
.SetDefault({0.f});
AddAttr<bool>("force_fp32_output",
"(bool, default: false) Force INT8 kernel output FP32, only "
"used in MKL-DNN INT8")
.SetDefault(false);
AddComment(R"DOC(
The Fusion complete GRU Operator.
This operator fuse the fully-connected operator into GRU,
more details can refer to GRU op.
)DOC");
}
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(multi_gru, ops::MultiGRUOp, ops::MultiGRUOpMaker);
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
namespace paddle {
namespace operators {
using framework::LoDTensor;
using framework::Tensor;
using framework::ExecutionContext;
class MultiGRUOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override;
protected:
framework::OpKernelType GetExpectedKernelType(
const ExecutionContext& ctx) const override;
};
class MultiGRUOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override;
};
} // namespace operators
} // namespace paddle
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from paddle.fluid.tests.unittests.op_test import OpTest
from paddle.fluid.tests.unittests.test_fusion_gru_op import fusion_gru, ACTIVATION
from paddle.fluid.dygraph.base import disable_dygraph
def multi_gru(
x, # T x M
lod, # 1 x N
h0, # N x D
wx, # M x 3D
wh, # D x 3D
bias, # 1 x 3D
origin_mode,
layers):
act_state = ACTIVATION['tanh']
act_gate = ACTIVATION['sigmoid']
input = x
for i in range(0, layers * 2, 2):
_, _, _, gru1_out = fusion_gru(input, lod, h0[i], wx[i], wh[i], bias[i],
False, origin_mode, act_state, act_gate)
_, _, _, gru2_out = fusion_gru(input, lod, h0[i + 1], wx[i + 1],
wh[i + 1], bias[i + 1], True,
origin_mode, act_state, act_gate)
input = np.concatenate((gru1_out, gru2_out), axis=1)
return input
class TestMultiGruMkldnnOp(OpTest):
def set_confs(self):
pass
def set_dtype(self):
pass
def set_force_fp32_output(self):
pass
def setUp(self):
self.op_type = "multi_gru"
self.lod = [[2, 4, 3]]
self.ICs = [3]
self.OCs = [5]
self.with_bias = True
self.layers = 1
self.origin_mode = False
self._cpu_only = True
self.error_margin = 1e-5
self.set_confs()
self.dtype = "float32"
self.set_dtype()
self.force_fp32_output = False
self.set_force_fp32_output()
is_int8 = self.dtype == 'int8'
scale_data = 63
shift_data = 64
T = sum(self.lod[0])
N = len(self.lod[0])
self.inputs = {}
if is_int8:
x_f32 = np.random.rand(T, self.ICs[0]).astype('float32') * 2 - 1
x_u8 = np.rint(x_f32 * scale_data + shift_data).astype(np.uint8)
self.inputs['X'] = (x_u8, self.lod)
else:
x_f32 = np.random.rand(T, self.ICs[0]).astype('float32')
self.inputs['X'] = (x_f32, self.lod)
wx = []
wh = []
bias = []
h0 = []
for layer in range(self.layers):
IC = self.ICs[layer]
OC = self.OCs[layer]
for j in range(2):
wx.append(np.random.rand(IC, 3 * OC).astype('float32'))
wh.append(np.random.rand(OC, 3 * OC).astype('float32'))
bias.append(
np.random.rand(1, 3 * OC).astype('float32')
if self.with_bias else np.zeros(
(1, 3 * OC), dtype='float32'))
h0.append(np.zeros((N, OC), dtype='float32'))
self.inputs['WeightX'] = [('wx' + str(i), wx[i])
for i in range(self.layers * 2)]
self.inputs['WeightH'] = [('wh' + str(i), wh[i])
for i in range(self.layers * 2)]
if self.with_bias:
self.inputs['Bias'] = [('b' + str(i), bias[i])
for i in range(self.layers * 2)]
if is_int8:
s8_max = 127.0
scale_weights = []
for layer in range(self.layers):
OC = self.OCs[layer]
for j in range(2):
scale_ur = s8_max / np.max(np.abs(
np.concatenate(
[
wx[2 * layer + j][:, :2 * OC], wh[2 * layer + j]
.flatten()[:2 * OC * OC].reshape(OC, 2 * OC)
],
axis=0)),
axis=0)
scale_o = s8_max / np.max(np.abs(
np.concatenate(
[
wx[2 * layer + j][:, 2 * OC:], wh[2 * layer + j]
.flatten()[2 * OC * OC:].reshape(OC, OC)
],
axis=0)),
axis=0)
scale_weights.append(
np.concatenate([scale_ur, scale_o]).astype('float32'))
self.inputs['Scale_weights'] = [('w_scale' + str(i),
scale_weights[i])
for i in range(self.layers * 2)]
self.error_margin = 1e-1 if self.force_fp32_output else 1
hidden_f32 = multi_gru(x_f32, self.lod, h0, wx, wh, bias,
self.origin_mode, self.layers)
if self.dtype == 'float32' or self.force_fp32_output:
self.outputs = {'Hidden': (hidden_f32, self.lod)}
else:
hidden_u8 = np.rint(hidden_f32 * scale_data + shift_data).astype(
np.uint8)
self.outputs = {'Hidden': (hidden_u8, self.lod)}
self.attrs = {
'activation': 'tanh',
'gate_activation': 'sigmoid',
'layers': self.layers,
'origin_mode': self.origin_mode,
'use_mkldnn': True,
}
if is_int8:
self.attrs['force_fp32_output'] = self.force_fp32_output
self.attrs['Scale_data'] = scale_data
self.attrs['Shift_data'] = shift_data
def test_check_output(self):
self.check_output(check_dygraph=False, atol=self.error_margin)
class TestMultiGruMkldnnOpNoBias(TestMultiGruMkldnnOp):
def set_confs(self):
self.with_bias = False
class TestMultiGruMkldnnOpLayers2(TestMultiGruMkldnnOp):
def set_confs(self):
self.layers = 2
self.ICs = [2, 6]
self.OCs = [3, 8]
class TestMultiGruMkldnnOpLayers3(TestMultiGruMkldnnOp):
def set_confs(self):
self.layers = 3
self.ICs = [2, 6, 12]
self.OCs = [3, 6, 14]
class TestMultiGruMkldnnOpOriginMode(TestMultiGruMkldnnOp):
def set_confs(self):
self.origin_mode = True
class TestMultiGruMkldnnInt8Op(TestMultiGruMkldnnOp):
def set_dtype(self):
self.dtype = 'int8'
class TestMultiGruMkldnnInt8OpForceFP32Output(TestMultiGruMkldnnInt8Op):
def set_force_fp32_output(self):
self.force_fp32_output = True
class TestMultiGruMkldnnInt8OpNoBias(TestMultiGruMkldnnOpNoBias):
def set_dtype(self):
self.dtype = 'int8'
class TestMultiGruMkldnnInt8OpNoBiasForceFP32Output(
TestMultiGruMkldnnInt8OpNoBias):
def set_force_fp32_output(self):
self.force_fp32_output = True
class TestMultiGruMkldnnInt8OpLayers2(TestMultiGruMkldnnOpLayers2):
def set_dtype(self):
self.dtype = 'int8'
class TestMultiGruMkldnnInt8OpLayers2ForceFP32Output(
TestMultiGruMkldnnInt8OpLayers2):
def set_force_fp32_output(self):
self.force_fp32_output = True
class TestMultiGruMkldnnInt8OpLayers3(TestMultiGruMkldnnOpLayers3):
def set_dtype(self):
self.dtype = 'int8'
class TestMultiGruMkldnnInt8OpLayers3ForceFP32Output(
TestMultiGruMkldnnInt8OpLayers3):
def set_force_fp32_output(self):
self.force_fp32_output = True
class TestMultiGruMkldnnInt8OpOriginMode(TestMultiGruMkldnnOpOriginMode):
def set_dtype(self):
self.dtype = 'int8'
class TestMultiGruMkldnnInt8OpOriginModeForceFP32Output(
TestMultiGruMkldnnInt8OpOriginMode):
def set_force_fp32_output(self):
self.force_fp32_output = True
if __name__ == "__main__":
unittest.main()
...@@ -598,6 +598,7 @@ STATIC_MODE_TESTING_LIST = [ ...@@ -598,6 +598,7 @@ STATIC_MODE_TESTING_LIST = [
'test_lrn_mkldnn_op', 'test_lrn_mkldnn_op',
'test_matmul_mkldnn_op', 'test_matmul_mkldnn_op',
'test_mul_int8_mkldnn_op', 'test_mul_int8_mkldnn_op',
'test_multi_gru_mkldnn_op',
'test_pool2d_int8_mkldnn_op', 'test_pool2d_int8_mkldnn_op',
'test_pool2d_mkldnn_op', 'test_pool2d_mkldnn_op',
'test_quantize_mkldnn_op', 'test_quantize_mkldnn_op',
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册