From 0456e0031537dd1496b2e20d401ff735210fd6d1 Mon Sep 17 00:00:00 2001 From: baoachun <962571062@qq.com> Date: Wed, 15 Dec 2021 19:58:24 +0800 Subject: [PATCH] add mkldnn conv3d_bias_mkldnn_fuse_pass ut (#37700) * add mkldnn conv3d_bias_mkldnn_fuse_pass ut * update conv3d_bias_mkldnn_fuse_pass ut * disable conv3d_bias_mkldnn_fuse_pass --- .../ir/mkldnn/conv_bias_mkldnn_fuse_pass.cc | 16 ++- .../inference/api/paddle_pass_builder.cc | 3 +- .../test_mkldnn_conv3d_bias_fuse_pass.py | 132 ++++++++++++++++++ 3 files changed, 149 insertions(+), 2 deletions(-) create mode 100644 python/paddle/fluid/tests/unittests/ir/inference/test_mkldnn_conv3d_bias_fuse_pass.py diff --git a/paddle/fluid/framework/ir/mkldnn/conv_bias_mkldnn_fuse_pass.cc b/paddle/fluid/framework/ir/mkldnn/conv_bias_mkldnn_fuse_pass.cc index 41539a05b37..aae1da5f0a3 100644 --- a/paddle/fluid/framework/ir/mkldnn/conv_bias_mkldnn_fuse_pass.cc +++ b/paddle/fluid/framework/ir/mkldnn/conv_bias_mkldnn_fuse_pass.cc @@ -147,7 +147,21 @@ Conv3DBiasFusePass::Conv3DBiasFusePass() { .IsType>() .End() .AddAttr("data_format") - .IsStringIn({"NCHW", "NHWC"}) + .IsStringIn({"NDHWC", "NCDHW"}) + .End(); + + AddOpCompat(OpCompat("elementwise_add")) + .AddInput("X") + .IsTensor() + .End() + .AddInput("Y") + .IsTensor() + .End() + .AddOutput("Out") + .IsTensor() + .End() + .AddAttr("axis") + .IsNumGE(1) .End(); } diff --git a/paddle/fluid/inference/api/paddle_pass_builder.cc b/paddle/fluid/inference/api/paddle_pass_builder.cc index 9023da40328..e96f182e3b1 100644 --- a/paddle/fluid/inference/api/paddle_pass_builder.cc +++ b/paddle/fluid/inference/api/paddle_pass_builder.cc @@ -241,7 +241,8 @@ void CpuPassStrategy::EnableMKLDNN() { "conv_transpose_eltwiseadd_bn_fuse_pass", // "conv_bias_mkldnn_fuse_pass", // "conv_transpose_bias_mkldnn_fuse_pass", - "conv3d_bias_mkldnn_fuse_pass", // + // TODO(baoachun): Need to support 5-dimensional input. + // "conv3d_bias_mkldnn_fuse_pass", // "conv_elementwise_add_mkldnn_fuse_pass", "conv_concat_relu_mkldnn_fuse_pass", "conv_relu_mkldnn_fuse_pass", // diff --git a/python/paddle/fluid/tests/unittests/ir/inference/test_mkldnn_conv3d_bias_fuse_pass.py b/python/paddle/fluid/tests/unittests/ir/inference/test_mkldnn_conv3d_bias_fuse_pass.py new file mode 100644 index 00000000000..ae0ac6a3ecd --- /dev/null +++ b/python/paddle/fluid/tests/unittests/ir/inference/test_mkldnn_conv3d_bias_fuse_pass.py @@ -0,0 +1,132 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from auto_scan_test import PassAutoScanTest, SkipReasons +from program_config import TensorConfig, ProgramConfig +import numpy as np +import paddle.inference as paddle_infer +from functools import partial +from typing import Optional, List, Callable, Dict, Any, Set +import unittest + +import hypothesis +from hypothesis import given, settings, seed, example, assume +import hypothesis.strategies as st + + +class TestConv3dBiasMkldnnFusePass(PassAutoScanTest): + def is_program_valid(self, program_config: ProgramConfig) -> bool: + return True + + def sample_program_config(self, draw): + data_format = draw(st.sampled_from(["NCDHW", "NDHWC"])) + dilations = draw(st.sampled_from([[1, 1, 1], [2, 2, 2], [1, 2, 1]])) + padding_algorithm = draw(st.sampled_from(["EXPLICIT", "SAME", "VALID"])) + groups = draw(st.sampled_from([1, 2, 4])) + paddings = draw(st.sampled_from([[0, 3, 2], [1, 2, 3, 4, 3, 1]])) + strides = draw(st.sampled_from([[1, 1, 1], [2, 2, 2], [1, 2, 1]])) + axis = draw(st.sampled_from([1])) + batch_size = draw(st.integers(min_value=1, max_value=4)) + + def generate_input1(attrs): + if attrs[0]['data_format'] == "NCDHW": + return np.random.random( + [attrs[2]['batch_size'], 48, 64, 32, 64]).astype(np.float32) + else: + return np.random.random( + [attrs[2]['batch_size'], 64, 32, 64, 48]).astype(np.float32) + + def generate_weight1(): + return np.random.random( + [16, int(48 / groups), 3, 3, 3]).astype(np.float32) + + def generate_weight2(): + return np.random.random([16]).astype(np.float32) + + attrs = [{ + "data_format": data_format, + "dilations": dilations, + "padding_algorithm": padding_algorithm, + "groups": groups, + "paddings": paddings, + "strides": strides + }, { + "axis": axis + }, { + 'batch_size': batch_size + }] + + ops_config = [{ + "op_type": "conv3d", + "op_inputs": { + "Input": ["input_data1"], + "Filter": ["conv_weight"] + }, + "op_outputs": { + "Output": ["conv_output"] + }, + "op_attrs": { + "data_format": attrs[0]['data_format'], + "dilations": attrs[0]['dilations'], + "padding_algorithm": attrs[0]['padding_algorithm'], + "groups": attrs[0]['groups'], + "paddings": attrs[0]['paddings'], + "strides": attrs[0]['strides'], + "is_test": True + } + }, { + "op_type": "elementwise_add", + "op_inputs": { + "X": ["conv_output"], + "Y": ["elementwise_weight"] + }, + "op_outputs": { + "Out": ["elementwise_output"] + }, + "op_attrs": { + 'axis': attrs[1]['axis'] + }, + }] + + ops = self.generate_op_config(ops_config) + + program_config = ProgramConfig( + ops=ops, + weights={ + "conv_weight": TensorConfig(data_gen=partial(generate_weight1)), + "elementwise_weight": + TensorConfig(data_gen=partial(generate_weight2)) + }, + inputs={ + "input_data1": + TensorConfig(data_gen=partial(generate_input1, attrs)) + }, + outputs=["elementwise_output"]) + + return program_config + + def sample_predictor_configs(self, program_config): + config = self.create_inference_config(use_mkldnn=True) + yield config, ["conv3d"], (1e-5, 1e-5) + + # TODO(baoachun) + # Need to support 5-dimensional input when using mkldnn. + def test(self): + pass + # self.run_and_statis( + # quant=False, passes=["conv3d_bias_mkldnn_fuse_pass"]) + + +if __name__ == "__main__": + unittest.main() -- GitLab