提交 03f4beb8 编写于 作者: Q qiaolongfei

add doc for ErrorClipByValue GradientClipByValue and GradientClipByGlobalNorm

上级 e3578ab1
......@@ -24,8 +24,6 @@ __all__ = [
'GradientClipByValue',
'GradientClipByNorm',
'GradientClipByGlobalNorm',
'append_gradient_clip_ops',
'error_clip_callback',
]
......@@ -38,6 +36,25 @@ class BaseErrorClipAttr(object):
class ErrorClipByValue(BaseErrorClipAttr):
"""
Clips tensor values to the range [min, max].
Given a tensor t, this operation clips its value to min and max inplace.
- Any values less than min are set to min.
- Any values greater than max are set to max.
Args:
max (float): The maximum value to clip by.
min (float, optional): The minimum value to clip by. if not set by user, \
will be set to -max by framework.
Examples:
.. code-block:: python
var = fluid.framework.Variable(..., error_clip=ErrorClipByValue(max=5.0), ...)
"""
def __init__(self, max, min=None):
max = float(max)
if min is None:
......@@ -99,6 +116,31 @@ class NullGradientClipAttr(BaseGradientClipAttr):
class GradientClipByValue(BaseGradientClipAttr):
"""
Clips gradient values to the range [min, max].
Given a tensor t, this operation clips its value to min and max inplace.
- Any values less than min are set to min.
- Any values greater than max are set to max.
Args:
max (float): The maximum value to clip by.
min (float, optional): The minimum value to clip by. if not set by user, \
will be set to -max by framework.
Examples:
.. code-block:: python
w_param_attrs = ParamAttr(name=None,
initializer=UniformInitializer(low=-1.0, high=1.0, seed=0),
learning_rate=1.0,
regularizer=L1Decay(1.0),
trainable=True,
clip=GradientClipByValue(-1.0, 1.0))
y_predict = fluid.layers.fc(input=x, size=1, param_attr=w_param_attrs)
"""
def __init__(self, max, min=None):
max = float(max)
if min is None:
......@@ -120,6 +162,37 @@ class GradientClipByValue(BaseGradientClipAttr):
class GradientClipByNorm(BaseGradientClipAttr):
"""
Clips tensor values to a maximum L2-norm.
This operator limits the L2 norm of the input :math:`X` within :math:`max\_norm`.
If the L2 norm of :math:`X` is less than or equal to :math:`max\_norm`, :math:`Out`
will be the same as :math:`X`. If the L2 norm of :math:`X` is greater than
:math:`max\_norm`, :math:`X` will be linearly scaled to make the L2 norm of
:math:`Out` equal to :math:`max\_norm`, as shown in the following formula:
.. math::
Out = \\frac{max\_norm * X}{norm(X)},
where :math:`norm(X)` represents the L2 norm of :math:`X`.
Args:
clip_norm (float): The maximum norm value
Examples:
.. code-block:: python
w_param_attrs = ParamAttr(name=None,
initializer=UniformInitializer(low=-1.0, high=1.0, seed=0),
learning_rate=1.0,
regularizer=L1Decay(1.0),
trainable=True,
clip=GradientClipByNorm(clip_norm=2.0))
y_predict = fluid.layers.fc(input=x, size=1, param_attr=w_param_attrs)
"""
def __init__(self, clip_norm):
self.clip_norm = clip_norm
......@@ -184,13 +257,14 @@ class GradientClipByGlobalNorm(BaseGradientClipAttr):
def set_gradient_clip(clip, param_list=None, program=None):
"""
To specify parameters that require gradient clip.
Args:
clip(BaseGradientClipAttr): An instance of some derived class of BaseGradientClipAttr,
which describes the type and detailed attributes of required gradient clip.
param_list(list, None by default): Parameters that require gradient clip.
param_list(list(Variable)): Parameters that require gradient clip.
It can be a list of parameter or a list of parameter's name.
When it's None, all parameters in the program will be included.
program(Program, None by default): The program where parameters are.
program(Program): The program where parameters are.
Will be the default main program when assigned with None.
"""
if not isinstance(clip, BaseGradientClipAttr):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册