Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
03eb792d
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
03eb792d
编写于
3月 04, 2022
作者:
zhouweiwei2014
提交者:
GitHub
3月 04, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
【Phi】Migrate bitwise_and/bitwise_or/bitwise_xor/bitwise_not op into phi (#40031)
* Migrate bitwise_and/or/xor/not op into phi * fix CI
上级
d9dd840f
变更
8
显示空白变更内容
内联
并排
Showing
8 changed file
with
313 addition
and
210 deletion
+313
-210
paddle/fluid/operators/controlflow/CMakeLists.txt
paddle/fluid/operators/controlflow/CMakeLists.txt
+1
-1
paddle/fluid/operators/controlflow/bitwise_op.cc
paddle/fluid/operators/controlflow/bitwise_op.cc
+20
-23
paddle/fluid/operators/controlflow/bitwise_op.cu
paddle/fluid/operators/controlflow/bitwise_op.cu
+0
-74
paddle/fluid/operators/controlflow/bitwise_op.h
paddle/fluid/operators/controlflow/bitwise_op.h
+0
-112
paddle/phi/kernels/bitwise_kernel.h
paddle/phi/kernels/bitwise_kernel.h
+44
-0
paddle/phi/kernels/cpu/bitwise_kernel.cc
paddle/phi/kernels/cpu/bitwise_kernel.cc
+99
-0
paddle/phi/kernels/funcs/bitwise_functors.h
paddle/phi/kernels/funcs/bitwise_functors.h
+51
-0
paddle/phi/kernels/gpu/bitwise_kernel.cu
paddle/phi/kernels/gpu/bitwise_kernel.cu
+98
-0
未找到文件。
paddle/fluid/operators/controlflow/CMakeLists.txt
浏览文件 @
03eb792d
...
@@ -21,4 +21,4 @@ endif()
...
@@ -21,4 +21,4 @@ endif()
file
(
APPEND
${
pybind_file
}
"USE_OP_ITSELF(less_than);
\n
USE_OP_ITSELF(equal_all);
\n
USE_NO_KERNEL_OP(read_from_array);
\n
"
)
file
(
APPEND
${
pybind_file
}
"USE_OP_ITSELF(less_than);
\n
USE_OP_ITSELF(equal_all);
\n
USE_NO_KERNEL_OP(read_from_array);
\n
"
)
file
(
APPEND
${
pybind_file
}
"USE_OP_ITSELF(logical_and);
\n
USE_OP_ITSELF(logical_or);
\n
USE_OP_ITSELF(logical_xor);
\n
USE_OP_ITSELF(logical_not);
\n
"
)
file
(
APPEND
${
pybind_file
}
"USE_OP_ITSELF(logical_and);
\n
USE_OP_ITSELF(logical_or);
\n
USE_OP_ITSELF(logical_xor);
\n
USE_OP_ITSELF(logical_not);
\n
"
)
file
(
APPEND
${
pybind_file
}
"USE_OP
(bitwise_and);
\n
USE_OP(bitwise_or);
\n
USE_OP(bitwise_xor);
\n
USE_OP
(bitwise_not);
\n
"
)
file
(
APPEND
${
pybind_file
}
"USE_OP
_ITSELF(bitwise_and);
\n
USE_OP_ITSELF(bitwise_or);
\n
USE_OP_ITSELF(bitwise_xor);
\n
USE_OP_ITSELF
(bitwise_not);
\n
"
)
paddle/fluid/operators/controlflow/bitwise_op.cc
浏览文件 @
03eb792d
...
@@ -12,11 +12,11 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -12,11 +12,11 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include "paddle/fluid/operators/controlflow/bitwise_op.h"
#include <algorithm>
#include <algorithm>
#include <string>
#include <string>
#include <vector>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
@@ -75,11 +75,19 @@ It operates ``%s`` on Tensor ``X`` .
...
@@ -75,11 +75,19 @@ It operates ``%s`` on Tensor ``X`` .
}
}
};
};
class
BitwiseOp
:
public
framework
::
OperatorWithKernel
{
template
<
typename
OpComment
>
class
UnaryBitwiseOp
:
public
framework
::
OperatorWithKernel
{
public:
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
protected:
void
InferShape
(
framework
::
InferShapeContext
*
context
)
const
override
{
OpComment
comment
;
OP_INOUT_CHECK
(
context
->
HasInput
(
"X"
),
"Input"
,
"X"
,
comment
.
type
);
context
->
SetOutputDim
(
"Out"
,
context
->
GetInputDim
(
"X"
));
context
->
ShareLoD
(
"X"
,
"Out"
);
}
framework
::
OpKernelType
GetExpectedKernelType
(
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
framework
::
OpKernelType
kt
=
OperatorWithKernel
::
GetExpectedKernelType
(
ctx
);
framework
::
OpKernelType
kt
=
OperatorWithKernel
::
GetExpectedKernelType
(
ctx
);
...
@@ -90,23 +98,9 @@ class BitwiseOp : public framework::OperatorWithKernel {
...
@@ -90,23 +98,9 @@ class BitwiseOp : public framework::OperatorWithKernel {
};
};
template
<
typename
OpComment
>
template
<
typename
OpComment
>
class
UnaryBitwiseOp
:
public
BitwiseOp
{
class
BinaryBitwiseOp
:
public
framework
::
OperatorWithKernel
{
public:
using
BitwiseOp
::
BitwiseOp
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
context
)
const
override
{
OpComment
comment
;
OP_INOUT_CHECK
(
context
->
HasInput
(
"X"
),
"Input"
,
"X"
,
comment
.
type
);
context
->
SetOutputDim
(
"Out"
,
context
->
GetInputDim
(
"X"
));
context
->
ShareLoD
(
"X"
,
"Out"
);
}
};
template
<
typename
OpComment
>
class
BinaryBitwiseOp
:
public
BitwiseOp
{
public:
public:
using
BitwiseOp
::
BitwiseOp
;
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
protected:
void
InferShape
(
framework
::
InferShapeContext
*
context
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
context
)
const
override
{
...
@@ -130,6 +124,14 @@ class BinaryBitwiseOp : public BitwiseOp {
...
@@ -130,6 +124,14 @@ class BinaryBitwiseOp : public BitwiseOp {
}
}
context
->
ShareLoD
(
"X"
,
"Out"
);
context
->
ShareLoD
(
"X"
,
"Out"
);
}
}
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
framework
::
OpKernelType
kt
=
OperatorWithKernel
::
GetExpectedKernelType
(
ctx
);
// BitwiseOp kernel's device type is decided by input tensor place
kt
.
place_
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
)
->
place
();
return
kt
;
}
};
};
}
// namespace operators
}
// namespace operators
...
@@ -167,8 +169,3 @@ REGISTER_BINARY_BITWISE_OP(bitwise_and, "Out = X \\& Y");
...
@@ -167,8 +169,3 @@ REGISTER_BINARY_BITWISE_OP(bitwise_and, "Out = X \\& Y");
REGISTER_BINARY_BITWISE_OP
(
bitwise_or
,
"Out = X | Y"
);
REGISTER_BINARY_BITWISE_OP
(
bitwise_or
,
"Out = X | Y"
);
REGISTER_BINARY_BITWISE_OP
(
bitwise_xor
,
"Out = X ^
\\
wedge Y"
);
REGISTER_BINARY_BITWISE_OP
(
bitwise_xor
,
"Out = X ^
\\
wedge Y"
);
REGISTER_UNARY_BITWISE_OP
(
bitwise_not
,
"Out =
\\
sim X"
);
REGISTER_UNARY_BITWISE_OP
(
bitwise_not
,
"Out =
\\
sim X"
);
REGISTER_BINARY_BITWISE_KERNEL
(
bitwise_and
,
CPU
,
ops
::
BitwiseAndFunctor
);
REGISTER_BINARY_BITWISE_KERNEL
(
bitwise_or
,
CPU
,
ops
::
BitwiseOrFunctor
);
REGISTER_BINARY_BITWISE_KERNEL
(
bitwise_xor
,
CPU
,
ops
::
BitwiseXorFunctor
);
REGISTER_UNARY_BITWISE_KERNEL
(
bitwise_not
,
CPU
,
ops
::
BitwiseNotFunctor
);
paddle/fluid/operators/controlflow/bitwise_op.cu
已删除
100644 → 0
浏览文件 @
d9dd840f
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/controlflow/bitwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_broadcast.cu.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
Functor
>
class
BinaryBitwiseOpKernel
<
platform
::
CUDADeviceContext
,
Functor
>
:
public
framework
::
OpKernel
<
typename
Functor
::
ELEM_TYPE
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
using
T
=
typename
Functor
::
ELEM_TYPE
;
auto
*
x
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Y"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
functor
=
Functor
();
std
::
vector
<
const
framework
::
Tensor
*>
ins
=
{
x
,
y
};
std
::
vector
<
framework
::
Tensor
*>
outs
=
{
out
};
const
auto
&
cuda_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
paddle
::
operators
::
LaunchElementwiseCudaKernel
<
ElementwiseType
::
kBinary
,
T
,
T
>
(
cuda_ctx
,
ins
,
&
outs
,
-
1
,
functor
);
}
};
template
<
typename
Functor
>
class
UnaryBitwiseOpKernel
<
platform
::
CUDADeviceContext
,
Functor
>
:
public
framework
::
OpKernel
<
typename
Functor
::
ELEM_TYPE
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
using
T
=
typename
Functor
::
ELEM_TYPE
;
auto
*
x
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
functor
=
Functor
();
std
::
vector
<
const
framework
::
Tensor
*>
ins
=
{
x
};
std
::
vector
<
framework
::
Tensor
*>
outs
=
{
out
};
const
auto
&
cuda_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
paddle
::
operators
::
LaunchSameDimsElementwiseCudaKernel
<
T
>
(
cuda_ctx
,
ins
,
&
outs
,
functor
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
::
paddle
::
operators
;
namespace
plat
=
::
paddle
::
platform
;
REGISTER_BINARY_BITWISE_KERNEL
(
bitwise_and
,
CUDA
,
ops
::
BitwiseAndFunctor
);
REGISTER_BINARY_BITWISE_KERNEL
(
bitwise_or
,
CUDA
,
ops
::
BitwiseOrFunctor
);
REGISTER_BINARY_BITWISE_KERNEL
(
bitwise_xor
,
CUDA
,
ops
::
BitwiseXorFunctor
);
REGISTER_UNARY_BITWISE_KERNEL
(
bitwise_not
,
CUDA
,
ops
::
BitwiseNotFunctor
);
paddle/fluid/operators/controlflow/bitwise_op.h
已删除
100644 → 0
浏览文件 @
d9dd840f
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <math.h>
#include <type_traits>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/platform/transform.h"
namespace
paddle
{
namespace
operators
{
#define BITWISE_BINARY_FUNCTOR(func, expr, bool_expr) \
template <typename T> \
struct Bitwise##func##Functor { \
using ELEM_TYPE = T; \
HOSTDEVICE T operator()(const T a, const T b) const { return a expr b; } \
}; \
\
template <> \
struct Bitwise##func##Functor<bool> { \
using ELEM_TYPE = bool; \
HOSTDEVICE bool operator()(const bool a, const bool b) const { \
return a bool_expr b; \
} \
};
BITWISE_BINARY_FUNCTOR
(
And
,
&
,
&&
)
BITWISE_BINARY_FUNCTOR
(
Or
,
|
,
||
)
BITWISE_BINARY_FUNCTOR
(
Xor
,
^
,
!=
)
#undef BITWISE_BINARY_FUNCTOR
template
<
typename
T
>
struct
BitwiseNotFunctor
{
using
ELEM_TYPE
=
T
;
HOSTDEVICE
T
operator
()(
const
T
a
)
const
{
return
~
a
;
}
};
template
<
>
struct
BitwiseNotFunctor
<
bool
>
{
using
ELEM_TYPE
=
bool
;
HOSTDEVICE
bool
operator
()(
const
bool
a
)
const
{
return
!
a
;
}
};
template
<
typename
DeviceContext
,
typename
Functor
>
class
BinaryBitwiseOpKernel
:
public
framework
::
OpKernel
<
typename
Functor
::
ELEM_TYPE
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
using
T
=
typename
Functor
::
ELEM_TYPE
;
auto
func
=
Functor
();
auto
*
x
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
y
=
context
.
Input
<
framework
::
Tensor
>
(
"Y"
);
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
ElementwiseComputeEx
<
Functor
,
DeviceContext
,
T
>
(
context
,
x
,
y
,
-
1
,
func
,
out
);
}
};
template
<
typename
DeviceContext
,
typename
Functor
>
class
UnaryBitwiseOpKernel
:
public
framework
::
OpKernel
<
typename
Functor
::
ELEM_TYPE
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
using
T
=
typename
Functor
::
ELEM_TYPE
;
auto
func
=
Functor
();
auto
*
x
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
platform
::
Transform
<
DeviceContext
>
trans
;
trans
(
context
.
template
device_context
<
DeviceContext
>(),
x
->
data
<
T
>
(),
x
->
data
<
T
>
()
+
x
->
numel
(),
out
->
mutable_data
<
T
>
(
context
.
GetPlace
()),
func
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
::
paddle
::
operators
;
namespace
plat
=
::
paddle
::
platform
;
#define REGISTER_BINARY_BITWISE_KERNEL(op_type, dev, functor) \
REGISTER_OP_##dev##_KERNEL( \
op_type, \
ops::BinaryBitwiseOpKernel<plat::dev##DeviceContext, functor<bool>>, \
ops::BinaryBitwiseOpKernel<plat::dev##DeviceContext, functor<uint8_t>>, \
ops::BinaryBitwiseOpKernel<plat::dev##DeviceContext, functor<int8_t>>, \
ops::BinaryBitwiseOpKernel<plat::dev##DeviceContext, functor<int16_t>>, \
ops::BinaryBitwiseOpKernel<plat::dev##DeviceContext, functor<int>>, \
ops::BinaryBitwiseOpKernel<plat::dev##DeviceContext, functor<int64_t>>);
#define REGISTER_UNARY_BITWISE_KERNEL(op_type, dev, functor) \
REGISTER_OP_##dev##_KERNEL( \
op_type, \
ops::UnaryBitwiseOpKernel<plat::dev##DeviceContext, functor<bool>>, \
ops::UnaryBitwiseOpKernel<plat::dev##DeviceContext, functor<uint8_t>>, \
ops::UnaryBitwiseOpKernel<plat::dev##DeviceContext, functor<int8_t>>, \
ops::UnaryBitwiseOpKernel<plat::dev##DeviceContext, functor<int16_t>>, \
ops::UnaryBitwiseOpKernel<plat::dev##DeviceContext, functor<int>>, \
ops::UnaryBitwiseOpKernel<plat::dev##DeviceContext, functor<int64_t>>);
paddle/phi/kernels/bitwise_kernel.h
0 → 100644
浏览文件 @
03eb792d
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
BitwiseAndKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
DenseTensor
*
out
);
template
<
typename
T
,
typename
Context
>
void
BitwiseOrKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
DenseTensor
*
out
);
template
<
typename
T
,
typename
Context
>
void
BitwiseXorKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
DenseTensor
*
out
);
template
<
typename
T
,
typename
Context
>
void
BitwiseNotKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
DenseTensor
*
out
);
}
// namespace phi
paddle/phi/kernels/cpu/bitwise_kernel.cc
0 → 100644
浏览文件 @
03eb792d
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/bitwise_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/bitwise_functors.h"
#include "paddle/phi/kernels/funcs/elementwise_base.h"
// See Note [ Why still include the fluid headers? ]
#include "paddle/fluid/platform/transform.h"
namespace
phi
{
#define DEFINE_BITWISE_KERNEL(op_type) \
template <typename T, typename Context> \
void Bitwise##op_type##Kernel(const Context& dev_ctx, \
const DenseTensor& x, \
const DenseTensor& y, \
DenseTensor* out) { \
funcs::Bitwise##op_type##Functor<T> func; \
funcs::ElementwiseCompute<funcs::Bitwise##op_type##Functor<T>, T, T>( \
dev_ctx, x, y, -1, func, out); \
}
DEFINE_BITWISE_KERNEL
(
And
)
DEFINE_BITWISE_KERNEL
(
Or
)
DEFINE_BITWISE_KERNEL
(
Xor
)
#undef DEFINE_BITWISE_KERNEL
template
<
typename
T
,
typename
Context
>
void
BitwiseNotKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
DenseTensor
*
out
)
{
const
T
*
x_data
=
x
.
data
<
T
>
();
T
*
out_data
=
dev_ctx
.
template
Alloc
<
T
>(
out
);
size_t
numel
=
x
.
numel
();
funcs
::
BitwiseNotFunctor
<
T
>
func
;
paddle
::
platform
::
Transform
<
Context
>
trans
;
trans
(
dev_ctx
,
x_data
,
x_data
+
numel
,
out_data
,
func
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
bitwise_and
,
CPU
,
ALL_LAYOUT
,
phi
::
BitwiseAndKernel
,
bool
,
uint8_t
,
int8_t
,
int16_t
,
int
,
int64_t
)
{}
PD_REGISTER_KERNEL
(
bitwise_or
,
CPU
,
ALL_LAYOUT
,
phi
::
BitwiseOrKernel
,
bool
,
uint8_t
,
int8_t
,
int16_t
,
int
,
int64_t
)
{}
PD_REGISTER_KERNEL
(
bitwise_xor
,
CPU
,
ALL_LAYOUT
,
phi
::
BitwiseXorKernel
,
bool
,
uint8_t
,
int8_t
,
int16_t
,
int
,
int64_t
)
{}
PD_REGISTER_KERNEL
(
bitwise_not
,
CPU
,
ALL_LAYOUT
,
phi
::
BitwiseNotKernel
,
bool
,
uint8_t
,
int8_t
,
int16_t
,
int
,
int64_t
)
{}
paddle/phi/kernels/funcs/bitwise_functors.h
0 → 100644
浏览文件 @
03eb792d
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
namespace
phi
{
namespace
funcs
{
#define BITWISE_BINARY_FUNCTOR(func, expr, bool_expr) \
template <typename T> \
struct Bitwise##func##Functor { \
HOSTDEVICE T operator()(const T a, const T b) const { return a expr b; } \
}; \
\
template <> \
struct Bitwise##func##Functor<bool> { \
HOSTDEVICE bool operator()(const bool a, const bool b) const { \
return a bool_expr b; \
} \
};
BITWISE_BINARY_FUNCTOR
(
And
,
&
,
&&
)
BITWISE_BINARY_FUNCTOR
(
Or
,
|
,
||
)
BITWISE_BINARY_FUNCTOR
(
Xor
,
^
,
!=
)
#undef BITWISE_BINARY_FUNCTOR
template
<
typename
T
>
struct
BitwiseNotFunctor
{
using
ELEM_TYPE
=
T
;
HOSTDEVICE
T
operator
()(
const
T
a
)
const
{
return
~
a
;
}
};
template
<
>
struct
BitwiseNotFunctor
<
bool
>
{
using
ELEM_TYPE
=
bool
;
HOSTDEVICE
bool
operator
()(
const
bool
a
)
const
{
return
!
a
;
}
};
}
// namespace funcs
}
// namespace phi
paddle/phi/kernels/gpu/bitwise_kernel.cu
0 → 100644
浏览文件 @
03eb792d
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/bitwise_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/bitwise_functors.h"
#include "paddle/phi/kernels/funcs/broadcast_function.h"
namespace
phi
{
#define DEFINE_BITWISE_KERNEL(op_type) \
template <typename T, typename Context> \
void Bitwise##op_type##Kernel(const Context& dev_ctx, \
const DenseTensor& x, \
const DenseTensor& y, \
DenseTensor* out) { \
dev_ctx.template Alloc<T>(out); \
funcs::Bitwise##op_type##Functor<T> func; \
std::vector<const DenseTensor*> ins = {&x, &y}; \
std::vector<DenseTensor*> outs = {out}; \
funcs::BroadcastKernel<ElementwiseType::kBinary, T, T>( \
dev_ctx, ins, &outs, -1, func); \
}
DEFINE_BITWISE_KERNEL
(
And
)
DEFINE_BITWISE_KERNEL
(
Or
)
DEFINE_BITWISE_KERNEL
(
Xor
)
#undef DEFINE_BITWISE_KERNEL
template
<
typename
T
,
typename
Context
>
void
BitwiseNotKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
DenseTensor
*
out
)
{
dev_ctx
.
template
Alloc
<
T
>(
out
);
std
::
vector
<
const
DenseTensor
*>
ins
=
{
&
x
};
std
::
vector
<
DenseTensor
*>
outs
=
{
out
};
funcs
::
BitwiseNotFunctor
<
T
>
func
;
funcs
::
BroadcastKernel
<
ElementwiseType
::
kUnary
,
T
,
T
>
(
dev_ctx
,
ins
,
&
outs
,
-
1
,
func
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
bitwise_and
,
GPU
,
ALL_LAYOUT
,
phi
::
BitwiseAndKernel
,
bool
,
uint8_t
,
int8_t
,
int16_t
,
int
,
int64_t
)
{}
PD_REGISTER_KERNEL
(
bitwise_or
,
GPU
,
ALL_LAYOUT
,
phi
::
BitwiseOrKernel
,
bool
,
uint8_t
,
int8_t
,
int16_t
,
int
,
int64_t
)
{}
PD_REGISTER_KERNEL
(
bitwise_xor
,
GPU
,
ALL_LAYOUT
,
phi
::
BitwiseXorKernel
,
bool
,
uint8_t
,
int8_t
,
int16_t
,
int
,
int64_t
)
{}
PD_REGISTER_KERNEL
(
bitwise_not
,
GPU
,
ALL_LAYOUT
,
phi
::
BitwiseNotKernel
,
bool
,
uint8_t
,
int8_t
,
int16_t
,
int
,
int64_t
)
{}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录