未验证 提交 01335815 编写于 作者: G Guo Sheng 提交者: GitHub

Clean text.py and decode.py for API 2.0 (#26853)

* Make dynamic_decode support dygraph and expose to API 2.0
test=develop

* update info about BeamSearchDecoder and dynamic_decode

* remove all APIs in paddle.text, expose BeamSearchDecoder and dynamic_decode

* update example code

* delete test_text.py, decode.py, update some doc, fix example code float64

* delete decode import from paddle.nn

* fix unittest bugs

* use dygraph.Embedding instead of nn.Embedding, add paddle.enbale_static()

* update, correct doc

* move dynamic_decode, BeamSearchDecoder API to paddle.nn

* fix code style

* update unittest param, delete import pf text.py

* set dtype of beamsearchtest float64

* update example code of BeamSearchDecoder, dynamic_decode
Co-authored-by: NLiuChiaChi <709153940@qq.com>
上级 832458d5
......@@ -17,6 +17,7 @@ from __future__ import print_function
import sys
from functools import partial, reduce
import paddle
from . import nn
from . import tensor
from . import control_flow
......@@ -507,6 +508,9 @@ class ArrayWrapper(object):
self.array.append(x)
return self
def __getitem__(self, item):
return self.array.__getitem__(item)
def _maybe_copy(state, new_state, step_mask):
"""update rnn state or just pass the old state through"""
......@@ -859,8 +863,6 @@ class Decoder(object):
class BeamSearchDecoder(Decoder):
"""
:api_attr: Static Graph
Decoder with beam search decoding strategy. It wraps a cell to get probabilities,
and follows a beam search step to calculate scores and select candidate
token ids for each decoding step.
......@@ -881,24 +883,20 @@ class BeamSearchDecoder(Decoder):
.. code-block:: python
import paddle.fluid as fluid
from paddle.fluid.layers import GRUCell, BeamSearchDecoder
trg_embeder = lambda x: fluid.embedding(
x, size=[10000, 128], param_attr=fluid.ParamAttr(name="trg_embedding"))
output_layer = lambda x: layers.fc(x,
size=10000,
num_flatten_dims=len(x.shape) - 1,
param_attr=fluid.ParamAttr(name=
"output_w"),
bias_attr=False)
decoder_cell = GRUCell(hidden_size=128)
import numpy as np
import paddle
from paddle.nn import BeamSearchDecoder, dynamic_decode
from paddle.nn import GRUCell, Linear, Embedding
trg_embeder = Embedding(100, 32)
output_layer = Linear(32, 32)
decoder_cell = GRUCell(input_size=32, hidden_size=32)
decoder = BeamSearchDecoder(decoder_cell,
start_token=0,
end_token=1,
beam_size=4,
embedding_fn=trg_embeder,
output_fn=output_layer)
"""
def __init__(self,
......@@ -912,16 +910,13 @@ class BeamSearchDecoder(Decoder):
Constructor of BeamSearchDecoder.
Parameters:
cell(RNNCell): An instance of `RNNCell` or object with the same interface.
cell(RNNCellBase): An instance of `RNNCellBase` or object with the same interface.
start_token(int): The start token id.
end_token(int): The end token id.
beam_size(int): The beam width used in beam search.
embedding_fn(optional): A callable to apply to selected candidate ids.
Mostly it is an embedding layer to transform ids to embeddings,
and the returned value acts as the `input` argument for `cell.call`.
**Note that fluid.embedding should be used here rather than
fluid.layers.embedding, since shape of ids is [batch_size, beam_size].
when using fluid.layers.embedding, must unsqueeze in embedding_fn.**
If not provided, the id to embedding transformation must be built into
`cell.call`. Default None.
output_fn(optional): A callable to apply to the cell's output prior to
......@@ -1150,6 +1145,8 @@ class BeamSearchDecoder(Decoder):
np.array(
[[0.] + [-self.kinf] * (self.beam_size - 1)],
dtype="float32")), [self.batch_size, 1])
if paddle.get_default_dtype() == "float64":
log_probs = tensor.cast(log_probs, "float64")
# TODO: remove the restriction of force_cpu
init_finished = tensor.fill_constant_batch_size_like(
input=state,
......@@ -1197,7 +1194,11 @@ class BeamSearchDecoder(Decoder):
shape=[1], dtype="int64", value=self.vocab_size)
noend_array = [-self.kinf] * self.vocab_size
noend_array[self.end_token] = 0
self.noend_mask_tensor = tensor.assign(np.array(noend_array, "float32"))
if paddle.get_default_dtype() == "float64":
self.noend_mask_tensor = tensor.cast(self.noend_mask_tensor,
"float64")
step_log_probs = nn.log(nn.softmax(logits))
step_log_probs = self._mask_probs(step_log_probs, beam_state.finished)
......@@ -1328,7 +1329,7 @@ class BeamSearchDecoder(Decoder):
return True
def dynamic_decode(decoder,
def _dynamic_decode_imperative(decoder,
inits=None,
max_step_num=None,
output_time_major=False,
......@@ -1336,90 +1337,95 @@ def dynamic_decode(decoder,
is_test=False,
return_length=False,
**kwargs):
"""
:api_attr: Static Graph
def _maybe_copy(state, new_state, step_mask):
# TODO: use where_op
state_dtype = state.dtype
if convert_dtype(state_dtype) in ["bool"]:
state = tensor.cast(state, dtype="float32")
new_state = tensor.cast(new_state, dtype="float32")
if step_mask.dtype != state.dtype:
step_mask = tensor.cast(step_mask, dtype=state.dtype)
# otherwise, renamed bool gradients of would be summed up leading
# to sum(bool) error.
step_mask.stop_gradient = True
new_state = nn.elementwise_mul(
state, step_mask, axis=0) - nn.elementwise_mul(
new_state, (step_mask - 1), axis=0)
if convert_dtype(state_dtype) in ["bool"]:
new_state = tensor.cast(new_state, dtype=state_dtype)
return new_state
Dynamic decoding performs :code:`decoder.step()` repeatedly until the returned
Tensor indicating finished status contains all True values or the number of
decoding step reaches to :attr:`max_step_num`.
initial_inputs, initial_states, initial_finished = decoder.initialize(inits)
inputs, states, finished = (initial_inputs, initial_states,
initial_finished)
cond = control_flow.logical_not((nn.reduce_all(initial_finished)))
sequence_lengths = tensor.cast(tensor.zeros_like(initial_finished), "int64")
outputs = None
step_idx = 0
step_idx_tensor = tensor.fill_constant(
shape=[1], dtype="int64", value=step_idx)
while cond.numpy():
(step_outputs, next_states, next_inputs, next_finished) = decoder.step(
step_idx_tensor, inputs, states, **kwargs)
if not decoder.tracks_own_finished:
# BeamSearchDecoder would track it own finished, since
# beams would be reordered and the finished status of each
# entry might change. Otherwise, perform logical OR which
# would not change the already finished.
next_finished = control_flow.logical_or(next_finished, finished)
# To confirm states.finished/finished be consistent with
# next_finished.
tensor.assign(next_finished, finished)
next_sequence_lengths = nn.elementwise_add(
sequence_lengths,
tensor.cast(
control_flow.logical_not(finished), sequence_lengths.dtype))
:code:`decoder.initialize()` would be called once before the decoding loop.
If the `decoder` has implemented `finalize` method, :code:`decoder.finalize()`
would be called once after the decoding loop.
if impute_finished: # rectify the states for the finished.
next_states = map_structure(
lambda x, y: _maybe_copy(x, y, finished), states, next_states)
outputs = map_structure(
lambda x: ArrayWrapper(x),
step_outputs) if step_idx == 0 else map_structure(
lambda x, x_array: x_array.append(x), step_outputs, outputs)
inputs, states, finished, sequence_lengths = (
next_inputs, next_states, next_finished, next_sequence_lengths)
Parameters:
decoder(Decoder): An instance of `Decoder`.
inits(object, optional): Argument passed to `decoder.initialize`.
Default `None`.
max_step_num(int, optional): The maximum number of steps. If not provided,
decode until the decoder is fully done, or in other words, the returned
Tensor by :code:`decoder.step()` indicating finished status contains
all True. Default `None`.
output_time_major(bool, optional): Indicate the data layout of Tensor included
in the final outputs(the first returned value of this method). If
attr:`False`, the data layout would be batch major with shape
`[batch_size, seq_len, ...]`. If attr:`True`, the data layout would
be time major with shape `[seq_len, batch_size, ...]`. Default: `False`.
impute_finished(bool, optional): If `True`, then states get copied through
for batch entries which are marked as finished, which differs with the
unfinished using the new states returned by :code:`decoder.step()` and
ensures that the final states have the correct values. Otherwise, states
wouldn't be copied through when finished. If the returned `final_states`
is needed, it should be set as True, which causes some slowdown.
Default `False`.
is_test(bool, optional): A flag indicating whether to use test mode. In
test mode, it is more memory saving. Default `False`.
return_length(bool, optional): A flag indicating whether to return an
extra Tensor variable in the output tuple, which stores the actual
lengths of all decoded sequences. Default `False`.
**kwargs: Additional keyword arguments. Arguments passed to `decoder.step`.
control_flow.increment(x=step_idx_tensor, value=1.0, in_place=True)
step_idx += 1
Returns:
tuple: A tuple( :code:`(final_outputs, final_states, sequence_lengths)` ) \
when `return_length` is True, otherwise a tuple( :code:`(final_outputs, final_states)` ). \
The final outputs and states, both are Tensor or nested structure of Tensor. \
`final_outputs` has the same structure and data types as the :code:`outputs` \
returned by :code:`decoder.step()` , and each Tenser in `final_outputs` \
is the stacked of all decoding steps' outputs, which might be revised \
by :code:`decoder.finalize()` if the decoder has implemented `finalize`. \
`final_states` is the counterpart at last time step of initial states \
returned by :code:`decoder.initialize()` , thus has the same structure \
with it and has tensors with same shapes and data types. `sequence_lengths` \
is an `int64` tensor with the same shape as `finished` returned \
by :code:`decoder.initialize()` , and it stores the actual lengths of \
all decoded sequences.
control_flow.logical_not(nn.reduce_all(finished), cond)
if max_step_num is not None and step_idx > max_step_num:
break
final_outputs = map_structure(lambda x: nn.stack(x.array, axis=0), outputs)
final_states = states
Examples:
try:
final_outputs, final_states = decoder.finalize(
final_outputs, final_states, sequence_lengths)
except NotImplementedError:
pass
.. code-block:: python
if not output_time_major:
final_outputs = map_structure(
lambda x: nn.transpose(x, [1, 0] + list(range(2, len(x.shape)))),
final_outputs)
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from paddle.fluid.layers import GRUCell, BeamSearchDecoder, dynamic_decode
return (final_outputs, final_states,
sequence_lengths) if return_length else (final_outputs,
final_states)
encoder_output = fluid.data(name="encoder_output",
shape=[-1, 32, 128],
dtype="float32")
trg_embeder = lambda x: fluid.embedding(
x, size=[10000, 128], param_attr=fluid.ParamAttr(name="trg_embedding"))
output_layer = lambda x: layers.fc(x,
size=10000,
num_flatten_dims=len(x.shape) - 1,
param_attr=fluid.ParamAttr(name=
"output_w"),
bias_attr=False)
decoder_cell = GRUCell(hidden_size=128)
decoder = BeamSearchDecoder(decoder_cell,
start_token=0,
end_token=1,
beam_size=4,
embedding_fn=trg_embeder,
output_fn=output_layer)
outputs = dynamic_decode(
decoder=decoder, inits=decoder_cell.get_initial_states(encoder_output))
"""
def _dynamic_decode_declarative(decoder,
inits=None,
max_step_num=None,
output_time_major=False,
impute_finished=False,
is_test=False,
return_length=False,
**kwargs):
initial_inputs, initial_states, initial_finished = decoder.initialize(inits)
global_inputs, global_states, global_finished = (
initial_inputs, initial_states, initial_finished)
......@@ -1558,6 +1564,98 @@ def dynamic_decode(decoder,
final_states)
def dynamic_decode(decoder,
inits=None,
max_step_num=None,
output_time_major=False,
impute_finished=False,
is_test=False,
return_length=False,
**kwargs):
"""
Dynamic decoding performs :code:`decoder.step()` repeatedly until the returned
Tensor indicating finished status contains all True values or the number of
decoding step reaches to :attr:`max_step_num`.
:code:`decoder.initialize()` would be called once before the decoding loop.
If the `decoder` has implemented `finalize` method, :code:`decoder.finalize()`
would be called once after the decoding loop.
Parameters:
decoder(Decoder): An instance of `Decoder`.
inits(object, optional): Argument passed to `decoder.initialize`.
Default `None`.
max_step_num(int, optional): The maximum number of steps. If not provided,
decode until the decoder is fully done, or in other words, the returned
Tensor by :code:`decoder.step()` indicating finished status contains
all True. Default `None`.
output_time_major(bool, optional): Indicate the data layout of Tensor included
in the final outputs(the first returned value of this method). If
attr:`False`, the data layout would be batch major with shape
`[batch_size, seq_len, ...]`. If attr:`True`, the data layout would
be time major with shape `[seq_len, batch_size, ...]`. Default: `False`.
impute_finished(bool, optional): If `True`, then states get copied through
for batch entries which are marked as finished, which differs with the
unfinished using the new states returned by :code:`decoder.step()` and
ensures that the final states have the correct values. Otherwise, states
wouldn't be copied through when finished. If the returned `final_states`
is needed, it should be set as True, which causes some slowdown.
Default `False`.
is_test(bool, optional): A flag indicating whether to use test mode. In
test mode, it is more memory saving. Default `False`.
return_length(bool, optional): A flag indicating whether to return an
extra Tensor variable in the output tuple, which stores the actual
lengths of all decoded sequences. Default `False`.
**kwargs: Additional keyword arguments. Arguments passed to `decoder.step`.
Returns:
tuple: A tuple( :code:`(final_outputs, final_states, sequence_lengths)` ) \
when `return_length` is True, otherwise a tuple( :code:`(final_outputs, final_states)` ). \
The final outputs and states, both are Tensor or nested structure of Tensor. \
`final_outputs` has the same structure and data types as the :code:`outputs` \
returned by :code:`decoder.step()` , and each Tenser in `final_outputs` \
is the stacked of all decoding steps' outputs, which might be revised \
by :code:`decoder.finalize()` if the decoder has implemented `finalize`. \
`final_states` is the counterpart at last time step of initial states \
returned by :code:`decoder.initialize()` , thus has the same structure \
with it and has tensors with same shapes and data types. `sequence_lengths` \
is an `int64` tensor with the same shape as `finished` returned \
by :code:`decoder.initialize()` , and it stores the actual lengths of \
all decoded sequences.
Examples:
.. code-block:: python
import numpy as np
import paddle
from paddle.nn import BeamSearchDecoder, dynamic_decode
from paddle.nn import GRUCell, Linear, Embedding
trg_embeder = Embedding(100, 32)
output_layer = Linear(32, 32)
decoder_cell = GRUCell(input_size=32, hidden_size=32)
decoder = BeamSearchDecoder(decoder_cell,
start_token=0,
end_token=1,
beam_size=4,
embedding_fn=trg_embeder,
output_fn=output_layer)
encoder_output = paddle.ones((4, 8, 32), dtype=paddle.get_default_dtype())
outputs = dynamic_decode(decoder=decoder,
inits=decoder_cell.get_initial_states(encoder_output),
max_step_num=10)
"""
if in_dygraph_mode():
return _dynamic_decode_imperative(decoder, inits, max_step_num,
output_time_major, impute_finished,
is_test, return_length, **kwargs)
else:
return _dynamic_decode_declarative(decoder, inits, max_step_num,
output_time_major, impute_finished,
is_test, return_length, **kwargs)
class DecodeHelper(object):
"""
DecodeHelper is the base class for any helper instance used in `BasicDecoder`.
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -14,9 +14,17 @@
from __future__ import print_function
import random
import unittest
import numpy as np
import paddle
import paddle.nn as nn
from paddle import Model, set_device
from paddle.static import InputSpec as Input
from paddle.fluid.dygraph import Layer
from paddle.nn import BeamSearchDecoder, dynamic_decode
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
......@@ -24,6 +32,8 @@ import paddle.fluid.core as core
from paddle.fluid.executor import Executor
from paddle.fluid import framework
paddle.enable_static()
class EncoderCell(layers.RNNCell):
def __init__(self, num_layers, hidden_size, dropout_prob=0.):
......@@ -436,6 +446,7 @@ class TestDynamicDecode(unittest.TestCase):
self.exe = Executor(place)
def test_mle_train(self):
paddle.enable_static()
self.model_hparams["decoding_strategy"] = "train_greedy"
agent = SeqPGAgent(
model_cls=Seq2SeqModel,
......@@ -468,6 +479,7 @@ class TestDynamicDecode(unittest.TestCase):
(iter_idx, reward.mean(), cost))
def test_greedy_train(self):
paddle.enable_static()
self.model_hparams["decoding_strategy"] = "infer_greedy"
agent = SeqPGAgent(
model_cls=Seq2SeqModel,
......@@ -493,6 +505,7 @@ class TestDynamicDecode(unittest.TestCase):
(iter_idx, reward.mean(), cost))
def test_sample_train(self):
paddle.enable_static()
self.model_hparams["decoding_strategy"] = "infer_sample"
agent = SeqPGAgent(
model_cls=Seq2SeqModel,
......@@ -518,6 +531,8 @@ class TestDynamicDecode(unittest.TestCase):
(iter_idx, reward.mean(), cost))
def test_beam_search_infer(self):
paddle.set_default_dtype("float32")
paddle.enable_static()
self.model_hparams["decoding_strategy"] = "beam_search"
main_program = fluid.Program()
startup_program = fluid.Program()
......@@ -542,5 +557,154 @@ class TestDynamicDecode(unittest.TestCase):
fetch_list=[output])[0]
class ModuleApiTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls._np_rand_state = np.random.get_state()
cls._py_rand_state = random.getstate()
cls._random_seed = 123
np.random.seed(cls._random_seed)
random.seed(cls._random_seed)
cls.model_cls = type(cls.__name__ + "Model", (Layer, ), {
"__init__": cls.model_init_wrapper(cls.model_init),
"forward": cls.model_forward
})
@classmethod
def tearDownClass(cls):
np.random.set_state(cls._np_rand_state)
random.setstate(cls._py_rand_state)
@staticmethod
def model_init_wrapper(func):
def __impl__(self, *args, **kwargs):
Layer.__init__(self)
func(self, *args, **kwargs)
return __impl__
@staticmethod
def model_init(model, *args, **kwargs):
raise NotImplementedError(
"model_init acts as `Model.__init__`, thus must implement it")
@staticmethod
def model_forward(model, *args, **kwargs):
return model.module(*args, **kwargs)
def make_inputs(self):
# TODO(guosheng): add default from `self.inputs`
raise NotImplementedError(
"model_inputs makes inputs for model, thus must implement it")
def setUp(self):
"""
For the model which wraps the module to be tested:
Set input data by `self.inputs` list
Set init argument values by `self.attrs` list/dict
Set model parameter values by `self.param_states` dict
Set expected output data by `self.outputs` list
We can create a model instance and run once with these.
"""
self.inputs = []
self.attrs = {}
self.param_states = {}
self.outputs = []
def _calc_output(self, place, mode="test", dygraph=True):
if dygraph:
fluid.enable_dygraph(place)
else:
fluid.disable_dygraph()
gen = paddle.manual_seed(self._random_seed)
gen._is_init_py = False
paddle.framework.random._manual_program_seed(self._random_seed)
scope = fluid.core.Scope()
with fluid.scope_guard(scope):
layer = self.model_cls(**self.attrs) if isinstance(
self.attrs, dict) else self.model_cls(*self.attrs)
model = Model(layer, inputs=self.make_inputs())
model.prepare()
if self.param_states:
model.load(self.param_states, optim_state=None)
return model.test_batch(self.inputs)
def check_output_with_place(self, place, mode="test"):
dygraph_output = self._calc_output(place, mode, dygraph=True)
stgraph_output = self._calc_output(place, mode, dygraph=False)
expect_output = getattr(self, "outputs", None)
for actual_t, expect_t in zip(dygraph_output, stgraph_output):
self.assertTrue(np.allclose(actual_t, expect_t, rtol=1e-5, atol=0))
if expect_output:
for actual_t, expect_t in zip(dygraph_output, expect_output):
self.assertTrue(
np.allclose(
actual_t, expect_t, rtol=1e-5, atol=0))
def check_output(self):
devices = ["CPU", "GPU"] if fluid.is_compiled_with_cuda() else ["CPU"]
for device in devices:
place = set_device(device)
self.check_output_with_place(place)
class TestBeamSearch(ModuleApiTest):
def setUp(self):
paddle.set_default_dtype("float64")
shape = (8, 32)
self.inputs = [
np.random.random(shape).astype("float64"),
np.random.random(shape).astype("float64")
]
self.outputs = None
self.attrs = {
"vocab_size": 100,
"embed_dim": 32,
"hidden_size": 32,
}
self.param_states = {}
@staticmethod
def model_init(self,
vocab_size,
embed_dim,
hidden_size,
bos_id=0,
eos_id=1,
beam_size=2,
max_step_num=2):
embedder = paddle.fluid.dygraph.Embedding(
size=[vocab_size, embed_dim], dtype="float64")
output_layer = nn.Linear(hidden_size, vocab_size)
cell = nn.LSTMCell(embed_dim, hidden_size)
self.max_step_num = max_step_num
self.beam_search_decoder = BeamSearchDecoder(
cell,
start_token=bos_id,
end_token=eos_id,
beam_size=beam_size,
embedding_fn=embedder,
output_fn=output_layer)
@staticmethod
def model_forward(model, init_hidden, init_cell):
return dynamic_decode(
model.beam_search_decoder, [init_hidden, init_cell],
max_step_num=model.max_step_num,
impute_finished=True,
is_test=True)[0]
def make_inputs(self):
inputs = [
Input([None, self.inputs[0].shape[-1]], "float64", "init_hidden"),
Input([None, self.inputs[1].shape[-1]], "float64", "init_cell"),
]
return inputs
def test_check_output(self):
self.check_output()
if __name__ == '__main__':
unittest.main()
......@@ -42,14 +42,11 @@ from .clip import clip_by_norm #DEFINE_ALIAS
# from .control_flow import StaticRNN #DEFINE_ALIAS
# from .control_flow import while_loop #DEFINE_ALIAS
# from .control_flow import rnn #DEFINE_ALIAS
# from .decode import BeamSearchDecoder #DEFINE_ALIAS
from .decode import BeamSearchDecoder #DEFINE_ALIAS
from .decode import dynamic_decode #DEFINE_ALIAS
# from .decode import Decoder #DEFINE_ALIAS
# from .decode import beam_search #DEFINE_ALIAS
# from .decode import beam_search_decode #DEFINE_ALIAS
# from .decode import crf_decoding #DEFINE_ALIAS
# from .decode import ctc_greedy_decoder #DEFINE_ALIAS
# from .decode import dynamic_decode #DEFINE_ALIAS
# from .decode import gather_tree #DEFINE_ALIAS
# from .input import Input #DEFINE_ALIAS
from .layer.activation import ELU #DEFINE_ALIAS
from .layer.activation import GELU #DEFINE_ALIAS
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..fluid.layers import BeamSearchDecoder #DEFINE_ALIAS
from ..fluid.layers import dynamic_decode #DEFINE_ALIAS
__all__ = [
'BeamSearchDecoder',
'dynamic_decode',
]
......@@ -216,3 +216,4 @@ from .vision import pixel_shuffle #DEFINE_ALIAS
# from .vision import yolov3_loss #DEFINE_ALIAS
from .input import one_hot #DEFINE_ALIAS
from .input import embedding #DEFINE_ALIAS
from ...fluid.layers import gather_tree
此差异已折叠。
......@@ -12,11 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from . import text
from .text import *
from . import datasets
from .datasets import *
__all__ = text.__all__ \
+ datasets.__all__
__all__ = datasets.__all__
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册