diff --git a/paddle/contrib/float16/float16_transpiler.py b/paddle/contrib/float16/float16_transpiler.py index 66e0345c299730c113ffbdc8dd3c1fa32f872f3d..8d95dc0591e1d6bd815cc697528191c2ee8c1cfe 100644 --- a/paddle/contrib/float16/float16_transpiler.py +++ b/paddle/contrib/float16/float16_transpiler.py @@ -102,8 +102,8 @@ class Float16Transpiler: continue for input_arg in current_op.input_arg_names: if input_arg in self.input_map: - current_op.rename_input(input_arg, - self.input_map[input_arg]) + current_op._rename_input(input_arg, + self.input_map[input_arg]) def _remove_unused_var(self): ''' @@ -187,7 +187,7 @@ class Float16Transpiler: shape=var.shape, persistable=var.persistable) find_op(var) - var.op.rename_output(var_name, tmp_var_name) + var.op._rename_output(var_name, tmp_var_name) self.block._insert_op( i, type="cast", diff --git a/paddle/fluid/API.spec b/paddle/fluid/API.spec index 88b86f50b82680558778f7cd3068b2306ec4c9e8..ad06a494364011a0a51f9adddeae5630eb0d6bb4 100644 --- a/paddle/fluid/API.spec +++ b/paddle/fluid/API.spec @@ -6,26 +6,9 @@ paddle.fluid.Program.global_block ArgSpec(args=['self'], varargs=None, keywords= paddle.fluid.Program.list_vars ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) paddle.fluid.Program.parse_from_string ArgSpec(args=['binary_str'], varargs=None, keywords=None, defaults=None) paddle.fluid.Program.to_string ArgSpec(args=['self', 'throw_on_error', 'with_details'], varargs=None, keywords=None, defaults=(False,)) -paddle.fluid.Operator.__init__ ArgSpec(args=['self', 'block', 'desc', 'type', 'inputs', 'outputs', 'attrs'], varargs=None, keywords=None, defaults=(None, None, None, None)) -paddle.fluid.Operator.all_attrs ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) -paddle.fluid.Operator.attr ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None) -paddle.fluid.Operator.attr_type ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None) -paddle.fluid.Operator.block_attr ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None) -paddle.fluid.Operator.block_attr_id ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None) -paddle.fluid.Operator.blocks_attr ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None) -paddle.fluid.Operator.blocks_attr_ids ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None) -paddle.fluid.Operator.has_attr ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None) -paddle.fluid.Operator.has_kernel ArgSpec(args=['self', 'op_type'], varargs=None, keywords=None, defaults=None) -paddle.fluid.Operator.input ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None) -paddle.fluid.Operator.output ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None) -paddle.fluid.Operator.rename_input ArgSpec(args=['self', 'old_name', 'new_name'], varargs=None, keywords=None, defaults=None) -paddle.fluid.Operator.rename_output ArgSpec(args=['self', 'old_name', 'new_name'], varargs=None, keywords=None, defaults=None) -paddle.fluid.Operator.set_attr ArgSpec(args=['self', 'name', 'val'], varargs=None, keywords=None, defaults=None) -paddle.fluid.Operator.to_string ArgSpec(args=['self', 'throw_on_error'], varargs=None, keywords=None, defaults=None) paddle.fluid.default_startup_program ArgSpec(args=[], varargs=None, keywords=None, defaults=None) paddle.fluid.default_main_program ArgSpec(args=[], varargs=None, keywords=None, defaults=None) paddle.fluid.program_guard ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) -paddle.fluid.get_var ArgSpec(args=['name', 'program'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.name_scope ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) paddle.fluid.Executor.__init__ ArgSpec(args=['self', 'place'], varargs=None, keywords=None, defaults=None) paddle.fluid.Executor.close ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) @@ -170,6 +153,13 @@ paddle.fluid.layers.elementwise_mul ArgSpec(args=['x', 'y', 'out', 'axis', 'use_ paddle.fluid.layers.elementwise_max ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None)) paddle.fluid.layers.elementwise_min ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None)) paddle.fluid.layers.elementwise_pow ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None)) +paddle.fluid.layers.uniform_random_batch_size_like ArgSpec(args=['input', 'shape', 'dtype', 'input_dim_idx', 'output_dim_idx', 'min', 'max', 'seed'], varargs=None, keywords=None, defaults=('float32', 0, 0, -1.0, 1.0, 0)) +paddle.fluid.layers.gaussian_random ArgSpec(args=['shape', 'mean', 'std', 'seed', 'dtype', 'use_mkldnn'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0, 'float32', False)) +paddle.fluid.layers.sampling_id ArgSpec(args=['x', 'min', 'max', 'seed', 'dtype'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0, 'float32')) +paddle.fluid.layers.gaussian_random_batch_size_like ArgSpec(args=['input', 'shape', 'input_dim_idx', 'output_dim_idx', 'mean', 'std', 'seed', 'dtype'], varargs=None, keywords=None, defaults=(0, 0, 0.0, 1.0, 0, 'float32')) +paddle.fluid.layers.sum ArgSpec(args=['x', 'use_mkldnn'], varargs=None, keywords=None, defaults=(False,)) +paddle.fluid.layers.slice ArgSpec(args=['input', 'axes', 'starts', 'ends'], varargs=None, keywords=None, defaults=None) +paddle.fluid.layers.shape ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True)) paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None)) paddle.fluid.layers.read_file ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None) @@ -241,13 +231,6 @@ paddle.fluid.layers.logical_and ArgSpec(args=[], varargs='args', keywords='kwarg paddle.fluid.layers.logical_or ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) paddle.fluid.layers.logical_xor ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) paddle.fluid.layers.logical_not ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) -paddle.fluid.layers.uniform_random_batch_size_like ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) -paddle.fluid.layers.gaussian_random ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) -paddle.fluid.layers.sampling_id ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) -paddle.fluid.layers.gaussian_random_batch_size_like ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) -paddle.fluid.layers.sum ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) -paddle.fluid.layers.slice ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) -paddle.fluid.layers.shape ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) paddle.fluid.layers.maxout ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) paddle.fluid.layers.sigmoid ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.logsigmoid ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)) diff --git a/paddle/fluid/framework/ir/graph_traits.cc b/paddle/fluid/framework/ir/graph_traits.cc index 8f548913e4e1d9d5bc5bdace8b92db9065cf3b5e..084a4ba2def87eaa8badb3ca2c39865c6e5cb981 100644 --- a/paddle/fluid/framework/ir/graph_traits.cc +++ b/paddle/fluid/framework/ir/graph_traits.cc @@ -14,6 +14,8 @@ #include "paddle/fluid/framework/ir/graph_traits.h" +#include + namespace paddle { namespace framework { namespace ir { diff --git a/paddle/fluid/operators/sampling_id_op.cc b/paddle/fluid/operators/sampling_id_op.cc index 724463c95c4a29fb5c00fe791b389d3908771640..a4f41a170426a4650fd3bf8f7fec4758ff34e1b9 100644 --- a/paddle/fluid/operators/sampling_id_op.cc +++ b/paddle/fluid/operators/sampling_id_op.cc @@ -53,15 +53,16 @@ class SamplingIdOpMaker : public framework::OpProtoAndCheckerMaker { SamplingId Operator. A layer for sampling id from multinomial distribution from the input. Sampling one id for one sample.)DOC"); - AddAttr("min", "Minimum value of random. [default 0.0].") + AddAttr("min", "Minimum value of random. (float, default 0.0).") .SetDefault(0.0f); - AddAttr("max", "Maximun value of random. [default 1.0].") + AddAttr("max", "Maximun value of random. (float, default 1.0).") .SetDefault(1.0f); - AddAttr("seed", - "Random seed used for the random number engine. " - "0 means use a seed generated by the system." - "Note that if seed is not 0, this operator will always " - "generate the same random numbers every time. [default 0].") + AddAttr( + "seed", + "Random seed used for the random number engine. " + "0 means use a seed generated by the system." + "Note that if seed is not 0, this operator will always " + "generate the same random numbers every time. (int, default 0).") .SetDefault(0); } }; diff --git a/paddle/fluid/operators/sequence_slice_op.h b/paddle/fluid/operators/sequence_slice_op.h index b5ea6ff49bbb29571f9a6ef6358ef881acd9be9e..03b59d71cc0ca2eddd1d9912e7ca25348507ba03 100644 --- a/paddle/fluid/operators/sequence_slice_op.h +++ b/paddle/fluid/operators/sequence_slice_op.h @@ -75,11 +75,11 @@ class SequenceSliceOpKernel : public framework::OpKernel { } for (size_t i = 0; i < n; ++i) { - PADDLE_ENFORCE_LT(0, offset_data[i], + PADDLE_ENFORCE_LE(0, offset_data[i], "The offset[%d] must greater than zero.", i); PADDLE_ENFORCE_LT(0, length_data[i], "The length[%d] must greater than zero.", i); - PADDLE_ENFORCE_LT(lod[0][i] + offset_data[i] + length_data[i], + PADDLE_ENFORCE_LE(lod[0][i] + offset_data[i] + length_data[i], lod[0][i + 1], "The target tensor's length overflow."); } diff --git a/paddle/fluid/pybind/protobuf.cc b/paddle/fluid/pybind/protobuf.cc index 67501186d150171728194f23bc02d2c014848dd7..a5bc44122028c1191f511157bdde2e7c2d30c6aa 100644 --- a/paddle/fluid/pybind/protobuf.cc +++ b/paddle/fluid/pybind/protobuf.cc @@ -285,12 +285,12 @@ void BindOpDesc(pybind11::module *m) { .def("set_output", &pd::OpDesc::SetOutput) .def("input_arg_names", &pd::OpDesc::InputArgumentNames) .def("output_arg_names", &pd::OpDesc::OutputArgumentNames) - .def("rename_input", &pd::OpDesc::RenameInput) - .def("rename_output", &pd::OpDesc::RenameOutput) + .def("_rename_input", &pd::OpDesc::RenameInput) + .def("_rename_output", &pd::OpDesc::RenameOutput) .def("has_attr", &pd::OpDesc::HasAttr) .def("attr_type", &pd::OpDesc::GetAttrType) .def("attr_names", &pd::OpDesc::AttrNames) - .def("set_attr", &pd::OpDesc::SetAttr) + .def("_set_attr", &pd::OpDesc::SetAttr) .def("attr", &pd::OpDesc::GetAttr) .def("set_block_attr", &pd::OpDesc::SetBlockAttr) .def("set_blocks_attr", &pd::OpDesc::SetBlocksAttr) @@ -300,8 +300,8 @@ void BindOpDesc(pybind11::module *m) { std::string ser(seriralized); self.SetAttr(name, ser); }) - .def("block_attr_id", &pd::OpDesc::GetBlockAttrId) - .def("blocks_attr_ids", &pd::OpDesc::GetBlocksAttrIds) + .def("_block_attr_id", &pd::OpDesc::GetBlockAttrId) + .def("_blocks_attr_ids", &pd::OpDesc::GetBlocksAttrIds) .def("check_attrs", &pd::OpDesc::CheckAttrs) .def("infer_shape", &pd::OpDesc::InferShape) .def("infer_var_type", &pd::OpDesc::InferVarType) diff --git a/paddle/scripts/paddle_build.sh b/paddle/scripts/paddle_build.sh index e8d2e8e6861b95c94077a72f8e4f7d11b0ab11be..c397f070e947ba787c13397dfc07e4b1e4e37e73 100755 --- a/paddle/scripts/paddle_build.sh +++ b/paddle/scripts/paddle_build.sh @@ -629,10 +629,10 @@ EOF function gen_capi_package() { if [[ ${WITH_C_API} == "ON" ]]; then - install_prefix="${PADDLE_ROOT}/build/capi_output" - rm -rf $install_prefix - make DESTDIR="$install_prefix" install - cd $install_prefix/usr/local + capi_install_prefix=${INSTALL_PREFIX:-/paddle/build}/capi_output + rm -rf $capi_install_prefix + make DESTDIR="$capi_install_prefix" install + cd $capi_install_prefix/ ls | egrep -v "^Found.*item$" | xargs tar -czf ${PADDLE_ROOT}/build/paddle.tgz fi } diff --git a/python/paddle/fluid/backward.py b/python/paddle/fluid/backward.py index 88eaae10dd55edcc7e811163acf17579eb32cbf1..17fe8dc3c8a28ad129e2d377820da95e8e7a02d9 100644 --- a/python/paddle/fluid/backward.py +++ b/python/paddle/fluid/backward.py @@ -38,8 +38,8 @@ def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None): op_desc = op_descs[i] if isinstance(op_desc, tuple): op_desc = op_desc[0] - op_desc.rename_input(old_name, new_name) - op_desc.rename_output(old_name, new_name) + op_desc._rename_input(old_name, new_name) + op_desc._rename_output(old_name, new_name) def _create_op_desc_(op_type, inputs, outputs, attrs): @@ -70,7 +70,7 @@ def _create_op_desc_(op_type, inputs, outputs, attrs): if isinstance(val, framework.Block): op_desc.set_block_attr(name, val.desc) else: - op_desc.set_attr(name, val) + op_desc._set_attr(name, val) return op_desc @@ -346,7 +346,7 @@ def _append_backward_ops_(block, grad_sub_block_list = [] # If the op has its own sub-block, deal with the sub-block first if op.has_attr("sub_block"): - sub_block = program.block(op.block_attr_id("sub_block")) + sub_block = program.block(op._block_attr_id("sub_block")) grad_sub_block = program._create_block() grad_sub_block._set_forward_block_idx(sub_block.idx) cb = _callback_lookup_(op) @@ -382,7 +382,7 @@ def _append_backward_ops_(block, for op_desc in grad_op_descs: new_op_desc = target_block.desc.append_op() new_op_desc.copy_from(op_desc) - new_op_desc.set_attr(op_role_attr_name, backward) + new_op_desc._set_attr(op_role_attr_name, backward) grad_to_var["__current_op_desc__"] = new_op_desc if callbacks is not None: assert (isinstance(callbacks, list)) @@ -408,7 +408,7 @@ def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map): for op_idx in range(start_op_idx, block.desc.op_size()): op_desc = block.desc.op(op_idx) if op_desc.has_attr("sub_block"): - sub_block = block.program.block(op_desc.block_attr_id("sub_block")) + sub_block = block.program.block(op_desc._block_attr_id("sub_block")) _append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map) new_vars = set() # create new gradient variables @@ -438,12 +438,12 @@ def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map): op_desc = block.desc.op(op_idx) for name in op_desc.input_arg_names(): if name in var_map: - op_desc.rename_input(name, var_map[name]) + op_desc._rename_input(name, var_map[name]) for name in op_desc.output_arg_names(): if block.desc.find_var(name.encode("ascii")): new_name = unique_name.generate(name) - op_desc.rename_output(name, new_name) + op_desc._rename_output(name, new_name) var_map[name] = new_name for g, ng in six.iteritems(var_map): @@ -542,9 +542,9 @@ def append_backward(loss, parameter_list=None, no_grad_set=None, if loss.op is None: raise ValueError("loss.op is None. Should not happend") - loss.op.set_attr(core.op_proto_and_checker_maker.kOpRoleAttrName(), - int(core.op_proto_and_checker_maker.OpRole.Forward) | - int(core.op_proto_and_checker_maker.OpRole.Loss)) + loss.op._set_attr(core.op_proto_and_checker_maker.kOpRoleAttrName(), + int(core.op_proto_and_checker_maker.OpRole.Forward) | + int(core.op_proto_and_checker_maker.OpRole.Loss)) if callbacks is not None: isinstance(callbacks, list) @@ -631,7 +631,7 @@ def append_backward(loss, parameter_list=None, no_grad_set=None, attr_val = [p.name, g.name] if g.op.has_attr(op_role_var_attr_name): attr_val.extend(g.op.attr(op_role_var_attr_name)) - g.op.set_attr(op_role_var_attr_name, attr_val) + g.op._set_attr(op_role_var_attr_name, attr_val) return params_and_grads diff --git a/python/paddle/fluid/clip.py b/python/paddle/fluid/clip.py index 32b8f1189fd65ba1e8da5aeaf316fc0ae05af552..e884185528282021fd16289ccc6a3533e22b9967 100644 --- a/python/paddle/fluid/clip.py +++ b/python/paddle/fluid/clip.py @@ -75,8 +75,8 @@ class ErrorClipByValue(BaseErrorClipAttr): clip_op_desc.set_type("clip") clip_op_desc.set_input("X", [grad_name]) clip_op_desc.set_output("Out", [grad_name]) - clip_op_desc.set_attr("min", self.min) - clip_op_desc.set_attr("max", self.max) + clip_op_desc._set_attr("min", self.min) + clip_op_desc._set_attr("max", self.max) def error_clip_callback(block, context): diff --git a/python/paddle/fluid/framework.py b/python/paddle/fluid/framework.py index fc61bcbea66de07350ee778abb16e81f8f8bc8db..7ece6a7fafa91b24b03feeabb2bbefa0d3a1b24b 100644 --- a/python/paddle/fluid/framework.py +++ b/python/paddle/fluid/framework.py @@ -37,11 +37,9 @@ from . import unique_name __all__ = [ 'Program', - 'Operator', 'default_startup_program', 'default_main_program', 'program_guard', - 'get_var', 'name_scope', ] @@ -654,11 +652,11 @@ class Operator(object): self._update_desc_attr(attr_name, attr_val) self.desc.check_attrs() - if self.has_kernel(type): + if self._has_kernel(type): self.desc.infer_var_type(self.block.desc) self.desc.infer_shape(self.block.desc) - def has_kernel(self, op_type): + def _has_kernel(self, op_type): return op_type not in self.OP_WITHOUT_KERNEL_SET def to_string(self, throw_on_error): @@ -699,7 +697,7 @@ class Operator(object): """ return self.desc.input(name) - def rename_input(self, old_name, new_name): + def _rename_input(self, old_name, new_name): """ Rename the `old_name` to `new_name`. @@ -710,9 +708,9 @@ class Operator(object): Returns: None """ - self.desc.rename_input(old_name, new_name) + self.desc._rename_input(old_name, new_name) - def rename_output(self, old_name, new_name): + def _rename_output(self, old_name, new_name): """ Rename the `old_name` to `new_name`. @@ -723,7 +721,7 @@ class Operator(object): Returns: None """ - self.desc.rename_output(old_name, new_name) + self.desc._rename_output(old_name, new_name) @property def input_names(self): @@ -787,7 +785,7 @@ class Operator(object): """ return self.desc.attr_type(name) - def set_attr(self, name, val): + def _set_attr(self, name, val): """ Set the value of attribute by attribute's name. @@ -820,7 +818,7 @@ class Operator(object): isinstance(val, core.ProgramDesc): self.desc.set_serialized_attr(name, val.serialize_to_string()) else: - self.desc.set_attr(name, val) + self.desc._set_attr(name, val) @property def attr_names(self): @@ -839,7 +837,7 @@ class Operator(object): """ return self.desc.attr(name) - def block_attr_id(self, name): + def _block_attr_id(self, name): """ Get the block attribute's id by name. @@ -849,9 +847,9 @@ class Operator(object): Returns: int: the block index. """ - return self.desc.block_attr_id(name) + return self.desc._block_attr_id(name) - def block_attr(self, name): + def _block_attr(self, name): """ Get the block attribute by name. @@ -862,11 +860,11 @@ class Operator(object): block: the block attribute. """ - id = self.block_attr_id(name) + id = self._block_attr_id(name) assert (id >= 0 and id < len(self.block.program.blocks)) return self.block.program.blocks[id] - def blocks_attr(self, name): + def _blocks_attr(self, name): """ Get the blocks attribute by name. @@ -877,13 +875,13 @@ class Operator(object): list: list of the blocks attribute. """ attrs = [] - for i in self.blocks_attr_ids(name): + for i in self._blocks_attr_ids(name): assert (i >= 0 and i < len(self.block.program.blocks)) attrs.append(self.block.program.blocks[i]) return attrs - def blocks_attr_ids(self, name): + def _blocks_attr_ids(self, name): """ Get the blocks attribute's ids by name. @@ -894,7 +892,7 @@ class Operator(object): list: list of the blocks ids. """ - return self.desc.blocks_attr_ids(name) + return self.desc._blocks_attr_ids(name) def all_attrs(self): """ @@ -908,11 +906,11 @@ class Operator(object): for n in attr_names: attr_type = self.desc.attr_type(n) if attr_type == core.AttrType.BLOCK: - attr_map[n] = self.block_attr(n) + attr_map[n] = self._block_attr(n) continue if attr_type == core.AttrType.BLOCKS: - attr_map[n] = self.blocks_attr(n) + attr_map[n] = self._blocks_attr(n) continue attr_map[n] = self.attr(n) @@ -1786,7 +1784,7 @@ class Program(object): for j in six.moves.range(block.op_size()): op = block.op(j) if op.has_attr('is_test'): - op.set_attr('is_test', True) + op._set_attr('is_test', True) res.blocks = [ Block(res, i) for i in six.moves.range(res.desc.num_blocks()) ] @@ -2160,7 +2158,7 @@ def program_guard(main_program, startup_program=None): switch_startup_program(startup_program) -def get_var(name, program=None): +def _get_var(name, program=None): """ Get a variable by name from the global block of a program. diff --git a/python/paddle/fluid/layers/detection.py b/python/paddle/fluid/layers/detection.py index 574d0d727cba9fa9de0cffbe116f71b9e65a7092..9772c65738a2c5373f657164e3bc379404ba642e 100644 --- a/python/paddle/fluid/layers/detection.py +++ b/python/paddle/fluid/layers/detection.py @@ -284,7 +284,7 @@ def detection_output(loc, target_box=loc, code_type='decode_center_size') compile_shape = scores.shape - run_shape = ops.shape(scores) + run_shape = nn.shape(scores) scores = nn.flatten(x=scores, axis=2) scores = nn.softmax(input=scores) scores = nn.reshape(x=scores, shape=compile_shape, actual_shape=run_shape) @@ -697,7 +697,7 @@ def ssd_loss(location, raise ValueError("Only support mining_type == max_negative now.") num, num_prior, num_class = confidence.shape - conf_shape = ops.shape(confidence) + conf_shape = nn.shape(confidence) def __reshape_to_2d(var): return nn.flatten(x=var, axis=2) @@ -724,7 +724,7 @@ def ssd_loss(location, target_label.stop_gradient = True conf_loss = nn.softmax_with_cross_entropy(confidence, target_label) # 3. Mining hard examples - actual_shape = ops.slice(conf_shape, axes=[0], starts=[0], ends=[2]) + actual_shape = nn.slice(conf_shape, axes=[0], starts=[0], ends=[2]) actual_shape.stop_gradient = True conf_loss = nn.reshape( x=conf_loss, shape=(num, num_prior), actual_shape=actual_shape) diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 2cb61a9cd25c744710ab7ac9ea591902740f78da..a9696ac20060d1069a99a02a79a755a740e760f0 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -29,110 +29,29 @@ from .. import unique_name from functools import reduce __all__ = [ - 'fc', - 'embedding', - 'dynamic_lstm', - 'dynamic_lstmp', - 'dynamic_gru', - 'gru_unit', - 'linear_chain_crf', - 'crf_decoding', - 'cos_sim', - 'cross_entropy', - 'square_error_cost', - 'chunk_eval', - 'sequence_conv', - 'conv2d', - 'conv3d', - 'sequence_pool', - 'sequence_softmax', - 'softmax', - 'pool2d', - 'pool3d', - 'batch_norm', - 'beam_search_decode', - 'conv2d_transpose', - 'conv3d_transpose', - 'sequence_expand', - 'sequence_expand_as', - 'sequence_pad', - 'lstm_unit', - 'reduce_sum', - 'reduce_mean', - 'reduce_max', - 'reduce_min', - 'reduce_prod', - 'sequence_first_step', - 'sequence_last_step', - 'dropout', - 'split', - 'ctc_greedy_decoder', - 'edit_distance', - 'l2_normalize', - 'matmul', - 'topk', - 'warpctc', - 'sequence_reshape', - 'transpose', - 'im2sequence', - 'nce', - 'hsigmoid', - 'beam_search', - 'row_conv', - 'multiplex', - 'layer_norm', - 'softmax_with_cross_entropy', - 'smooth_l1', - 'one_hot', - 'autoincreased_step_counter', - 'reshape', - 'squeeze', - 'unsqueeze', - 'lod_reset', - 'lrn', - 'pad', - 'pad_constant_like', - 'label_smooth', - 'roi_pool', - 'dice_loss', - 'image_resize', - 'image_resize_short', - 'resize_bilinear', - 'gather', - 'scatter', - 'sequence_scatter', - 'random_crop', - 'mean_iou', - 'relu', - 'log', - 'crop', - 'rank_loss', - 'elu', - 'relu6', - 'pow', - 'stanh', - 'hard_sigmoid', - 'swish', - 'prelu', - 'brelu', - 'leaky_relu', - 'soft_relu', - 'flatten', - 'sequence_mask', - 'stack', - 'pad2d', - 'unstack', - 'sequence_enumerate', - 'expand', - 'sequence_concat', - 'scale', - 'elementwise_add', - 'elementwise_div', - 'elementwise_sub', - 'elementwise_mul', - 'elementwise_max', - 'elementwise_min', - 'elementwise_pow', + 'fc', 'embedding', 'dynamic_lstm', 'dynamic_lstmp', 'dynamic_gru', + 'gru_unit', 'linear_chain_crf', 'crf_decoding', 'cos_sim', 'cross_entropy', + 'square_error_cost', 'chunk_eval', 'sequence_conv', 'conv2d', 'conv3d', + 'sequence_pool', 'sequence_softmax', 'softmax', 'pool2d', 'pool3d', + 'batch_norm', 'beam_search_decode', 'conv2d_transpose', 'conv3d_transpose', + 'sequence_expand', 'sequence_expand_as', 'sequence_pad', 'lstm_unit', + 'reduce_sum', 'reduce_mean', 'reduce_max', 'reduce_min', 'reduce_prod', + 'sequence_first_step', 'sequence_last_step', 'dropout', 'split', + 'ctc_greedy_decoder', 'edit_distance', 'l2_normalize', 'matmul', 'topk', + 'warpctc', 'sequence_reshape', 'transpose', 'im2sequence', 'nce', + 'hsigmoid', 'beam_search', 'row_conv', 'multiplex', 'layer_norm', + 'softmax_with_cross_entropy', 'smooth_l1', 'one_hot', + 'autoincreased_step_counter', 'reshape', 'squeeze', 'unsqueeze', + 'lod_reset', 'lrn', 'pad', 'pad_constant_like', 'label_smooth', 'roi_pool', + 'dice_loss', 'image_resize', 'image_resize_short', 'resize_bilinear', + 'gather', 'scatter', 'sequence_scatter', 'random_crop', 'mean_iou', 'relu', + 'log', 'crop', 'rank_loss', 'elu', 'relu6', 'pow', 'stanh', 'hard_sigmoid', + 'swish', 'prelu', 'brelu', 'leaky_relu', 'soft_relu', 'flatten', + 'sequence_mask', 'stack', 'pad2d', 'unstack', 'sequence_enumerate', + 'expand', 'sequence_concat', 'scale', 'elementwise_add', 'elementwise_div', + 'elementwise_sub', 'elementwise_mul', 'elementwise_max', 'elementwise_min', + 'elementwise_pow', 'uniform_random_batch_size_like', 'gaussian_random', + 'sampling_id', 'gaussian_random_batch_size_like', 'sum', 'slice', 'shape' ] @@ -6463,6 +6382,246 @@ def expand(x, expand_times, name=None): return out +from paddle.fluid.framework import convert_np_dtype_to_dtype_ + + +@templatedoc() +def uniform_random_batch_size_like(input, + shape, + dtype='float32', + input_dim_idx=0, + output_dim_idx=0, + min=-1.0, + max=1.0, + seed=0): + """ + ${comment} + + Args: + input (Variable): ${input_comment} + shape (tuple|list): ${shape_comment} + input_dim_idx (Int): ${input_dim_idx_comment} + output_dim_idx (Int): ${output_dim_idx_comment} + min (Float): ${min_comment} + max (Float): ${max_comment} + seed (Int): ${seed_comment} + dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc + Returns: + out (Variable): ${out_comment} + + """ + + helper = LayerHelper('uniform_random_batch_size_like', **locals()) + out = helper.create_tmp_variable(dtype) + c_dtype = convert_np_dtype_to_dtype_(dtype) + helper.append_op( + type='uniform_random_batch_size_like', + inputs={'Input': input}, + outputs={'Out': out}, + attrs={ + 'shape': shape, + 'input_dim_idx': input_dim_idx, + 'output_dim_idx': output_dim_idx, + 'min': min, + 'max': max, + 'seed': seed, + 'dtype': c_dtype + }) + + return out + + +@templatedoc() +def gaussian_random(shape, + mean=0.0, + std=1.0, + seed=0, + dtype='float32', + use_mkldnn=False): + """ + ${comment} + + Args: + shape (tuple|list): ${shape_comment} + mean (Float): ${mean_comment} + std (Float): ${std_comment} + seed (Int): ${seed_comment} + dtype(np.dtype|core.VarDesc.VarType|str): Output data type. + use_mkldnn (Bool): Only used in mkldnn kernel. + + Returns: + out (Variable): ${out_comment} + + """ + + helper = LayerHelper('gaussian_random', **locals()) + out = helper.create_tmp_variable(dtype) + c_dtype = convert_np_dtype_to_dtype_(dtype) + helper.append_op( + type='gaussian_random', + outputs={'Out': out}, + attrs={ + 'shape': shape, + 'mean': mean, + 'std': std, + 'seed': seed, + 'dtype': c_dtype, + 'use_mkldnn': use_mkldnn + }) + + return out + + +@templatedoc() +def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'): + """ + ${comment} + + Args: + x (Variable): ${x_comment} + min (Float): ${min_comment} + max (Float): ${max_comment} + seed (Float): ${seed_comment} + dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc + + Returns: + out (Variable): ${out_comment} + + """ + + helper = LayerHelper('sampling_id', **locals()) + out = helper.create_tmp_variable(dtype) + helper.append_op( + type='sampling_id', + inputs={'X': x}, + outputs={'Out': out}, + attrs={'min': min, + 'max': max, + 'seed': seed}) + + return out + + +@templatedoc() +def gaussian_random_batch_size_like(input, + shape, + input_dim_idx=0, + output_dim_idx=0, + mean=0.0, + std=1.0, + seed=0, + dtype='float32'): + """ + ${comment} + + Args: + input (Variable): ${input_comment} + shape (tuple|list): ${shape_comment} + input_dim_idx (Int): ${input_dim_idx_comment} + output_dim_idx (Int): ${output_dim_idx_comment} + mean (Float): ${mean_comment} + std (Float): ${std_comment} + seed (Int): ${seed_comment} + dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc + + Returns: + out (Variable): ${out_comment} + """ + + helper = LayerHelper('gaussian_random_batch_size_like', **locals()) + out = helper.create_tmp_variable(dtype) + c_dtype = convert_np_dtype_to_dtype_(dtype) + helper.append_op( + type='gaussian_random_batch_size_like', + inputs={'Input': input}, + outputs={'Out': out}, + attrs={ + 'shape': shape, + 'input_dim_idx': input_dim_idx, + 'output_dim_idx': output_dim_idx, + 'mean': mean, + 'std': std, + 'seed': seed, + 'dtype': c_dtype + }) + + return out + + +@templatedoc() +def sum(x, use_mkldnn=False): + """ + ${comment} + + Args: + x (Variable): ${x_comment} + use_mkldnn (Bool): ${use_mkldnn_comment} + + Returns: + out (Variable): ${out_comment} + """ + + helper = LayerHelper('sum', **locals()) + out = helper.create_tmp_variable(dtype=helper.input_dtype('x')) + helper.append_op( + type='sum', + inputs={'X': x}, + outputs={'Out': out}, + attrs={'use_mkldnn': use_mkldnn}) + + return out + + +@templatedoc() +def slice(input, axes, starts, ends): + """ + ${comment} + + Args: + input (Variable): ${input_comment}. + axes (List): ${axes_comment} + starts (List): ${starts_comment} + ends (List): ${ends_comment} + + Returns: + out (Variable): ${out_comment} + + """ + + helper = LayerHelper('slice', **locals()) + out = helper.create_tmp_variable(dtype=helper.input_dtype('input')) + helper.append_op( + type='slice', + inputs={'Input': input}, + outputs={'Out': out}, + attrs={'axes': axes, + 'starts': starts, + 'ends': ends}) + + return out + + +@templatedoc() +def shape(input): + """ + ${comment} + + Args: + input (Variable): ${input_comment} + + Returns: + out (Variable): ${out_comment} + + """ + + helper = LayerHelper('shape', **locals()) + out = helper.create_tmp_variable(dtype=helper.input_dtype('input')) + helper.append_op( + type='shape', inputs={'Input': input}, outputs={'Out': out}) + + return out + + def _elementwise_op(helper): op_type = helper.layer_type x = helper.kwargs.get('x', None) diff --git a/python/paddle/fluid/layers/ops.py b/python/paddle/fluid/layers/ops.py index 7867bfe00e25711643eab1ab8d0141dbbad3da52..8a533035b0a3d175073cb0b0884aa507bcff782c 100644 --- a/python/paddle/fluid/layers/ops.py +++ b/python/paddle/fluid/layers/ops.py @@ -45,13 +45,6 @@ __all__ = [ 'logical_or', 'logical_xor', 'logical_not', - 'uniform_random_batch_size_like', - 'gaussian_random', - 'sampling_id', - 'gaussian_random_batch_size_like', - 'sum', - 'slice', - 'shape', 'maxout', ] diff --git a/python/paddle/fluid/tests/unittests/dist_transformer.py b/python/paddle/fluid/tests/unittests/dist_transformer.py index 3e536b7da1bdac73f13e6c633b508dab26f1580a..a2cc57425841100a2b61279d1b447b88ed4b9a54 100644 --- a/python/paddle/fluid/tests/unittests/dist_transformer.py +++ b/python/paddle/fluid/tests/unittests/dist_transformer.py @@ -1488,7 +1488,7 @@ def wrap_decoder(trg_vocab_size, if weight_sharing: predict = layers.matmul( x=dec_output, - y=fluid.get_var(word_emb_param_names[0]), + y=fluid.framework._get_var(word_emb_param_names[0]), transpose_y=True) else: predict = layers.fc(input=dec_output, diff --git a/python/paddle/fluid/tests/unittests/test_dist_transpiler.py b/python/paddle/fluid/tests/unittests/test_dist_transpiler.py index ecde407e6d85ea1bfc0181b4b60e095ea496fb1a..54a1c68a37f6929890aab697b48d621e6effb7d8 100644 --- a/python/paddle/fluid/tests/unittests/test_dist_transpiler.py +++ b/python/paddle/fluid/tests/unittests/test_dist_transpiler.py @@ -264,6 +264,25 @@ class TestLRDecay(TranspilerTest): ]) +class TestDecayedAdagrad(TranspilerTest): + def net_conf(self): + x = fluid.layers.data(name='x', shape=[1000], dtype='float32') + y_predict = fluid.layers.fc(input=x, + size=1000, + act=None, + param_attr=fluid.ParamAttr(name='fc_w'), + bias_attr=fluid.ParamAttr(name='fc_b')) + y = fluid.layers.data(name='y', shape=[1], dtype='float32') + cost = fluid.layers.square_error_cost(input=y_predict, label=y) + avg_cost = fluid.layers.mean(cost) + opt = fluid.optimizer.DecayedAdagrad(learning_rate=0.1) + opt.minimize(avg_cost) + + def transpiler_test_impl(self): + pserver, startup = self.get_pserver(self.pserver1_ep) + trainer, _ = self.get_trainer() + + class TestLRDecayConditional(TranspilerTest): def net_conf(self): x = fluid.layers.data(name='x', shape=[1000], dtype='float32') diff --git a/python/paddle/fluid/tests/unittests/test_infer_shape.py b/python/paddle/fluid/tests/unittests/test_infer_shape.py index a3d700aad8236fea7bb0e6d043323ad3bd0851f2..fdff22cacc28731a91ff4fd17407bd9edbdd9d8b 100644 --- a/python/paddle/fluid/tests/unittests/test_infer_shape.py +++ b/python/paddle/fluid/tests/unittests/test_infer_shape.py @@ -76,8 +76,8 @@ class TestInferShape(unittest.TestCase): mul_op_desc.set_input("X", ["x"]) mul_op_desc.set_input("Y", ["y"]) mul_op_desc.set_output("Out", ["out"]) - mul_op_desc.set_attr("x_num_col_dims", 1) - mul_op_desc.set_attr("y_num_col_dims", 1) + mul_op_desc._set_attr("x_num_col_dims", 1) + mul_op_desc._set_attr("y_num_col_dims", 1) mul_op_desc.check_attrs() mul_op_desc.infer_shape(block) diff --git a/python/paddle/fluid/tests/unittests/test_layers.py b/python/paddle/fluid/tests/unittests/test_layers.py index f474cdae2054531d44724e0e3e0e58a35fb8ddcd..b8dc9e8ad7cd7cd100d5c3cb99319e6f5a37da91 100644 --- a/python/paddle/fluid/tests/unittests/test_layers.py +++ b/python/paddle/fluid/tests/unittests/test_layers.py @@ -541,7 +541,7 @@ class TestBook(unittest.TestCase): with program_guard(program): input = layers.data( name="input", shape=[3, 100, 100], dtype="float32") - out = layers.shape(input, name="shape") + out = layers.shape(input) self.assertIsNotNone(out) print(str(program)) @@ -758,6 +758,65 @@ class TestBook(unittest.TestCase): out = layers.expand(x, [1, 2]) print(str(program)) + def test_uniform_random_batch_size_like(self): + program = Program() + with program_guard(program): + input = layers.data(name="input", shape=[13, 11], dtype='float32') + out = layers.uniform_random_batch_size_like(input, [-1, 11]) + self.assertIsNotNone(out) + print(str(program)) + + def test_gaussian_random(self): + program = Program() + with program_guard(program): + out = layers.gaussian_random(shape=[20, 30]) + self.assertIsNotNone(out) + print(str(program)) + + def test_sampling_id(self): + program = Program() + with program_guard(program): + x = layers.data( + name="X", + shape=[13, 11], + dtype='float32', + append_batch_size=False) + + out = layers.sampling_id(x) + self.assertIsNotNone(out) + print(str(program)) + + def test_gaussian_random_batch_size_like(self): + program = Program() + with program_guard(program): + input = layers.data(name="input", shape=[13, 11], dtype='float32') + + out = layers.gaussian_random_batch_size_like( + input, shape=[-1, 11], mean=1.0, std=2.0) + self.assertIsNotNone(out) + print(str(program)) + + def test_sum(self): + program = Program() + with program_guard(program): + input = layers.data(name="input", shape=[13, 11], dtype='float32') + + out = layers.sum(input) + self.assertIsNotNone(out) + print(str(program)) + + def test_slice(self): + starts = [1, 0, 2] + ends = [3, 3, 4] + axes = [0, 1, 2] + + program = Program() + with program_guard(program): + input = layers.data( + name="input", shape=[3, 4, 5, 6], dtype='float32') + + out = layers.slice(input, axes=axes, starts=starts, ends=ends) + def test_softshrink(self): program = Program() with program_guard(program): diff --git a/python/paddle/fluid/tests/unittests/test_protobuf_descs.py b/python/paddle/fluid/tests/unittests/test_protobuf_descs.py index d24b5cbd06ddf9f332c1369ebd513bef27b77e14..7fb2171f611adea434d6f2710465810fb69d6979 100644 --- a/python/paddle/fluid/tests/unittests/test_protobuf_descs.py +++ b/python/paddle/fluid/tests/unittests/test_protobuf_descs.py @@ -38,40 +38,40 @@ class TestOpDesc(unittest.TestCase): self.assertEqual(['z'], op.output("Out")) self.assertEqual(["Out"], op.output_names()) - op.set_attr("int_attr", 1) + op._set_attr("int_attr", 1) self.assertEqual(1, op.attr("int_attr")) self.assertTrue(op.has_attr("int_attr")) self.assertEqual(core.AttrType.INT, op.attr_type("int_attr")) - op.set_attr("float_attr", -1.32) + op._set_attr("float_attr", -1.32) self.assertAlmostEqual(-1.32, op.attr("float_attr"), delta=1e-4) self.assertTrue(op.has_attr("float_attr")) - op.set_attr("bool_attr", False) + op._set_attr("bool_attr", False) self.assertFalse(op.attr("bool_attr")) - op.set_attr("string_attr", "abc") + op._set_attr("string_attr", "abc") self.assertEqual("abc", op.attr("string_attr")) self.assertTrue(op.has_attr("string_attr")) - op.set_attr("ints_attr", [1, 2, 3]) + op._set_attr("ints_attr", [1, 2, 3]) self.assertEqual([1, 2, 3], op.attr("ints_attr")) expected = [1.2, 2.3, 3.4] - op.set_attr("floats_attr", expected) + op._set_attr("floats_attr", expected) for e, a in zip(expected, op.attr("floats_attr")): self.assertAlmostEqual(e, a, delta=1e-4) - op.set_attr("strings_attr", ["a", "b", "c"]) + op._set_attr("strings_attr", ["a", "b", "c"]) self.assertEqual(["a", "b", "c"], op.attr("strings_attr")) - op.set_attr("bools_attr", [True, False, True]) + op._set_attr("bools_attr", [True, False, True]) self.assertEqual([True, False, True], op.attr("bools_attr")) self.assertEqual(8, len(op.attr_names())) - op.set_block_attr("block_attr", program_desc.block(0)) - self.assertEqual(0, op.block_attr_id("block_attr")) + op.set_block_attr("_block_attr", program_desc.block(0)) + self.assertEqual(0, op._block_attr_id("_block_attr")) mul_op = block.append_op() mul_op.set_type("mul") diff --git a/python/paddle/fluid/transpiler/details/program_utils.py b/python/paddle/fluid/transpiler/details/program_utils.py index 59899e7e9ab98f661699d5ac0645c92bd23a1512..391d6aa12bdd70b9ef988898bee8e86cd0a0d765 100644 --- a/python/paddle/fluid/transpiler/details/program_utils.py +++ b/python/paddle/fluid/transpiler/details/program_utils.py @@ -128,7 +128,7 @@ def op_to_code(op): attr_type = op.desc.attr_type(name) if attr_type == core.AttrType.BLOCK: a = "{name} = block[{value}]".format( - name=name, type=attr_type, value=op.block_attr_id(name)) + name=name, type=attr_type, value=op._block_attr_id(name)) attrs_str += a if i != len(attr_names) - 1: attrs_str += ", " @@ -136,7 +136,7 @@ def op_to_code(op): if attr_type == core.AttrType.BLOCKS: a = "{name} = blocks{value}".format( - name=name, type=attr_type, value=op.blocks_attr_ids(name)) + name=name, type=attr_type, value=op._blocks_attr_ids(name)) attrs_str += a if i != len(attr_names) - 1: attrs_str += ", " diff --git a/python/paddle/fluid/transpiler/distribute_transpiler.py b/python/paddle/fluid/transpiler/distribute_transpiler.py index 57dceffc634b1a191a066d6f4a56dfcdd927b6ab..ecdbe27f4d90268d755a712e25289cfaf4715f29 100644 --- a/python/paddle/fluid/transpiler/distribute_transpiler.py +++ b/python/paddle/fluid/transpiler/distribute_transpiler.py @@ -470,7 +470,10 @@ class DistributeTranspiler(object): """ # remove optimize ops and add a send op to main_program # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay? + lr_ops = self._get_lr_ops() delete_ops(self.origin_program.global_block(), self.optimize_ops) + delete_ops(self.origin_program.global_block(), lr_ops) + self.origin_program.__str__() if wait_port: @@ -668,7 +671,7 @@ in a single call.") __clone_lr_op_sub_block__(cloned_op, program, new_sub_block) # reset the block of op - op.set_attr('sub_block', new_sub_block) + op._set_attr('sub_block', new_sub_block) # append lr decay ops to the child block if exists lr_ops = self._get_lr_ops() @@ -862,7 +865,7 @@ to transpile() call.") if op.type in [ "gaussian_random", "fill_constant", "uniform_random" ]: - op.set_attr("shape", list(new_outputs["Out"].shape)) + op._set_attr("shape", list(new_outputs["Out"].shape)) s_prog.global_block().append_op( type=op.type, inputs=new_inputs, @@ -1428,6 +1431,9 @@ to transpile() call.") elif op_type == "rmsprop": if varkey in ["Moment", "MeanSquare"]: return param_shape + elif op_type == "decayed_adagrad": + if varkey == "Moment": + return param_shape elif op_type == "sgd": pass return orig_shape diff --git a/python/paddle/fluid/transpiler/inference_transpiler.py b/python/paddle/fluid/transpiler/inference_transpiler.py index 49ba2cfd55bc881ed753fcefbd41f5b8fd4ebaf7..43d51b03e81895d7322d9e28a9c40b6d7cc69206 100644 --- a/python/paddle/fluid/transpiler/inference_transpiler.py +++ b/python/paddle/fluid/transpiler/inference_transpiler.py @@ -163,7 +163,7 @@ class InferenceTranspiler(object): next_op = self.block.ops[i + 1] if next_op.type == 'relu': # modify bnorm OP to include relu - current_op.set_attr("fuse_with_relu", True) + current_op._set_attr("fuse_with_relu", True) # remove relu OP self.block._remove_op(i + 1) i = i + 1 @@ -377,7 +377,7 @@ class InferenceTranspiler(object): type=old_var.type, dtype=old_var.dtype, shape=old_var.shape) - op.rename_input(old_param_name, new_param_name) + op._rename_input(old_param_name, new_param_name) self.scope.var(new_param_name) tensor = self.scope.find_var(new_param_name).get_tensor() @@ -463,8 +463,8 @@ class InferenceTranspiler(object): current_op = self.block.ops[i] for input_arg in current_op.input_arg_names: if input_arg in self.input_map: - current_op.rename_input(input_arg, - self.input_map[input_arg]) + current_op._rename_input(input_arg, + self.input_map[input_arg]) def _remove_unused_var(self): '''