utils.py 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
16 17 18
import inspect
import numpy as np

19
from collections import OrderedDict
20 21 22 23
from paddle import fluid
from paddle.fluid.framework import Variable
from paddle.fluid.executor import global_scope

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
__all__ = ['uncombined_weight_to_state_dict']


def uncombined_weight_to_state_dict(weight_dir):
    """
    Convert uncombined weight which getted by using `fluid.io.save_params` or `fluid.io.save_persistables` to state_dict

    Args:
        weight_dir (str): weight direcotory path.

    Returns:
        OrderDict: weight dict.

    Examples:
        .. code-block:: python

            import os

            from paddle import fluid
            from paddle.nn import Conv2D, Pool2D, Linear, ReLU, Sequential
            from paddle.incubate.hapi.utils import uncombined_weight_to_state_dict


            class LeNetDygraph(fluid.dygraph.Layer):
                def __init__(self, num_classes=10, classifier_activation='softmax'):
                    super(LeNetDygraph, self).__init__()
                    self.num_classes = num_classes
                    self.features = Sequential(
                        Conv2D(
                            1, 6, 3, stride=1, padding=1),
                        ReLU(),
                        Pool2D(2, 'max', 2),
                        Conv2D(
                            6, 16, 5, stride=1, padding=0),
                        ReLU(),
                        Pool2D(2, 'max', 2))

                    if num_classes > 0:
                        self.fc = Sequential(
                            Linear(400, 120),
                            Linear(120, 84),
                            Linear(
                                84, 10, act=classifier_activation))

                def forward(self, inputs):
                    x = self.features(inputs)

                    if self.num_classes > 0:
                        x = fluid.layers.flatten(x, 1)
                        x = self.fc(x)
                    return x

            # save weight use fluid.io.save_params
            save_dir = 'temp'
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)

            start_prog = fluid.Program()
            train_prog = fluid.Program()

            x = fluid.data(name='x', shape=[None, 1, 28, 28], dtype='float32')

            with fluid.program_guard(train_prog, start_prog):
                with fluid.unique_name.guard():
                    x = fluid.data(
                        name='x', shape=[None, 1, 28, 28], dtype='float32')
                    model = LeNetDygraph()
                    output = model.forward(x)

            excutor = fluid.Executor()
            excutor.run(start_prog)

            test_prog = train_prog.clone(for_test=True)

            fluid.io.save_params(excutor, save_dir, test_prog)

            # convert uncombined weight to state dict
            state_dict = uncombined_weight_to_state_dict(save_dir)

            key2key_dict = {
                'features.0.weight': 'conv2d_0.w_0',
                'features.0.bias': 'conv2d_0.b_0',
                'features.3.weight': 'conv2d_1.w_0',
                'features.3.bias': 'conv2d_1.b_0',
                'fc.0.weight': 'linear_0.w_0',
                'fc.0.bias': 'linear_0.b_0',
                'fc.1.weight': 'linear_1.w_0',
                'fc.1.bias': 'linear_1.b_0',
                'fc.2.weight': 'linear_2.w_0',
                'fc.2.bias': 'linear_2.b_0'
            }

            fluid.enable_imperative()
            dygraph_model = LeNetDygraph()

            converted_state_dict = dygraph_model.state_dict()
            for k1, k2 in key2key_dict.items():
                converted_state_dict[k1] = state_dict[k2]

            # dygraph model load state dict which converted from uncombined weight
            dygraph_model.set_dict(converted_state_dict)
    """

    def _get_all_params_name(dir):
        params_name = []
        dir = os.path.expanduser(dir)

        dir_len = len(dir)
        for root, _, fnames in sorted(os.walk(dir, followlinks=True)):
            for fname in sorted(fnames):
                path = os.path.join(root[dir_len:], fname)
                params_name.append(path)

        return params_name

    class Load(fluid.dygraph.Layer):
        def __init__(self):
            super(Load, self).__init__()

        def forward(self, filename):
            weight = self.create_parameter(
                shape=[1],
                dtype='float32',
                default_initializer=fluid.initializer.ConstantInitializer(0.0))
            self._helper.append_op(
                type='load',
                inputs={},
                outputs={'Out': [weight]},
                attrs={'file_path': filename})
            return weight

    params_name_list = _get_all_params_name(weight_dir)
    if not fluid.in_dygraph_mode():
        dygraph_enabled = False
        fluid.enable_imperative()
    else:
        dygraph_enabled = True

    load = Load()
    state_dict = OrderedDict()

    for param_name in params_name_list:
        param_path = os.path.join(weight_dir, param_name)
        weight = load(param_path)
        try:
            weight = weight.numpy()
        except Exception as e:
            print(e)

        state_dict[param_name] = weight

    if not dygraph_enabled:
        fluid.disable_imperative()

    return state_dict

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

def to_list(value):
    if value is None:
        return value
    if isinstance(value, (list, tuple)):
        return list(value)
    return [value]


def to_numpy(var):
    assert isinstance(var, (Variable, fluid.core.VarBase)), "not a variable"
    if isinstance(var, fluid.core.VarBase):
        return var.numpy()
    t = global_scope().find_var(var.name).get_tensor()
    return np.array(t)


def flatten_list(l):
    assert isinstance(l, list), "not a list"
    outl = []
    splits = []
    for sl in l:
        assert isinstance(sl, list), "sub content not a list"
        splits.append(len(sl))
        outl += sl
    return outl, splits


def restore_flatten_list(l, splits):
    outl = []
    for split in splits:
        assert len(l) >= split, "list length invalid"
        sl, l = l[:split], l[split:]
        outl.append(sl)
    return outl


def extract_args(func):
    if hasattr(inspect, 'getfullargspec'):
        return inspect.getfullargspec(func)[0]
    else:
        return inspect.getargspec(func)[0]