elementwise_add_op.h 4.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

F
fengjiayi 已提交
15 16
#pragma once

17
#include "paddle/fluid/framework/eigen.h"
Y
Yi Wang 已提交
18
#include "paddle/fluid/operators/elementwise_op_function.h"
19
#include "paddle/fluid/operators/math/blas.h"
G
gongweibao 已提交
20 21 22 23

namespace paddle {
namespace operators {

C
chengduoZH 已提交
24 25
template <typename T>
struct AddFunctor {
C
chengduoZH 已提交
26
  inline HOSTDEVICE T operator()(T a, T b) const { return a + b; }
C
chengduoZH 已提交
27 28
};

29 30 31 32 33 34 35 36 37 38
template <typename DeviceContext, typename T>
void default_elementwise_add(const framework::ExecutionContext& ctx,
                             const framework::Tensor* x,
                             const framework::Tensor* y, framework::Tensor* z) {
  int axis = ctx.Attr<int>("axis");
  ElementwiseComputeEx<AddFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                        AddFunctor<T>(), z);
}

template <typename DeviceContext, typename T>
39 40 41 42 43 44
typename std::enable_if<
    std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_add(const framework::ExecutionContext& ctx,
                const framework::Tensor* x, const framework::Tensor* y,
                framework::Tensor* z) {
45 46 47 48 49 50 51 52 53
  auto eigen_x = framework::EigenVector<T>::Flatten(*x);
  auto eigen_y = framework::EigenVector<T>::Flatten(*y);
  auto eigen_z = framework::EigenVector<T>::Flatten(*z);

  auto blas = math::GetBlas<DeviceContext, T>(ctx);
  blas.VADD(x->numel(), eigen_x.data(), eigen_y.data(), eigen_z.data());
}

template <typename DeviceContext, typename T>
54 55 56 57 58 59
typename std::enable_if<
    !std::is_floating_point<T>::value ||
    !std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_add(const framework::ExecutionContext& ctx,
                const framework::Tensor* x, const framework::Tensor* y,
                framework::Tensor* z) {
60 61 62
  default_elementwise_add<DeviceContext, T>(ctx, x, y, z);
}

Q
QI JUN 已提交
63
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
64
class ElementwiseAddKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
65 66
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
67 68
    using Tensor = framework::Tensor;

69 70 71
    const auto x = ctx.Input<Tensor>("X");
    const auto y = ctx.Input<Tensor>("Y");
    auto z = ctx.Output<Tensor>("Out");
C
chengduoZH 已提交
72
    z->mutable_data<T>(ctx.GetPlace());
73 74

    auto dims_equal = x->dims() == y->dims();
75
    if (dims_equal) {
76
      elementwise_add<DeviceContext, T>(ctx, x, y, z);
77
    } else {
78
      default_elementwise_add<DeviceContext, T>(ctx, x, y, z);
79
    }
G
gongweibao 已提交
80 81 82 83
  }
};

template <typename T>
Y
Yu Yang 已提交
84 85
struct IdentityGrad {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout; }
G
gongweibao 已提交
86 87
};

Q
QI JUN 已提交
88
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
89
class ElementwiseAddGradKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
90 91
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
92 93 94 95 96 97 98 99 100
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    int axis = ctx.Attr<int>("axis");
101 102 103 104

    if (platform::is_cpu_place(ctx.GetPlace()) && (x->dims() == y->dims())) {
      auto blas = math::GetBlas<DeviceContext, T>(ctx);

105 106 107 108 109 110 111 112 113
      if (dx) {
        blas.VCOPY(dout->numel(), dout->data<T>(),
                   dx->mutable_data<T>(ctx.GetPlace()));
      }

      if (dy) {
        blas.VCOPY(dout->numel(), dout->data<T>(),
                   dy->mutable_data<T>(ctx.GetPlace()));
      }
114 115 116 117 118
    } else {
      ElemwiseGradCompute<DeviceContext, T, IdentityGrad<T>, IdentityGrad<T>>(
          ctx, *x, *y, *out, *dout, axis, dx, dy, IdentityGrad<T>(),
          IdentityGrad<T>());
    }
G
gongweibao 已提交
119 120 121 122 123
  }
};

}  // namespace operators
}  // namespace paddle