tree_conv_op.cc 6.7 KB
Newer Older
Z
zhaozhehao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/tree_conv_op.h"
H
Huihuang Zheng 已提交
16 17

#include <memory>
Z
zhaozhehao 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
#include <string>

namespace paddle {
namespace operators {
class TreeConvOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("NodesVector",
             "(Tensor) The feature vector of every node on the tree. "
             "The shape of the feature vector must be "
             "[max_tree_node_size, feature_size].");
    AddInput("EdgeSet",
             "(Tensor) The Edges of Tree. The edge must be directional. "
             "The shape of the edge set must be [max_tree_node_size, 2].");
    AddInput("Filter",
             "(Tensor) The feature detector. "
             "The shape of the filter is "
             "[feature_size, 3, output_size, num_filters].");
    AddOutput("Out",
              "(Tensor) The feature vector of subtrees. "
              "The shape of the output tensor is [max_tree_node_size, "
              "output_size, num_filters]. "
              "The output tensor could be a new feature "
              "vector for next tree convolution layers.");
    AddAttr<int>("max_depth",
                 "(int, default: 2) The depth of feature detector.")
        .SetDefault(2)
        .GreaterThan(1);
    AddComment(R"DOC(
**Tree-Based Convolution Operator**

Tree-Based Convolution is a kind of convolution based on tree structure.
Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
which is used to classify tree structures, such as Abstract Syntax Tree.
Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
which regards multiway tree as binary tree.
The paper of Tree-Based Convolution Operator is here:
https://arxiv.org/abs/1409.5718v1
)DOC");
  }
};
class TreeConvOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasOutput("Out"));
    auto edge_dims = ctx->GetInputDim("EdgeSet");
    auto vector_dims = ctx->GetInputDim("NodesVector");
    auto filter_dims = ctx->GetInputDim("Filter");
P
phlrain 已提交
67 68 69 70 71 72 73 74

    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(edge_dims[2], 2, "Input(EdgeSet) dim[2] should be 2");
    } else {
      if (edge_dims[2] != -1) {
        PADDLE_ENFORCE_EQ(edge_dims[2], 2, "Input(EdgeSet) dim[2] should be 2");
      }
    }
Z
zhaozhehao 已提交
75 76 77 78 79 80
    PADDLE_ENFORCE_EQ(edge_dims.size(), 3,
                      "The dimension of EdgeSet Tensor should be 3");
    PADDLE_ENFORCE_EQ(vector_dims.size(), 3,
                      "The dimension of NodesVector Tensor should be 3");
    PADDLE_ENFORCE_EQ(filter_dims.size(), 4,
                      "The dimension of Filter Tensor should be 4");
P
phlrain 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(filter_dims[1], 3, "Input(Filter) dim[1] should be 3");
      PADDLE_ENFORCE_EQ(
          filter_dims[0], vector_dims[2],
          "Input(Filter) dim[0] must equal to Input(NodesVector) dim[2]");
    } else {
      if (filter_dims[1] != -1) {
        PADDLE_ENFORCE_EQ(filter_dims[1], 3,
                          "Input(Filter) dim[1] should be 3");
      }

      if (filter_dims[0] != -1 && vector_dims[2] != -1) {
        PADDLE_ENFORCE_EQ(
            filter_dims[0], vector_dims[2],
            "Input(Filter) dim[0] must equal to Input(NodesVector) dim[2]");
      }
    }
Z
zhaozhehao 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111
    auto output_dims = framework::make_ddim(
        {vector_dims[0], vector_dims[1], filter_dims[2], filter_dims[3]});
    ctx->SetOutputDim("Out", output_dims);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(ctx.Input<Tensor>("NodesVector")->type(),
                                   ctx.device_context());
  }
};

H
Huihuang Zheng 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
class TreeConvGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());

    op->SetType("tree_conv_grad");

    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    op->SetInput("Filter", Input("Filter"));
    op->SetInput("EdgeSet", Input("EdgeSet"));
    op->SetInput("NodesVector", Input("NodesVector"));

    op->SetOutput(framework::GradVarName("NodesVector"),
                  InputGrad("NodesVector"));
    op->SetOutput(framework::GradVarName("Filter"), InputGrad("Filter"));

    op->SetAttrMap(Attrs());
    return op;
  }
};

Z
zhaozhehao 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
class TreeConvGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    auto vectors_dims = ctx->GetInputDim("NodesVector");
    auto filter_dims = ctx->GetInputDim("Filter");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "the gradient of output(Out) must not be null");
    if (ctx->HasOutput(framework::GradVarName("Filter"))) {
      ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
    }
    if (ctx->HasOutput(framework::GradVarName("NodesVector"))) {
      ctx->SetOutputDim(framework::GradVarName("NodesVector"), vectors_dims);
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(ctx.Input<Tensor>("NodesVector")->type(),
                                   ctx.device_context());
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(tree_conv, ops::TreeConvOp, ops::TreeConvOpMaker,
H
Huihuang Zheng 已提交
165
                  ops::TreeConvGradOpDescMaker);
Z
zhaozhehao 已提交
166 167 168 169 170 171 172 173 174 175 176

REGISTER_OPERATOR(tree_conv_grad, ops::TreeConvGradOp);

REGISTER_OP_CPU_KERNEL(
    tree_conv, ops::TreeConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::TreeConvKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
    tree_conv_grad,
    ops::TreeConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::TreeConvGradKernel<paddle::platform::CPUDeviceContext, double>);