test_warpctc_op.py 7.2 KB
Newer Older
Y
Yiqun Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
import sys
import unittest
import numpy as np
from op_test import OpTest
from test_softmax_op import stable_softmax


class CTCForward(object):
    def __init__(self, softmax, softmax_lod, labels, labels_lod, blank,
                 norm_by_times):
        self.softmax = softmax
        self.softmax_lod = softmax_lod
        assert labels.shape[1] == 1
        self.labels = labels
        self.labels_lod = labels_lod
        self.blank = blank
        self.norm_by_times = norm_by_times

        self.level = 0
        self.num_classes = softmax.shape[1]
        self.batch_size = len(softmax_lod[self.level]) - 1
        assert self.batch_size == len(labels_lod[self.level]) - 1

        self.loss = np.zeros([self.batch_size, 1], dtype="float32")
        self.gradient = np.zeros(self.softmax.shape, dtype="float32")

        # float64
        self.EXP_MAX = sys.float_info.max
        self.EXP_MIN = sys.float_info.min
        self.LOG_ZERO = np.log(self.EXP_MIN)
        self.LOG_INFINITY = np.log(self.EXP_MAX)

    def safe_exp(self, x):
        if x <= self.LOG_ZERO:
            return 0.0
        if x >= self.LOG_INFINITY:
            return self.EXP_MAX
        return np.exp(x)

    def safe_log(self, x):
        if x <= self.EXP_MIN:
            return self.LOG_ZERO
        return np.log(x)

    # x = lna and y = lnb are in log scale, ln(a / b) = lna - lnb
    def log_div(self, x, y):
        res = x - y
        if res <= self.LOG_ZERO:
            return self.LOG_ZERO
        if res >= self.LOG_INFINITY:
            return self.LOG_INFINITY
        return res

    # x = lna and y = lnb are in log scale, ln(a * b) = lna + lnb
    def log_mul(self, x, y):
        res = x + y
        if res <= self.LOG_ZERO:
            return self.LOG_ZERO
        if res >= self.LOG_INFINITY:
            return self.LOG_INFINITY
        return res

    # x = lna and y = lnb are in log scale,
    # ln(a + b) = lna + ln(1 + exp(lnb - lna)), where b > a
    def log_add(self, x, y):
        if x < y:
            t = y
            y = x
            x = t
        return x + self.safe_log(1 + self.safe_exp(y - x))

    def segment_range(self, time, total_times, total_segments):
        start = max(0, total_segments - (2 * (total_times - time)))
        end = min(total_segments, 2 * (time + 1))
        return start, end

    def forward_a_sequence(self, softmax_a_sequence, labels_a_sequence):
        total_times = softmax_a_sequence.shape[0]
        total_segments = labels_a_sequence.shape[0] * 2 + 1

        required_times = labels_a_sequence.shape[0]
        old_label = -1
        for i in range(labels_a_sequence.shape[0]):
            # two contingous labels with the same value
            if labels_a_sequence[i, 0] == old_label:
                required_times = required_times + 1
            old_label = labels_a_sequence[i, 0]

        if total_times < required_times:
            return 0

        # calculate the forward and backward variables,
        # reference Chapter 7.3 of "Alex Grave, Supervised Sequence
        # Labelling with Recurrent Neural Networks"
        log_acts = np.zeros([total_times, self.num_classes], dtype="float32")
        for i in range(total_times):
            for j in range(self.num_classes):
                log_acts[i, j] = self.safe_log(softmax_a_sequence[i, j])

        # calculate the forward variables
        forward_vars = np.zeros([total_times, total_segments], dtype="float32")
        for i in range(total_times):
            for j in range(total_segments):
                forward_vars[i, j] = self.LOG_ZERO

        for i in range(total_times):
            # dp initialization at t0
            if i == 0:
                forward_vars[i, 0] = log_acts[0, self.blank]
                if total_segments > 1:
                    forward_vars[i, 1] = log_acts[0, labels_a_sequence[i, 0]]
                continue

            # dp from t1
            start, end = self.segment_range(i, total_times, total_segments)
            for k in range(end - start):
                j = k + start
                if j & 1 == 1:
                    label_idx = j / 2
                    label_val = labels_a_sequence[label_idx, 0]
                    fv = self.log_add(forward_vars[i - 1, j],
                                      forward_vars[i - 1, j - 1])
                    if j > 1 and label_val != labels_a_sequence[label_idx - 1,
                                                                0]:
                        fv = self.log_add(fv, forward_vars[i - 1, j - 2])
                    fv = self.log_mul(fv, log_acts[i, label_val])
                else:
                    fv = forward_vars[i - 1, j]
                    if j > 0:
                        fv = self.log_add(fv, forward_vars[i - 1, j - 1])
                    fv = self.log_mul(fv, log_acts[i, self.blank])
                forward_vars[i, j] = fv

        # sum the last two value as log_prob
        log_prob = forward_vars[total_times - 1, total_segments - 1]
        if total_segments > 1:
            log_prob = self.log_add(
                log_prob, forward_vars[total_times - 1, total_segments - 2])

        return -log_prob

    def forward(self):
        for i in range(self.batch_size):
            softmax_start_i = self.softmax_lod[self.level][i]
            softmax_end_i = self.softmax_lod[self.level][i + 1]
            labels_start_i = self.labels_lod[self.level][i]
            labels_end_i = self.labels_lod[self.level][i + 1]

            softmax_a_sequence = self.softmax[softmax_start_i:softmax_end_i, :]
            labels_a_sequence = self.labels[labels_start_i:labels_end_i, :]
            self.loss[i] = self.forward_a_sequence(softmax_a_sequence,
                                                   labels_a_sequence)
        return self.loss


class TestWarpCTCOp(OpTest):
    def setUp(self):
        self.op_type = "warpctc"

        batch_size = 4
        num_classes = 8
        logits_lod = [[0, 4, 5, 8, 11]]
        logits = np.random.uniform(0.1, 1.0,
                                   [11, num_classes]).astype("float32")
        softmax = np.apply_along_axis(stable_softmax, 1, logits)
        labels_lod = [[0, 3, 4, 8, 12]]
        # labels should not be blank
        labels = np.random.randint(0, num_classes - 1, [12, 1], dtype="int32")

        blank = num_classes - 1
        norm_by_times = False

        ctc = CTCForward(softmax, logits_lod, labels, labels_lod, blank,
                         norm_by_times)
        loss = ctc.forward()

        max_sequence_length = 0
        for i in range(batch_size):
            max_sequence_length = max(max_sequence_length,
                                      logits_lod[0][i + 1] - logits_lod[0][i])
181
        self.gradient = np.zeros(
Y
Yiqun Liu 已提交
182 183 184 185 186 187
            [max_sequence_length, batch_size, num_classes], dtype="float32")

        self.inputs = {
            "Logits": (logits, logits_lod),
            "Label": (labels, labels_lod)
        }
188
        self.outputs = {"Loss": loss}
Y
Yiqun Liu 已提交
189 190
        self.attrs = {"blank": blank, "norm_by_times": norm_by_times}

191 192
    def test_check_output(self):
        self.check_output()
Y
Yiqun Liu 已提交
193

W
wanghaoshuang 已提交
194
    def test_check_grad(self):
195
        self.outputs['WarpCTCGrad'] = self.gradient
W
wanghaoshuang 已提交
196
        self.check_grad(["Logits"], "Loss", max_relative_error=0.01)
Y
Yiqun Liu 已提交
197

198

Y
Yiqun Liu 已提交
199 200
if __name__ == "__main__":
    unittest.main()