sequence_pooling.cc 15.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

A
Abhinav Arora 已提交
15
#include <string>
M
minqiyang 已提交
16

T
tensor-tang 已提交
17
#include "paddle/fluid/operators/jit/kernels.h"
M
minqiyang 已提交
18
#include "paddle/fluid/operators/math/blas.h"
Y
Yi Wang 已提交
19
#include "paddle/fluid/operators/math/math_function.h"
M
minqiyang 已提交
20
#include "paddle/fluid/operators/math/sequence_pooling.h"
21 22 23 24 25

namespace paddle {
namespace operators {
namespace math {

D
dzhwinter 已提交
26 27 28 29 30 31 32 33 34
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

J
Jacek Czaja 已提交
35
template <typename T, bool is_test>
D
dzhwinter 已提交
36
class MaxSeqPoolFunctor {
37
 public:
Q
QI JUN 已提交
38
  void operator()(const platform::CPUDeviceContext& context,
39
                  const framework::LoDTensor& input, T pad_value,
40
                  framework::LoDTensor* output, framework::Tensor* index) {
41 42 43
    auto in_dims = input.dims();
    auto out_dims = output->dims();
    auto idx_dims = index->dims();
44 45 46 47
    PADDLE_ENFORCE_GT(in_dims.size(), 1,
                      "The rank of input shall be greater than 1.");
    PADDLE_ENFORCE_GT(out_dims.size(), 1,
                      "The rank of output shall be greater than 1.");
D
dangqingqing 已提交
48
    for (int64_t i = 1; i < in_dims.size(); ++i) {
49 50
      PADDLE_ENFORCE_EQ(in_dims[i], out_dims[i],
                        "The dimension of input and output shall be same.");
51
    }
52 53
    PADDLE_ENFORCE_EQ(idx_dims, out_dims,
                      "The dimension of index and output shall be same.");
54

55 56
    auto lod_level = input.lod().size();
    auto starts = input.lod()[lod_level - 1];
57 58 59 60 61 62 63
    const T* in_data = input.data<T>();
    T* out_data = output->data<T>();
    int* max_index = index->data<int>();

    int64_t num_seq = out_dims[0];
    int64_t dim = output->numel() / num_seq;
    for (int64_t i = 0; i < num_seq; ++i) {
64 65 66 67 68 69 70
      if (starts[i] == starts[i + 1]) {
        for (int64_t k = 0; k < dim; ++k) {
          out_data[i * dim + k] = pad_value;
          max_index[i * dim + k] = -1;
        }
        continue;
      }
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
      for (int64_t k = 0; k < dim; ++k) {
        out_data[i * dim + k] = in_data[starts[i] * dim + k];
        max_index[i * dim + k] = starts[i];
      }
      for (size_t j = starts[i] + 1; j < starts[i + 1]; ++j) {
        for (int64_t k = 0; k < dim; ++k) {
          if (in_data[j * dim + k] > out_data[i * dim + k]) {
            out_data[i * dim + k] = in_data[j * dim + k];
            max_index[i * dim + k] = j;
          }
        }
      }
    }
  }
};
J
Jacek Czaja 已提交
86 87 88 89 90 91
// Instantisation of Max Sequence Pooling for test phase eg. no need to fill
// index buffer
template <typename T>
class MaxSeqPoolFunctor<T, true> {
 public:
  void operator()(const platform::CPUDeviceContext& context,
92
                  const framework::LoDTensor& input, T pad_value,
93
                  framework::LoDTensor* output, framework::Tensor* index) {
J
Jacek Czaja 已提交
94 95
    auto in_dims = input.dims();
    auto out_dims = output->dims();
96 97 98 99
    PADDLE_ENFORCE_GT(in_dims.size(), 1,
                      "The rank of input shall be greater than 1.");
    PADDLE_ENFORCE_GT(out_dims.size(), 1,
                      "The rank of output shall be greater than 1.");
J
Jacek Czaja 已提交
100
    for (int64_t i = 1; i < in_dims.size(); ++i) {
101 102
      PADDLE_ENFORCE_EQ(in_dims[i], out_dims[i],
                        "The dimension of input and output shall be same.");
J
Jacek Czaja 已提交
103 104
    }

105 106
    auto lod_level = input.lod().size();
    auto starts = input.lod()[lod_level - 1];
J
Jacek Czaja 已提交
107 108
    const T* in_data = input.data<T>();
    T* out_data = output->data<T>();
109

J
Jacek Czaja 已提交
110 111 112
    int64_t num_seq = out_dims[0];
    int64_t dim = output->numel() / num_seq;
    for (int64_t i = 0; i < num_seq; ++i) {
113 114 115 116 117 118
      if (starts[i] == starts[i + 1]) {
        for (int64_t k = 0; k < dim; ++k) {
          out_data[i * dim + k] = pad_value;
        }
        continue;
      }
J
Jacek Czaja 已提交
119 120 121 122 123 124 125 126 127 128 129 130
      std::memcpy(&out_data[i * dim], &in_data[starts[i] * dim],
                  dim * sizeof(T));
      for (size_t j = starts[i] + 1; j < starts[i + 1]; ++j) {
        for (int64_t k = 0; k < dim; ++k) {
          if (in_data[j * dim + k] > out_data[i * dim + k]) {
            out_data[i * dim + k] = in_data[j * dim + k];
          }
        }
      }
    }
  }
};
131
template <typename T>
D
dzhwinter 已提交
132
class MaxSeqPoolGradFunctor {
133
 public:
Q
QI JUN 已提交
134
  void operator()(const platform::CPUDeviceContext& context,
135
                  const framework::LoDTensor& out_grad,
136 137 138 139 140
                  const framework::Tensor& index,
                  framework::LoDTensor* in_grad) {
    auto og_dims = out_grad.dims();
    auto ig_dims = in_grad->dims();
    auto idx_dims = index.dims();
141 142 143 144
    PADDLE_ENFORCE_GT(og_dims.size(), 1,
                      "The rank of output@Grad shall be greater than 1.");
    PADDLE_ENFORCE_GT(ig_dims.size(), 1,
                      "The rank of input@Grad shall be greater than 1.");
D
dangqingqing 已提交
145
    for (int64_t i = 1; i < og_dims.size(); ++i) {
146 147 148
      PADDLE_ENFORCE_EQ(
          og_dims[i], ig_dims[i],
          "The dimension of input@Grad and output@Grad shall be same.");
149
    }
150 151
    PADDLE_ENFORCE_EQ(idx_dims, og_dims,
                      "The dimension of index and output@Grad shall be same.");
152 153 154 155 156

    const T* og_data = out_grad.data<T>();
    const int* max_index = index.data<int>();
    T* ig_data = in_grad->data<T>();

Q
QI JUN 已提交
157
    SetConstant<platform::CPUDeviceContext, T> set_zero;
158 159 160
    set_zero(context, in_grad, static_cast<T>(0.0));
    int64_t num_seq = og_dims[0];
    int64_t dim = out_grad.numel() / num_seq;
D
dangqingqing 已提交
161 162
    for (int64_t i = 0; i < num_seq; ++i) {
      for (int64_t j = 0; j < dim; ++j) {
163
        int step_id = max_index[i * dim + j];
164
        if (step_id == -1) continue;
165 166 167 168 169 170
        ig_data[step_id * dim + j] = og_data[i * dim + j];
      }
    }
  }
};

171
template <typename T>
B
bingyanghuang 已提交
172
class LastSeqPoolFunctor {
173 174
 public:
  void operator()(const platform::CPUDeviceContext& context,
175
                  const framework::LoDTensor& input, T pad_value,
176
                  framework::LoDTensor* output) {
B
bingyanghuang 已提交
177 178 179
    // Create pointers to input and output data
    auto* in_data = input.data<T>();
    auto* out_data = output->data<T>();
B
bingyanghuang 已提交
180

B
bingyanghuang 已提交
181 182
    // Calculate the size of each item in sequence
    int64_t item_size = input.numel() / input.dims()[0];
183 184
    auto lod_level = input.lod().size();
    auto lod = input.lod()[lod_level - 1];
B
bingyanghuang 已提交
185
    int seq_num = static_cast<int>(lod.size()) - 1;
B
bingyanghuang 已提交
186 187 188
    for (int i = 0; i < seq_num; ++i) {
      // Calculate the length of each sequence
      int64_t seq_len = static_cast<int64_t>(lod[i + 1] - lod[i]);
189 190 191 192 193 194 195 196 197 198
      if (seq_len == 0) {
        for (int j = 0; j < item_size; ++j) {
          out_data[j] = pad_value;
        }
      } else {
        // Point to the begin of next sequence
        in_data += seq_len * item_size;
        // Copy the last item of sequence to output
        std::memcpy(out_data, (in_data - item_size), item_size * sizeof(T));
      }
B
bingyanghuang 已提交
199
      out_data += item_size;
B
bingyanghuang 已提交
200
    }
B
bingyanghuang 已提交
201 202 203 204 205 206 207
  }
};

template <typename T>
class FirstSeqPoolFunctor {
 public:
  void operator()(const platform::CPUDeviceContext& context,
208
                  const framework::LoDTensor& input, T pad_value,
209
                  framework::LoDTensor* output) {
B
bingyanghuang 已提交
210 211 212 213 214 215
    // Create pointers to input and output data
    auto* in_data = input.data<T>();
    auto* out_data = output->data<T>();

    // Calculate the size of each item in sequence
    int64_t item_size = input.numel() / input.dims()[0];
216 217
    auto lod_level = input.lod().size();
    auto lod = input.lod()[lod_level - 1];
B
bingyanghuang 已提交
218 219 220 221
    int seq_num = static_cast<int>(lod.size()) - 1;
    for (int i = 0; i < seq_num; ++i) {
      // Calculate the length of each sequence
      int64_t seq_len = static_cast<int64_t>(lod[i + 1] - lod[i]);
222 223 224 225 226 227 228 229 230 231
      if (seq_len == 0) {
        for (int j = 0; j < item_size; ++j) {
          out_data[j] = pad_value;
        }
      } else {
        // Copy the first item of sequence to output
        std::memcpy(out_data, in_data, item_size * sizeof(T));
        // Point to the next sequence
        in_data += seq_len * item_size;
      }
B
bingyanghuang 已提交
232
      out_data += item_size;
B
bingyanghuang 已提交
233
    }
B
bingyanghuang 已提交
234
  }
235 236
};

M
minqiyang 已提交
237 238 239 240
template <typename T>
class SumSeqPoolGradFunctor {
 public:
  void operator()(const platform::CPUDeviceContext& context,
241
                  const framework::LoDTensor& out_grad,
M
minqiyang 已提交
242
                  framework::LoDTensor* in_grad) {
243 244
    auto lod_level = in_grad->lod().size();
    auto lod = in_grad->lod()[lod_level - 1];
M
minqiyang 已提交
245 246
    int64_t out_w = out_grad.numel() / out_grad.dims()[0];
    int64_t in_w = in_grad->numel() / in_grad->dims()[0];
247 248 249
    PADDLE_ENFORCE_EQ(
        in_w, out_w,
        "The feature size of input@Grad and output@Grad shall be same.");
M
minqiyang 已提交
250 251 252 253 254
    const T* out_g_data = out_grad.data<T>();
    T* in_g_data = in_grad->mutable_data<T>(context.GetPlace());
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
    for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
      int64_t h = static_cast<int64_t>(lod[i + 1] - lod[i]);
255
      if (h == 0) continue;
M
minqiyang 已提交
256 257 258 259 260 261 262 263 264 265
      int64_t in_offset = lod[i] * in_w;
      const T* out_pos = out_g_data + i * out_w;
      T* in_pos = in_g_data + in_offset;
      for (int r = 0; r != h; ++r) {
        blas.VCOPY(in_w, out_pos, in_pos + r * in_w);
      }
    }
  }
};

D
dzhwinter 已提交
266 267 268 269 270
template <typename T>
class SequencePoolFunctor<platform::CPUDeviceContext, T> {
 public:
  /* max pool has index output */
  void operator()(const platform::CPUDeviceContext& context,
271
                  const std::string pooltype, T pad_value,
272 273 274
                  const framework::LoDTensor& input,
                  framework::LoDTensor* output, bool is_test,
                  framework::Tensor* index = nullptr) {
D
dzhwinter 已提交
275
    if (pooltype == "MAX") {
J
Jacek Czaja 已提交
276 277
      if (is_test) {
        math::MaxSeqPoolFunctor<T, true> max_pool;
278
        max_pool(context, input, pad_value, output, index);
J
Jacek Czaja 已提交
279 280
      } else {
        math::MaxSeqPoolFunctor<T, false> max_pool;
281
        max_pool(context, input, pad_value, output, index);
J
Jacek Czaja 已提交
282
      }
D
dzhwinter 已提交
283 284
      return;
    }
B
bingyanghuang 已提交
285 286
    if (pooltype == "LAST") {
      math::LastSeqPoolFunctor<T> last_pool;
287
      last_pool(context, input, pad_value, output);
288 289
      return;
    }
B
bingyanghuang 已提交
290 291
    if (pooltype == "FIRST") {
      math::FirstSeqPoolFunctor<T> first_pool;
292
      first_pool(context, input, pad_value, output);
B
bingyanghuang 已提交
293 294
      return;
    }
295 296
    auto lod_level = input.lod().size();
    auto lod = input.lod()[lod_level - 1];
T
tensor-tang 已提交
297 298
    if (pooltype == "SUM") {
      auto place = context.GetPlace();
299 300 301
      PADDLE_ENFORCE_EQ(
          platform::is_cpu_place(place), true,
          "Sequence_pool should run on CPU Device when pooltype is SUM");
T
tensor-tang 已提交
302 303
      const T* src = input.data<T>();
      T* dst = output->mutable_data<T>(place);
T
tensor-tang 已提交
304 305 306
      jit::seq_pool_attr_t attr(
          static_cast<int>(input.numel() / input.dims()[0]),
          jit::SeqPoolType::kSum);
307 308 309
      auto seqpool =
          jit::KernelFuncs<jit::SeqPoolTuple<T>, platform::CPUPlace>::Cache()
              .At(attr);
T
tensor-tang 已提交
310 311
      for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
        attr.h = static_cast<int>(lod[i + 1] - lod[i]);
312 313 314 315 316 317 318
        if (attr.h == 0) {
          for (int j = 0; j < attr.w; ++j) {
            dst[j] = pad_value;
          }
        } else {
          seqpool(src, dst, &attr);
        }
T
tensor-tang 已提交
319 320 321 322 323
        dst += attr.w;
        src += attr.h * attr.w;
      }
      return;
    }
D
dzhwinter 已提交
324 325
    auto& place = *context.eigen_device();
    for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
326 327 328 329 330 331 332 333
      Tensor out_t = output->Slice(i, i + 1);
      int64_t w = input.numel() / input.dims()[0];
      if (lod[i] == lod[i + 1]) {
        for (int j = 0; j < w; ++j) {
          out_t.data<T>()[j] = pad_value;
        }
        continue;
      }
D
dzhwinter 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
      Tensor in_t =
          input.Slice(static_cast<int>(lod[i]), static_cast<int>(lod[i + 1]));
      int64_t h = static_cast<int64_t>(lod[i + 1] - lod[i]);
      auto in_e = EigenMatrix<T>::From(in_t, framework::make_ddim({h, w}));
      auto out_e = EigenVector<T>::Flatten(out_t);
      if (pooltype == "AVERAGE") {
        out_e.device(place) = in_e.mean(Eigen::array<int, 1>({{0}}));
      } else if (pooltype == "SQRT") {
        out_e.device(place) = in_e.sum(Eigen::array<int, 1>({{0}})) /
                              std::sqrt(static_cast<T>(h));
      } else {
        PADDLE_THROW("unsupported pooling pooltype");
      }
    }
  }
};

template <typename T>
class SequencePoolGradFunctor<platform::CPUDeviceContext, T> {
 public:
  void operator()(const platform::CPUDeviceContext& context,
355 356
                  const std::string pooltype,
                  const framework::LoDTensor& out_grad,
D
dzhwinter 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370
                  framework::LoDTensor* in_grad,
                  /* max pool has index */
                  const framework::Tensor* index = nullptr) {
    if (pooltype == "MAX") {
      math::MaxSeqPoolGradFunctor<T> max_pool_grad;
      max_pool_grad(context, out_grad, *index, in_grad);
      return;
    }

    if (pooltype == "LAST" || pooltype == "FIRST") {
      // set X@Grad be zero at first when pooltype is LAST/FIRST
      math::SetConstant<platform::CPUDeviceContext, T> functor;
      functor(context, in_grad, 0);
    }
M
minqiyang 已提交
371 372

    if (pooltype == "SUM") {
M
minqiyang 已提交
373 374
      math::SumSeqPoolGradFunctor<T> sum_pool_grad;
      sum_pool_grad(context, out_grad, in_grad);
M
minqiyang 已提交
375 376 377
      return;
    }

378 379
    auto lod_level = in_grad->lod().size();
    auto lod = in_grad->lod()[lod_level - 1];
D
dzhwinter 已提交
380 381
    auto& place = *context.eigen_device();
    for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
382
      if (lod[i] == lod[i + 1]) continue;
D
dzhwinter 已提交
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
      auto in_g_t = in_grad->Slice(static_cast<int>(lod[i]),
                                   static_cast<int>(lod[i + 1]));
      auto out_g_t = out_grad.Slice(i, i + 1);
      int64_t h = static_cast<int64_t>(lod[i + 1] - lod[i]);
      int64_t w = in_grad->numel() / in_grad->dims()[0];
      auto in_g_e = EigenMatrix<T>::From(in_g_t, {h, w});
      auto out_g_e = EigenMatrix<T>::From(out_g_t, {1, w});
      auto out_g_e_v = EigenVector<T>::Flatten(out_g_t);
      Eigen::DSizes<int, 2> bcast(h, 1);

      if (pooltype == "AVERAGE") {
        in_g_e.device(place) = (out_g_e / static_cast<T>(h)).broadcast(bcast);
      } else if (pooltype == "SQRT") {
        in_g_e.device(place) =
            (out_g_e / std::sqrt(static_cast<T>(h))).broadcast(bcast);
      } else if (pooltype == "LAST") {
        in_g_e.chip(h - 1, 0).device(place) = out_g_e_v;
      } else if (pooltype == "FIRST") {
        in_g_e.chip(0, 0).device(place) = out_g_e_v;
      } else {
        PADDLE_THROW("unsupported pooling pooltype");
      }
    }
  }
};

template class SequencePoolFunctor<platform::CPUDeviceContext, float>;
template class SequencePoolFunctor<platform::CPUDeviceContext, double>;
template class SequencePoolGradFunctor<platform::CPUDeviceContext, float>;
template class SequencePoolGradFunctor<platform::CPUDeviceContext, double>;
413 414 415 416

}  // namespace math
}  // namespace operators
}  // namespace paddle