inferencer.py 2.1 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
import py_paddle.swig_paddle as api

import topology
from data_feeder import DataFeeder
import itertools
import numpy

__all__ = ['InferenceEngine', 'infer']


class InferenceEngine(object):
    def __init__(self, output, parameters):
        topo = topology.Topology(output)
        gm = api.GradientMachine.createFromConfigProto(
            topo.proto(), api.CREATE_MODE_TESTING, [api.PARAMETER_VALUE])
        for param in gm.getParameters():
            val = param.getBuf(api.PARAMETER_VALUE)
            name = param.getName()
Y
Yu Yang 已提交
19 20
            assert isinstance(val, api.Vector)
            val.copyFromNumpyArray(parameters.get(name).flatten())
Y
Yu Yang 已提交
21 22 23 24
        self.__gradient_machine__ = gm
        self.__data_types__ = topo.data_type()

    def iter_infer(self, reader, reader_dict=None):
Y
Yu Yang 已提交
25 26
        if reader_dict is None:
            reader_dict = self.default_reader_dict()
Y
Yu Yang 已提交
27 28 29
        feeder = DataFeeder(self.__data_types__, reader_dict)
        self.__gradient_machine__.start()
        for data_batch in reader():
Y
Yu Yang 已提交
30
            yield self.__gradient_machine__.forwardTest(feeder(data_batch))
Y
Yu Yang 已提交
31 32 33 34 35 36 37
        self.__gradient_machine__.finish()

    def iter_infer_field(self, field, **kwargs):
        for result in self.iter_infer(**kwargs):
            yield [each_result[field] for each_result in result]

    def infer(self, field='value', **kwargs):
Y
Yu Yang 已提交
38 39 40 41 42 43 44 45 46 47 48
        retv = None
        for result in self.iter_infer_field(field=field, **kwargs):
            if retv is None:
                retv = [[]] * len(result)
            for i, item in enumerate(result):
                retv[i].append(item)
        retv = [numpy.concatenate(out) for out in retv]
        if len(retv) == 1:
            return retv[0]
        else:
            return retv
Y
Yu Yang 已提交
49 50 51 52 53 54 55 56 57 58 59

    def default_reader_dict(self):
        reader_dict = dict()
        for i, tp in enumerate(self.__data_types__):
            reader_dict[tp[0]] = i
        return reader_dict


def infer(output, parameters, reader, reader_dict=None, field='value'):
    inferer = InferenceEngine(output=output, parameters=parameters)
    return inferer.infer(field=field, reader=reader, reader_dict=reader_dict)