transpose_op.cu 28.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <algorithm>
#include <limits>
#include <utility>

#include "paddle/fluid/framework/gpu_utils.h"
#include "paddle/fluid/operators/transpose_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/float16.h"
23
#include "paddle/fluid/platform/gpu_launch_config.h"
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using Dim3 = framework::Dim3;
using Index3 = framework::Index3;

struct EqualTo {
  constexpr bool operator()(int a, int b) const { return a == b; }
};

struct GreaterThan {
  constexpr bool operator()(int a, int b) const { return a > b; }
};

// Value can be decided in compile time.
template <typename FUN, int INT_32 = 32>
constexpr bool CheckProperTileSize(int tile_long, int tile_short, int size_T,
                                   FUN op) {
  return (size_T == 16 && ((tile_long == INT_32 && op(tile_short, 4)) ||
                           (tile_long == 2 * INT_32 && op(tile_short, 4)) ||
                           (tile_long == 4 * INT_32 && op(tile_short, 4)) ||
                           (tile_long == 8 * INT_32 && op(tile_short, 2)))) ||
         (size_T == 8 && ((tile_long == INT_32 && op(tile_short, 15)) ||
                          (tile_long == 2 * INT_32 && op(tile_short, 15)) ||
                          (tile_long == 4 * INT_32 && op(tile_short, 8)) ||
                          (tile_long == 8 * INT_32 && op(tile_short, 4)) ||
                          (tile_long == 16 * INT_32 && op(tile_short, 2)))) ||
         ((size_T == 4 || size_T == 2 || size_T == 1) &&
          ((tile_long == INT_32 && op(tile_short, 15)) ||
           (tile_long == 2 * INT_32 && op(tile_short, 15)) ||
           (tile_long == 4 * INT_32 && op(tile_short, 8)) ||
           (tile_long == 8 * INT_32 && op(tile_short, 4)) ||
           (tile_long == 16 * INT_32 && op(tile_short, 2)) ||
           (tile_long == 16 * INT_32 && op(tile_short, 2))));
}

constexpr bool CheckLongTileSize(int tile_long, int tile_short, int size_T) {
  return CheckProperTileSize(tile_long, tile_short, size_T, EqualTo());
}

constexpr bool CheckOutsideTileSize(int tile_long, int tile_short, int size_T) {
  return CheckProperTileSize(tile_long, tile_short, size_T, GreaterThan());
}

constexpr bool CheckNonLongTileSize(int tile_long, int tile_short, int size_T) {
  return !CheckOutsideTileSize(tile_long, tile_short, size_T) &&
         (CheckOutsideTileSize(tile_long * 2, tile_short, size_T) ||
          CheckOutsideTileSize(tile_long, tile_short + 1, size_T)) &&
         !CheckLongTileSize(tile_long, tile_short, size_T);
}

// Use SM to do data transfer, load a tile into SM then store out.
// All tile read and write are colascing, so can speedup memory copy
template <typename T, int NumThreads, int TileX, int TileY>
__global__ void TilingSwapDim1And2(const T* __restrict__ input, Dim3 input_dims,
                                   T* __restrict__ output) {
  assert(blockDim.x == NumThreads);
  assert(blockDim.y == 1);
  assert(blockDim.z == 1);
  assert(gridDim.y == 1);
  assert(gridDim.z == 1);

  constexpr int BlockReadRows = NumThreads / TileY;
  constexpr int BlockWriteRows = NumThreads / TileX;

  // One extra line in the inner dimension to avoid share memory bank conflict.
  __shared__ __align__(
      alignof(T)) char share_mem_ptr[TileX * (TileY + 1) * sizeof(T)];
  typedef T(*ShareMemory)[TileY + 1];

  ShareMemory tile_sm = reinterpret_cast<ShareMemory>(share_mem_ptr);

  int x = threadIdx.x;

  Dim3 output_dims = {
      input_dims[0], input_dims[2], input_dims[1],
  };

  // Align dim to Tiles
  Dim3 tile_aligned_input_dim = {
      input_dims[0], (input_dims[1] + TileX - 1) / TileX,
      (input_dims[2] + TileY - 1) / TileY,
  };

  // Converts block idx to tile index, each block process a tile
  Index3 input_block_tile_index =
      ConvertTensorIndex(blockIdx.x, tile_aligned_input_dim);

  // Compute real index align to tile:0, 32, 64...
  Index3 block_tile_index_in_input = {
      input_block_tile_index[0], input_block_tile_index[1] * TileX,
      input_block_tile_index[2] * TileY,
  };

  // Compute block flat index against input dims.
  int input_origin_block_flat_index =
      FlatTensorIndex(block_tile_index_in_input, input_dims);

  bool full_tile = true;
  int tile_width = TileY;

  // Last row is not full.
  if (input_block_tile_index[2] == tile_aligned_input_dim[2] - 1) {
    tile_width = input_dims[2] - (tile_aligned_input_dim[2] - 1) * TileY;
    full_tile &= false;
  }

  int tile_height = TileX;

  if (input_block_tile_index[1] == tile_aligned_input_dim[1] - 1) {
    tile_height = input_dims[1] - (tile_aligned_input_dim[1] - 1) * TileX;
    full_tile &= false;
  }

  constexpr int in_effective_thread_num = NumThreads / TileY * TileY;

  if (x < in_effective_thread_num) {
    // Read a tile from input using block.
    int x_i = x / TileY;
    int x_j = x % TileY;
    int input_ind = input_origin_block_flat_index + x_i * input_dims[2] + x_j;
    int input_inc = BlockReadRows * input_dims[2];

    if (full_tile) {
#pragma unroll
      for (int ind_i = x_i; ind_i < (TileX); ind_i += BlockReadRows) {
        tile_sm[ind_i][x_j] = input[input_ind];
        input_ind += input_inc;
      }
    } else {
      if (x_j < tile_width) {
#pragma unroll
        for (int ind_i = x_i; ind_i < (tile_height); ind_i += BlockReadRows) {
          tile_sm[ind_i][x_j] = input[input_ind];
          input_ind += input_inc;
        }
      }
    }
  }

  __syncthreads();

  // Store sm value back to out
  Index3 output_block_tile_index = {
      input_block_tile_index[0], input_block_tile_index[2],
      input_block_tile_index[1],
  };

  Index3 block_tile_index_in_output = {
      output_block_tile_index[0], output_block_tile_index[1] * TileY,
      output_block_tile_index[2] * TileX,
  };

  int output_origin_block_flat_index =
      FlatTensorIndex(block_tile_index_in_output, output_dims);

  constexpr int out_effective_thread_num = NumThreads / TileX * TileX;

  if (x < out_effective_thread_num) {
    int x_i = x / TileX;
    int x_j = x % TileX;
    int output_ind =
        output_origin_block_flat_index + x_i * output_dims[2] + x_j;
    int output_inc = BlockWriteRows * output_dims[2];

    if (full_tile) {
#pragma unroll
      for (int ind_i = x_i; ind_i < (TileY); ind_i += BlockWriteRows) {
        output[output_ind] = tile_sm[x_j][ind_i];
        output_ind += output_inc;
      }
    } else {
      if (x_j < tile_height) {
#pragma unroll
        for (int ind_i = x_i; ind_i < (tile_width); ind_i += BlockWriteRows) {
          output[output_ind] = tile_sm[x_j][ind_i];
          output_ind += output_inc;
        }
      }
    }
  }
}

// This function will find combination of long_side X short_side in backups
template <int TSIZE>
bool SelectProperTileSize(std::vector<std::pair<int, int>>* tiles) {
  PADDLE_ENFORCE_LE(
      TSIZE, 16,
      platform::errors::InvalidArgument(
          "The tile size should smaller than 16, but received is:%d.", TSIZE));

  PADDLE_ENFORCE_EQ(
      (TSIZE & (TSIZE - 1)), 0,
      platform::errors::InvalidArgument(
          "Data types should be powers of 2, but reived size is:%d.", TSIZE));

  const int kMaxLongSideLen = 1024;
  const int kMaxShortSideLen = 15;

  for (int long_side = 32; long_side <= kMaxLongSideLen; long_side *= 2) {
    for (int short_side = 2; short_side <= kMaxShortSideLen; short_side += 1) {
      if (CheckLongTileSize(long_side, short_side, TSIZE)) {
        tiles->push_back(std::make_pair(long_side, short_side));

        if (short_side == 2) return true;

        break;
      }
    }
  }
  return false;
}

// Use system built in type
template <int ByteSize>
struct SystemElemType;
template <>
struct SystemElemType<1> {
  using type = uint8_t;
};
template <>
struct SystemElemType<2> {
  using type = uint16_t;
};
template <>
struct SystemElemType<4> {
  using type = uint32_t;
};
template <>
struct SystemElemType<8> {
  using type = uint64_t;
};
template <>
struct SystemElemType<16> {
  using type = float4;
};

template <typename T, int tile_long, int tile_short>
void LaunchNarrowDims2TransposeKernel(const platform::CUDADeviceContext& d,
                                      int tile_size_i, int tile_size_j,
                                      int total_tiles_count, const T* input,
                                      const Dim3& input_dims, T* output) {
  constexpr int NumThreads = tile_long;
  if (tile_size_i <= tile_long && tile_size_j <= tile_short) {
    TilingSwapDim1And2<
        T, NumThreads, tile_long,
        tile_short><<<total_tiles_count, NumThreads, 0, d.stream()>>>(
        input, input_dims, output);
  } else {
    TilingSwapDim1And2<
        T, NumThreads, tile_short,
        tile_long><<<total_tiles_count, NumThreads, 0, d.stream()>>>(
        input, input_dims, output);
  }
}

template <typename T, int tile_long, int tile_short, typename dummy = void>
struct NarrowDims2TransposeDispatch {
  static void DoTranspose(const platform::CUDADeviceContext& d, int tile_size_i,
                          int tile_size_j, int total_tiles_count,
                          const T* input, const Dim3& input_dims, T* output) {
    PADDLE_ENFORCE_EQ(
        (tile_long & (tile_long - 1)), 0,
        platform::errors::InvalidArgument(
            "The length of the longer side of the tile should be power of 2."
            " But received value is:%d.",
            tile_long));

    bool request_satisfied = std::max(tile_size_i, tile_size_j) <= tile_long &&
                             std::min(tile_size_i, tile_size_j) <= tile_short;

    if (request_satisfied) {
      LaunchNarrowDims2TransposeKernel<T, tile_long, tile_short>(
          d, tile_size_i, tile_size_j, total_tiles_count, input, input_dims,
          output);
      return;
    }

    const bool long_side_request_not_satisfied =
        std::max(tile_size_i, tile_size_j) > tile_long;

    if (long_side_request_not_satisfied) {
      NarrowDims2TransposeDispatch<T, tile_long * 2, tile_short>::DoTranspose(
          d, tile_size_i, tile_size_j, total_tiles_count, input, input_dims,
          output);
    } else {
      NarrowDims2TransposeDispatch<T, tile_long, tile_short + 1>::DoTranspose(
          d, tile_size_i, tile_size_j, total_tiles_count, input, input_dims,
          output);
    }
  }
};

// If Not long tile size, goto this function when compile.
template <typename T, int tile_long, int tile_short>
struct NarrowDims2TransposeDispatch<
    T, tile_long, tile_short,
    typename std::enable_if<
        CheckNonLongTileSize(tile_long, tile_short, sizeof(T)), void>::type> {
  static void DoTranspose(const platform::CUDADeviceContext& d, int tile_size_i,
                          int tile_size_j, int total_tiles_count,
                          const T* input, const Dim3& input_dims, T* output) {
    PADDLE_ENFORCE_EQ(
        (tile_long & (tile_long - 1)), 0,
        platform::errors::InvalidArgument(
            "The length of the longer side of the tile should be power of 2."
            " But received value is:%d.",
            tile_long));

    bool request_satisfied = std::max(tile_size_i, tile_size_j) <= tile_long &&
                             std::min(tile_size_i, tile_size_j) <= tile_short;

    if (request_satisfied) {
      LaunchNarrowDims2TransposeKernel<T, tile_long, tile_short>(
          d, tile_size_i, tile_size_j, total_tiles_count, input, input_dims,
          output);
      return;
    }

    NarrowDims2TransposeDispatch<T, tile_long, tile_short + 1>::DoTranspose(
        d, tile_size_i, tile_size_j, total_tiles_count, input, input_dims,
        output);
  }
};

// If long tile size, goto this function when compile.
template <typename T, int tile_long, int tile_short>
struct NarrowDims2TransposeDispatch<
    T, tile_long, tile_short,
    typename std::enable_if<CheckLongTileSize(tile_long, tile_short, sizeof(T)),
                            void>::type> {
  static void DoTranspose(const platform::CUDADeviceContext& d, int tile_size_i,
                          int tile_size_j, int total_tiles_count,
                          const T* input, const Dim3& input_dims, T* output) {
    PADDLE_ENFORCE_EQ(
        (tile_long & (tile_long - 1)), 0,
        platform::errors::InvalidArgument(
            "The length of the longer side of the tile should be power of 2,"
            " but received is:%d.",
            tile_long));

    LaunchNarrowDims2TransposeKernel<T, tile_long, tile_short>(
        d, tile_size_i, tile_size_j, total_tiles_count, input, input_dims,
        output);
  }
};

template <typename T, bool conjugate = false>
void SwapDim1And2InNarrow(const platform::CUDADeviceContext& d, const T* input,
                          const Dim3& input_dims, T* output,
                          const int kMinTileSize) {
  // First get available tile sizes for the data type requested as backups
  std::vector<std::pair<int, int>> tile_sele;
  auto ret = SelectProperTileSize<sizeof(T)>(&tile_sele);
  PADDLE_ENFORCE_EQ(
      ret, true,
      platform::errors::InvalidArgument(
          "SelectProperTileSize should return true, but return value is:%d.",
          ret));

  int tile_long_edge = 0;
  int tile_short_edge = 0;
  float lowest_cost = std::numeric_limits<float>::max();
  int input_long_edge = std::max(input_dims[1], input_dims[2]);

  // Find the tile size that best suit in  inputs.
  for (auto tile_size_pair : tile_sele) {
    int proposed_tile_long_edge = tile_size_pair.first;
    // data may not aligned to tile, so some threads wasted, we need
    // to find least wasted threads, which means we need to find tile
    // can split input properly, in another words: num_wasted_threads=0.
    int num_wasted_threads = input_long_edge -
                             framework::CeilOrFloor<int, false>(
                                 input_long_edge, proposed_tile_long_edge) *
                                 proposed_tile_long_edge;

    int num_full_tiles = framework::CeilOrFloor<int, false>(
        input_long_edge, proposed_tile_long_edge);

    float cost = num_wasted_threads;

    if (cost <= lowest_cost) {
      tile_long_edge = proposed_tile_long_edge;
      tile_short_edge = tile_size_pair.second;
      lowest_cost = cost;
    }
    // break as we already find best tile size.
    if (cost == 0) break;
  }

  // The tile size we select should be match with input dim, long side to long
  // short side to short.
  // First set long side  as i if dim1 > Tile min size, then set dim2 as j.
  int select_tile_size_i =
      input_dims[1] >= kMinTileSize ? tile_long_edge : input_dims[1];
  int select_tile_size_j =
      input_dims[1] >= kMinTileSize ? input_dims[2] : tile_long_edge;

  // Check if i is long edge, if not set i as short.
  select_tile_size_i = select_tile_size_i == tile_long_edge
                           ? tile_long_edge
                           : std::min(select_tile_size_i, tile_short_edge);

  // Check if j is long edge, if not set j as short.
  select_tile_size_j = select_tile_size_j == tile_long_edge
                           ? tile_long_edge
                           : std::min(select_tile_size_j, tile_short_edge);

  // Here finally get proper long X short tile size.
  Dim3 input_dims_aligned = {
      input_dims[0],
      framework::CeilOrFloor<int, true>(input_dims[1], select_tile_size_i),
      framework::CeilOrFloor<int, true>(input_dims[2], select_tile_size_j),
  };

  int total_tiles_count =
      input_dims_aligned[0] * input_dims_aligned[1] * input_dims_aligned[2];

  // Suppose T can be replaced by system builtin types
  using ElemType = typename SystemElemType<sizeof(T)>::type;

  NarrowDims2TransposeDispatch<ElemType, 32, 2>::DoTranspose(
      d, select_tile_size_i, select_tile_size_j, total_tiles_count,
      reinterpret_cast<const ElemType*>(input), input_dims,
      reinterpret_cast<ElemType*>(output));
}

// This is for case that cannot do coalescing read and write.
// Or input is too small to split into tiles.
template <typename T, int pos0, int pos1, int pos2>
__global__ void TransposeSimpleKernel(int nthreads, const T* __restrict__ input,
                                      Dim3 input_dims, T* __restrict__ output) {
  Dim3 output_dims;
  output_dims[pos0] = input_dims[0];
  output_dims[pos1] = input_dims[1];
  output_dims[pos2] = input_dims[2];

463
  CUDA_KERNEL_LOOP(output_index, nthreads) {
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
    Index3 output_tensor_index = ConvertTensorIndex(output_index, output_dims);

    Index3 input_tensor_index;
    input_tensor_index[0] = output_tensor_index[pos0];
    input_tensor_index[1] = output_tensor_index[pos1];
    input_tensor_index[2] = output_tensor_index[pos2];

    int input_index = FlatTensorIndex(input_tensor_index, input_dims);

    output[output_index] = input[input_index];
  }
}

// Here suppose convert all tensor to dim3, so just change dim1 and 2.
template <typename T>
void SendSwapDim1And2InTranspose(const platform::CUDADeviceContext& d,
                                 const T* input, const Dim3& input_dims,
                                 T* output) {
  // Suppose tile size > 16
  static const int kMinTileSize = 16;
  static const int kMinNarrowTileSize = 96;

  bool large_tile =
      input_dims[1] >= kMinTileSize && input_dims[2] >= kMinTileSize;
  bool narrow_tile = input_dims[1] >= kMinNarrowTileSize ||
                     input_dims[2] >= kMinNarrowTileSize;
  if (large_tile) {
    // If input is large square, such as 32X32, use SM to do copy.
    // suppose 32 X 32 gives best performance, and 8 warp in block.
    constexpr int kTileSize = 32;
    constexpr int kNumThreads = 256;

    Dim3 input_dims_aligned = {
        input_dims[0],
        framework::CeilOrFloor<int, true>(input_dims[1], kTileSize),
        framework::CeilOrFloor<int, true>(input_dims[2], kTileSize),
    };

    int total_tiles_count =
        input_dims_aligned[0] * input_dims_aligned[1] * input_dims_aligned[2];

    TilingSwapDim1And2<
        T, kNumThreads, kTileSize,
        kTileSize><<<total_tiles_count, kNumThreads, 0, d.stream()>>>(
        input, input_dims, output);

  } else if (narrow_tile) {
    // If input shape is like Rect, such as 2X100, use Narrow tile size.
    // It makes things complicated, because need to find a tile can coverr
    // input and also reach best coalescing.
    SwapDim1And2InNarrow<T>(d, input, input_dims, output, kMinTileSize);
  } else {
    // If input shape is small, such as 8X8, just do simple copy
    int total_elements = input_dims[0] * input_dims[1] * input_dims[2];
    auto config = GetGpuLaunchConfig1D(d, total_elements);
    TransposeSimpleKernel<T, 0, 2, 1><<<
        config.block_per_grid.x, config.thread_per_block.x, 0, d.stream()>>>(
        total_elements, input, input_dims, output);
  }
}

template <typename T>
struct SwapDim1And2InTranspose {
  typedef platform::CUDADeviceContext Device;
  void operator()(const Device& d, const T* in,
                  const std::vector<int>& combined_dims, T* out) {
    Dim3 input_dims = {static_cast<int>(combined_dims[0]),
                       static_cast<int>(combined_dims[1]),
                       static_cast<int>(combined_dims[2])};
    SendSwapDim1And2InTranspose<T>(d, in, input_dims, out);
  }
};

template <typename T>
struct SwapDim0And2InTranspose {
  typedef platform::CUDADeviceContext Device;
  void operator()(const Device& d, const T* in,
                  const std::vector<int>& combined_dims, T* out) {
    Dim3 input_dims = {static_cast<int>(combined_dims[0]),
                       static_cast<int>(combined_dims[1]),
                       static_cast<int>(combined_dims[2])};

    size_t total_size = combined_dims[0] * combined_dims[1] * combined_dims[2];
    auto config = GetGpuLaunchConfig1D(d, total_size);

    TransposeSimpleKernel<T, 2, 1, 0><<<
        config.block_per_grid.x, config.thread_per_block.x, 0, d.stream()>>>(
        total_size, in, input_dims, out);
  }
};

// This function is to combine dimension. fox example:
// (0, 1, 3, 2) --> (0, 2, 1)
inline void CombineTransposeDim3(const framework::DDim& shape,
                                 const std::vector<int>& perm,
                                 std::vector<int>* new_perm,
                                 framework::DDim* new_dims) {
  PADDLE_ENFORCE_EQ(shape.size(), perm.size(),
                    platform::errors::InvalidArgument(
                        " shape should have the save dim with perm, but"
                        " received shape size is:%d, perm size is:%d.",
                        shape.size(), perm.size()));

  std::vector<int> dim_vec;
  if (shape.size() == 1) {
    // If input dimension is already 1, no need to combine dim.
    new_perm->resize(1);
    (*new_perm)[0] = perm[0];
    dim_vec.push_back(shape[0]);
    *new_dims = framework::make_ddim(dim_vec);
    return;
  }
  std::vector<int> new_dim_pos(shape.size(), -1);
  std::vector<int> combined_dims(shape.size(), 0);
  int cur_head = perm[0];
  new_dim_pos[cur_head] = 0;
  combined_dims[0] = shape[cur_head];
  int dim_idx = 0;
  for (int perm_idx = 1; perm_idx < shape.size(); ++perm_idx) {
    // combine consecutive dimensions.
    if (cur_head + 1 == perm[perm_idx]) {
      cur_head = perm[perm_idx];
      combined_dims[dim_idx] *= shape[cur_head];
    } else {
      // Else start a new dimension.
      cur_head = perm[perm_idx];
      dim_idx++;
      new_dim_pos[cur_head] = dim_idx;
      combined_dims[dim_idx] = shape[cur_head];
    }
  }

  new_perm->resize(dim_idx + 1);

  dim_idx = 0;
  for (int i = 0; i < new_dim_pos.size(); ++i) {
    if (new_dim_pos[i] >= 0) {
      int new_perm_idx = new_dim_pos[i];
      (*new_perm)[dim_idx] = new_perm_idx;
      dim_vec.push_back(combined_dims[new_perm_idx]);
      dim_idx++;
    }
  }

  *new_dims = framework::make_ddim(dim_vec);
}

template <typename T>
struct TransposeSimple {
  static bool run(const platform::CUDADeviceContext& ctx, const Tensor& in,
                  const std::vector<int32_t> perm, Tensor* out) {
    // First reduce the dimensions of the input tensor if possible.
    std::vector<int> new_perm;
    framework::DDim new_dims;
    CombineTransposeDim3(in.dims(), perm, &new_perm, &new_dims);

    // Only use tile copy GPU kernel when dimension is 2 or 3.
    int dims = new_dims.size();
    std::vector<int> new_dim_vec = framework::vectorize<int>(new_dims);
    if (dims < 2 || dims > 3) return false;
    auto in_data = in.data<T>();
    auto out_data = out->data<T>();
    // In most cases, dim will not greater than 3 after combine.
    switch (dims) {
      case 2:
        if (new_perm[0] == 1 && new_perm[1] == 0) {
          // Add the first dimension size as 1.
          new_dim_vec.insert(new_dim_vec.begin(), 1);
          SwapDim1And2InTranspose<T>()(ctx, in_data, new_dim_vec, out_data);
          return true;
        }
        break;
      case 3:
        // In this case, suppose we can do coalescing read and write in tile.
        if (new_perm == std::vector<int>({0, 2, 1})) {
          SwapDim1And2InTranspose<T>()(ctx, in_data, new_dim_vec, out_data);
          return true;
        } else if (new_perm == std::vector<int>({2, 1, 0})) {
          // Maybe can optimize later, find a way to do coalescing memory copy.
          // But I think it depends on the data size. If span is not large,
          // maybe
          // can do coalescing.
          SwapDim0And2InTranspose<T>()(ctx, in_data, new_dim_vec, out_data);
          return true;
        } else {
          return false;
        }
        break;
      default:
        return false;
    }
    return false;
  }
};

template <typename DeviceContext, typename T>
class TransposeGPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
663 664 665 666 667 668 669 670 671 672
    auto* x = context.InputVar("X");
    auto* out = context.OutputVar("Out");

    const framework::Tensor* x_tensor =
        GetLoDTensorOrSelectedRowsValueFromVar(*x);
    framework::Tensor* out_tensor =
        GetMutableLoDTensorOrSelectedRowsValueFromVar(out);

    out_tensor->mutable_data<T>(context.GetPlace());
    if (out_tensor->numel() == 0) {
673 674
      return;
    }
675 676 677 678

    std::vector<int> axis = context.Attr<std::vector<int>>("axis");
    int ndims = axis.size();
    const auto& dev_ctx = context.template device_context<DeviceContext>();
679
    auto ret = TransposeSimple<T>::run(dev_ctx, *x_tensor, axis, out_tensor);
680
    if (!ret) {
681 682
      TransCompute<DeviceContext, T>(ndims, dev_ctx, *x_tensor, out_tensor,
                                     axis);
683 684 685 686 687 688 689
    }
  }
};
template <typename DeviceContext, typename T>
class TransposeGradGPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
690 691 692 693 694 695 696 697 698 699 700 701 702
    auto* out_grad = context.InputVar(framework::GradVarName("Out"));
    auto* x_grad = context.OutputVar(framework::GradVarName("X"));
    if (!x_grad) {
      return;
    }

    const framework::Tensor* out_grad_tensor =
        GetLoDTensorOrSelectedRowsValueFromVar(*out_grad);
    framework::Tensor* x_grad_tensor =
        GetMutableLoDTensorOrSelectedRowsValueFromVar(x_grad);

    x_grad_tensor->mutable_data<T>(context.GetPlace());
    if (x_grad_tensor->numel() == 0) {
703 704
      return;
    }
705 706 707 708 709 710 711 712 713
    std::vector<int> axis = context.Attr<std::vector<int>>("axis");
    std::vector<int> reversed_axis(axis);

    for (size_t i = 0; i < axis.size(); i++) {
      reversed_axis[axis[i]] = i;
    }

    int ndims = axis.size();
    const auto& dev_ctx = context.template device_context<DeviceContext>();
714 715
    auto ret = TransposeSimple<T>::run(dev_ctx, *out_grad_tensor, reversed_axis,
                                       x_grad_tensor);
716
    if (!ret) {
717 718
      TransCompute<DeviceContext, T>(ndims, dev_ctx, *out_grad_tensor,
                                     x_grad_tensor, reversed_axis);
719 720 721 722 723 724 725 726 727 728 729 730 731 732
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

REGISTER_OP_CUDA_KERNEL(
    transpose,
    ops::TransposeGPUKernel<paddle::platform::CUDADeviceContext, float>,
    ops::TransposeGPUKernel<paddle::platform::CUDADeviceContext, double>,
C
chentianyu03 已提交
733
    ops::TransposeGPUKernel<paddle::platform::CUDADeviceContext, plat::float16>,
734
    ops::TransposeGPUKernel<paddle::platform::CUDADeviceContext,
C
chentianyu03 已提交
735 736 737
                            paddle::platform::complex64>,
    ops::TransposeGPUKernel<paddle::platform::CUDADeviceContext,
                            paddle::platform::complex128>);
738 739 740 741 742
REGISTER_OP_CUDA_KERNEL(
    transpose_grad,
    ops::TransposeGradGPUKernel<paddle::platform::CUDADeviceContext, float>,
    ops::TransposeGradGPUKernel<paddle::platform::CUDADeviceContext, double>,
    ops::TransposeGradGPUKernel<paddle::platform::CUDADeviceContext,
C
chentianyu03 已提交
743 744 745 746 747
                                plat::float16>,
    ops::TransposeGradGPUKernel<paddle::platform::CUDADeviceContext,
                                paddle::platform::complex64>,
    ops::TransposeGradGPUKernel<paddle::platform::CUDADeviceContext,
                                paddle::platform::complex128>);
748 749 750 751 752 753 754

REGISTER_OP_CUDA_KERNEL(
    transpose2,
    ops::TransposeGPUKernel<paddle::platform::CUDADeviceContext, int32_t>,
    ops::TransposeGPUKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::TransposeGPUKernel<paddle::platform::CUDADeviceContext, float>,
    ops::TransposeGPUKernel<paddle::platform::CUDADeviceContext, double>,
C
chentianyu03 已提交
755
    ops::TransposeGPUKernel<paddle::platform::CUDADeviceContext, plat::float16>,
756
    ops::TransposeGPUKernel<paddle::platform::CUDADeviceContext,
C
chentianyu03 已提交
757 758 759
                            paddle::platform::complex64>,
    ops::TransposeGPUKernel<paddle::platform::CUDADeviceContext,
                            paddle::platform::complex128>);
760 761 762 763 764 765 766
REGISTER_OP_CUDA_KERNEL(
    transpose2_grad,
    ops::TransposeGradGPUKernel<paddle::platform::CUDADeviceContext, int32_t>,
    ops::TransposeGradGPUKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::TransposeGradGPUKernel<paddle::platform::CUDADeviceContext, float>,
    ops::TransposeGradGPUKernel<paddle::platform::CUDADeviceContext, double>,
    ops::TransposeGradGPUKernel<paddle::platform::CUDADeviceContext,
C
chentianyu03 已提交
767 768 769 770 771
                                plat::float16>,
    ops::TransposeGradGPUKernel<paddle::platform::CUDADeviceContext,
                                paddle::platform::complex64>,
    ops::TransposeGradGPUKernel<paddle::platform::CUDADeviceContext,
                                paddle::platform::complex128>);