conv_transpose_op.cc 17.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_transpose_op.h"
S
Siddharth Goyal 已提交
16 17
#include <string>
#include <vector>
C
chengduoZH 已提交
18

J
Jacek Czaja 已提交
19 20 21 22
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

C
chengduoZH 已提交
23 24 25
namespace paddle {
namespace operators {

C
chengduoZH 已提交
26
void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
27
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
28
                 "Input(Input) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
29
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
30
                 "Input(Filter) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
31
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
32
                 "Output(Output) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
33 34 35

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
36 37
  std::vector<int> output_size =
      ctx->Attrs().Get<std::vector<int>>("output_size");
C
chengduoZH 已提交
38 39
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
C
chengduoZH 已提交
40
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
Y
Yibing Liu 已提交
41
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
42

C
chengduoZH 已提交
43 44 45 46 47 48 49 50
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
                 "ConvTransposeOp intput should be 4-D or 5-D tensor.");
  PADDLE_ENFORCE_EQ(in_dims.size(), filter_dims.size(),
                    "ConvTransposeOp input dimension and filter dimension "
                    "should be the same.");
  PADDLE_ENFORCE(in_dims.size() - strides.size() == 2U,
                 "ConvTransposeOp input dimension and strides dimension should "
                 "be consistent.");
51 52 53 54
  if (output_size.size())
    PADDLE_ENFORCE_EQ(output_size.size(), strides.size(),
                      "ConvTransposeOp output_size dimension and strides "
                      "dimension should be the same.");
C
chengduoZH 已提交
55
  PADDLE_ENFORCE_EQ(paddings.size(), strides.size(),
C
chengduoZH 已提交
56
                    "ConvTransposeOp paddings dimension and strides "
C
chengduoZH 已提交
57
                    "dimension should be the same.");
C
chengduoZH 已提交
58 59 60
  PADDLE_ENFORCE_EQ(paddings.size(), dilations.size(),
                    "ConvTransposeOp paddings dimension and dilations "
                    "dimension should be the same.");
C
chengduoZH 已提交
61
  PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[0],
Y
Yibing Liu 已提交
62
                    "In ConvTransposeOp, The number of input channels should "
63
                    "be equal to the number of filter's channels.");
C
chengduoZH 已提交
64

Y
Yibing Liu 已提交
65
  std::vector<int64_t> output_shape({in_dims[0], filter_dims[1] * groups});
C
chengduoZH 已提交
66
  for (size_t i = 0; i < strides.size(); ++i) {
C
chengduoZH 已提交
67
    auto filter_extent = dilations[i] * (filter_dims[i + 2] - 1) + 1;
68 69 70 71 72 73 74 75 76 77 78
    auto infer_shape =
        (in_dims[i + 2] - 1) * strides[i] - 2 * paddings[i] + filter_extent;
    if (output_size.size()) {
      PADDLE_ENFORCE((output_size[i] >= infer_shape &&
                      output_size[i] < infer_shape + strides[i]),
                     "ConvTransposeOp output_size should be "
                     "in appropriate range.");
      output_shape.push_back(output_size[i]);
    } else {
      output_shape.push_back(infer_shape);
    }
C
chengduoZH 已提交
79
  }
C
chengduoZH 已提交
80
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
C
chengduoZH 已提交
81 82
}

83 84
framework::OpKernelType ConvTransposeOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
J
Jacek Czaja 已提交
85 86 87
  framework::LibraryType library_{framework::LibraryType::kPlain};
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
88
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
C
chengduoZH 已提交
89
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
C
chengduoZH 已提交
90 91 92 93
#ifdef PADDLE_WITH_CUDA
  if (platform::is_gpu_place(ctx.GetPlace())) {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
J
Jacek Czaja 已提交
94 95 96
    if (use_cudnn) {
      library_ = framework::LibraryType::kCUDNN;
    }
C
chengduoZH 已提交
97 98
  }
#endif
J
Jacek Czaja 已提交
99 100 101 102 103
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
    layout_ = framework::DataLayout::kMKLDNN;
104
  }
J
Jacek Czaja 已提交
105
#endif
106 107 108 109 110 111

  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
      layout_, library_);
}

Y
Yu Yang 已提交
112
void Conv2DTransposeOpMaker::Make() {
J
Jacek Czaja 已提交
113 114 115 116
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
117 118 119 120
  AddInput(
      "Input",
      "(Tensor) The input tensor of convolution transpose operator. "
      "The format of input tensor is NCHW. Where N is batch size, C is the "
C
chengduoZH 已提交
121 122
      "number of input channels, H is the height of the feature, and "
      "W is the width of the feature.");
C
chengduoZH 已提交
123 124 125 126 127 128 129 130
  AddInput(
      "Filter",
      "(Tensor) The filter tensor of convolution transpose operator. "
      "The format of the filter tensor is MCHW, where M is the number of "
      "input feature channels, C is the number of "
      "output feature channels,"
      "H is the height of the filter, and W is the width of the filter. "
      "We enforce groups number == 1 in the convolution transpose scenario.");
C
chengduoZH 已提交
131
  AddOutput("Output",
C
chengduoZH 已提交
132
            "(Tensor) The output tensor of convolution transpose operator. "
C
chengduoZH 已提交
133
            "The format of output tensor is also NCHW.");
134 135 136 137
  AddAttr<std::vector<int>>("output_size",
                            "(vector<int> default: []), the "
                            "size of the output tensor")
      .SetDefault({});
Y
Yibing Liu 已提交
138 139 140 141
  AddAttr<int>("groups",
               "(int default:1), the groups number of the convolution "
               "transpose operator. ")
      .SetDefault(1);
C
chengduoZH 已提交
142 143 144 145 146
  AddAttr<std::vector<int>>("dilations",
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of convolution "
                            "transpose operator.")
      .SetDefault({1, 1});
C
chengduoZH 已提交
147 148
  AddAttr<std::vector<int>>(
      "strides",
C
chengduoZH 已提交
149
      "(vector<int> default:{1, 1}), the strides(h_stride, w_stride) of "
150
      "convolution transpose operator.")
C
chengduoZH 已提交
151
      .SetDefault({1, 1});
C
chengduoZH 已提交
152 153
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
154
      "(vector<int> default:{0, 0}), the paddings(h_pad, w_pad) of convolution "
C
chengduoZH 已提交
155
      "transpose operator.")
C
chengduoZH 已提交
156
      .SetDefault({0, 0});
157 158 159 160
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
J
Jacek Czaja 已提交
161 162 163 164 165
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Used in cudnn kernel only. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardward. This size should be carefully setted.")
      .SetDefault(4096);
C
chengduoZH 已提交
181
  AddComment(R"DOC(
C
chengduoZH 已提交
182 183
Convolution2D Transpose Operator.

C
chengduoZH 已提交
184
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
185
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
186
parameters is checked in the infer-shape.
C
chengduoZH 已提交
187 188 189 190 191 192 193
Input(Input) and output(Output) are in NCHW format. Where N is batchsize, C is the
number of channels, H is the height of the feature, and W is the width of the feature.
Filter(Input) is in MCHW format. Where M is the number of input feature channels,
C is the number of output feature channels, H is the height of the filter,
and W is the width of the filter.
Parameters(strides, paddings) are two elements. These two elements represent height
and width, respectively.
C
chengduoZH 已提交
194
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
195

Y
update  
yi.wu 已提交
196
For an example:
C
chengduoZH 已提交
197
  Input:
C
chengduoZH 已提交
198 199
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, H_f, W_f)$
C
chengduoZH 已提交
200
  Output:
C
chengduoZH 已提交
201 202 203
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
  $$
204 205
       H_{out} = (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\
       W_{out} = (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
C
chengduoZH 已提交
206
  $$
C
chengduoZH 已提交
207 208 209
)DOC");
}

Y
Yu Yang 已提交
210
void Conv3DTransposeOpMaker::Make() {
C
chengduoZH 已提交
211 212 213 214 215 216
  AddInput("Input",
           "(Tensor) The input tensor of convolution transpose operator."
           "The format of input tensor is NCDHW. Where N is batch size, C is "
           "the number of channels, D is the depth of the feature, H is the "
           "height of the feature, and "
           "W is the width of the feature.");
C
chengduoZH 已提交
217 218
  AddInput("Filter",
           "(Tensor) The filter tensor of convolution transpose operator."
C
chengduoZH 已提交
219 220 221
           "The format of the filter tensor is MCDHW, where M is the number of "
           "input feature channels, C is the number of "
           "output feature channels, D "
C
chengduoZH 已提交
222 223
           "is the depth of the filter, H is the height of the filter, and "
           "W is the width of the filter."
C
chengduoZH 已提交
224
           "We enforce groups number == 1 and padding == 0 in "
C
chengduoZH 已提交
225
           "the convolution3d transpose scenario.");
C
chengduoZH 已提交
226 227 228 229
  AddOutput("Output",
            "(Tensor) The output tensor of convolution transpose operator."
            "The format of output tensor is also NCDHW."
            "Where N is batch size, C is "
C
chengduoZH 已提交
230 231
            "the number of channels, D is the depth of the feature, H is the "
            "height of the feature, and W is the width of the feature.");
232 233 234 235
  AddAttr<std::vector<int>>("output_size",
                            "(vector<int> default: []), the "
                            "size of the output tensor")
      .SetDefault({});
C
chengduoZH 已提交
236 237 238 239 240 241
  AddAttr<std::vector<int>>(
      "dilations",
      "(vector<int> default:{1, 1, 1}), the "
      "dilations(d_dilation,h_dilation, w_dilation) of convolution "
      "transpose operator.")
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
242
  AddAttr<std::vector<int>>("strides",
C
chengduoZH 已提交
243
                            "(vector<int> default:{1, 1, 1}), the "
244
                            "strides{d_stride, h_stride, w_stride} of "
C
chengduoZH 已提交
245
                            "convolution transpose operator.")
C
chengduoZH 已提交
246
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
247
  AddAttr<std::vector<int>>("paddings",
C
chengduoZH 已提交
248
                            "(vector<int> default:{0, 0, 0}), paddings(d_pad, "
C
chengduoZH 已提交
249
                            "h_pad, w_pad) of convolution transpose operator.")
C
chengduoZH 已提交
250
      .SetDefault({0, 0, 0});
251 252 253 254
  AddAttr<int>("groups",
               "(int default:1), the groups number of the convolution3d "
               "transpose operator. ")
      .SetDefault(1);
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Used in cudnn kernel only. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardward. This size should be carefully setted.")
      .SetDefault(4096);
C
chengduoZH 已提交
274
  AddComment(R"DOC(
C
chengduoZH 已提交
275 276
Convolution3D Transpose Operator.

C
chengduoZH 已提交
277
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
278
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
279
parameters is checked in the infer-shape.
C
chengduoZH 已提交
280 281 282 283 284 285 286 287
Input(Input) and output(Output) are in NCDHW format. Where N is batch size, C is the
number of channels, D is the depth of the feature, H is the height of the feature,
and W is the width of the feature.
Filter(Input) is in MCDHW format. Where M is the number of input feature channels,
C is the number of output feature channels, D is the depth of the filter,H is the
height of the filter, and W is the width of the filter.
Parameters(strides, paddings) are three elements. These three elements represent
depth, height and width, respectively.
C
chengduoZH 已提交
288
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
289

290
Example:
C
chengduoZH 已提交
291
  Input:
C
chengduoZH 已提交
292 293
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, D_f, H_f, W_f)$
C
chengduoZH 已提交
294
  Output:
C
chengduoZH 已提交
295 296 297
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
298 299 300
       D_{out} = (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\
       H_{out} = (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\
       W_{out} = (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
C
chengduoZH 已提交
301
  $$
C
chengduoZH 已提交
302 303 304
)DOC");
}

C
chengduoZH 已提交
305
void ConvTransposeOpGrad::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
306 307 308 309 310 311 312 313 314 315
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

316 317 318
framework::OpKernelType ConvTransposeOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
319
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
C
chengduoZH 已提交
320 321 322 323 324 325
#ifdef PADDLE_WITH_CUDA
  if (platform::is_gpu_place(ctx.GetPlace())) {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
326 327 328 329 330 331 332 333 334 335 336 337 338 339
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
      layout_, library_);
}

C
chengduoZH 已提交
340 341 342 343
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduoZH 已提交
344

345
// conv2d_transpose
Y
Yang Yang 已提交
346 347
REGISTER_OPERATOR(conv2d_transpose, ops::ConvTransposeOp,
                  ops::Conv2DTransposeOpMaker,
348 349
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(conv2d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
350 351

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
352
    conv2d_transpose,
Q
QI JUN 已提交
353 354
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
355
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
356
    conv2d_transpose_grad,
Q
QI JUN 已提交
357 358 359
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);
C
chengduoZH 已提交
360

361
// conv3d_transpose
Y
Yang Yang 已提交
362 363
REGISTER_OPERATOR(conv3d_transpose, ops::ConvTransposeOp,
                  ops::Conv3DTransposeOpMaker,
364 365
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(conv3d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
366 367

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
368
    conv3d_transpose,
Q
QI JUN 已提交
369 370
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
371
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
372
    conv3d_transpose_grad,
Q
QI JUN 已提交
373 374 375
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391

// depthwise conv2d_transpose
REGISTER_OPERATOR(depthwise_conv2d_transpose, ops::ConvTransposeOp,
                  ops::Conv2DTransposeOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(depthwise_conv2d_transpose_grad, ops::ConvTransposeOpGrad);

REGISTER_OP_CPU_KERNEL(
    depthwise_conv2d_transpose,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    depthwise_conv2d_transpose_grad,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);