convert_to_mixed_precision.cc 32.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/analysis/passes/convert_to_mixed_precision.h"

W
Wilber 已提交
17 18
#include <algorithm>
#include <iterator>
19
#include <string>
W
Wilber 已提交
20
#include <unordered_map>
21
#include <unordered_set>
22
#include <utility>
23 24 25

#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/executor.h"
26
#include "paddle/fluid/framework/framework.pb.h"
27 28 29
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
30
#include "paddle/fluid/framework/ir/node.h"
31 32
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
33
#include "paddle/fluid/framework/var_desc.h"
34 35 36 37 38 39 40 41 42 43 44 45 46
#include "paddle/fluid/inference/io.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/common/layout.h"
#include "paddle/phi/core/tensor_meta.h"

using namespace paddle::framework;  // NOLINT

namespace paddle {
namespace inference {
namespace analysis {

namespace {

W
Wilber 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
inline std::string SerializeParams(framework::Scope* scope,
                                   const std::vector<std::string>& params) {
  std::ostringstream os;
  phi::CPUContext ctx;
  for (const auto& param : params) {
    VLOG(3) << "Serialize param: " << param;
    PADDLE_ENFORCE_NOT_NULL(
        scope->FindVar(param),
        platform::errors::NotFound("Block should already have a '%s' variable",
                                   param));
    auto* tensor = scope->FindVar(param)->GetMutable<framework::LoDTensor>();
    framework::SerializeToStream(os, *tensor, ctx);
  }
  return os.str();
}

inline void StrToBinary(const std::string& path, const std::string& str) {
  std::ofstream file(path.c_str(), std::ios::binary);
  file.write(str.c_str(), str.size());
  file.close();
}
68

W
Wilber 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
inline bool NodeVarHasDtype(framework::ir::Node* node) {
  if (node->IsCtrlVar()) return false;

  if (node->IsVar() &&
      (node->Var()->GetType() ==
           paddle::framework::proto::VarType::SELECTED_ROWS ||
       node->Var()->GetType() ==
           paddle::framework::proto::VarType::LOD_TENSOR ||
       node->Var()->GetType() ==
           paddle::framework::proto::VarType::LOD_TENSOR_ARRAY ||
       node->Var()->GetType() == paddle::framework::proto::VarType::STRINGS ||
       node->Var()->GetType() == paddle::framework::proto::VarType::VOCAB)) {
    return true;
  }

  return false;
}
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142

// Return Node* which first appers in block.
framework::ir::Node* GetRealNode(
    const std::vector<framework::ir::Graph*>& graphes,
    int block_idx,
    framework::ir::Node* node,
    std::unordered_map<std::string,
                       std::pair<framework::proto::VarType::Type, int>>*
        vars_in_multi_block_map) {
  if (vars_in_multi_block_map->count(node->Name())) {
    int var_origin_block_id = vars_in_multi_block_map->at(node->Name()).second;
    if (block_idx != var_origin_block_id) {
      auto graph = graphes[var_origin_block_id];
      for (auto nd : graph->Nodes()) {
        if (nd->Name() == node->Name()) {
          return nd;
        }
      }
    }
  }

  return node;
}

inline bool VarIsMultiOpsOut(
    const std::vector<framework::ir::Graph*>& graphes,
    int block_idx,
    framework::ir::Node* op_node,
    std::unordered_map<std::string,
                       std::pair<framework::proto::VarType::Type, int>>*
        vars_in_multi_block_map,
    const std::vector<std::set<std::string>>& vars_appear_multi_in_one_block) {
  CHECK_EQ(op_node->IsOp(), true);
  for (auto* out : op_node->outputs) {
    if (out->IsCtrlVar()) continue;
    auto* real_node =
        GetRealNode(graphes, block_idx, out, vars_in_multi_block_map);
    if (!real_node->Var()->Persistable() &&
        vars_appear_multi_in_one_block[block_idx].count(out->Name())) {
      VLOG(2) << out->Name()
              << " is multi op's out, so we skip convert to fp16";
      return true;
    }
  }
  return false;
}

void SaveMixedModel(
    framework::ir::Graph* graph,
    framework::Scope* scope,
    framework::ProgramDesc* mixed_program_desc,
    const std::string& mixed_model_file,
    const std::string& mixed_params_file,
    phi::DataType mixed_precision,
    const std::unordered_map<std::string,
                             std::pair<framework::proto::VarType::Type, int>>&
        vars_in_multi_block_map) {
W
Wilber 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
  paddle::CPUPlace place;
  auto parameters = scope->LocalVarNames();
  std::sort(parameters.begin(), parameters.end());

  std::unordered_set<std::string> weights_should_be_fp32;
  for (auto* node : graph->Nodes()) {
    if (!(node->IsVar() && !node->IsCtrlVar())) continue;
    if (NodeVarHasDtype(node)) {
      if (node->Var()->Persistable() &&
          node->Var()->GetDataType() ==
              paddle::framework::proto::VarType::FP32) {
        VLOG(2) << "weights keep to fp32: " << node->Name();
        weights_should_be_fp32.insert(node->Name());
      }
    }
  }

  for (const auto& param_name : parameters) {
    auto* var = scope->FindLocalVar(param_name);
    if (var->IsType<framework::LoDTensor>() ||
        var->IsType<framework::Tensor>()) {
      auto* t = var->GetMutable<framework::LoDTensor>();
      framework::Tensor mixed_tensor;
      mixed_tensor.Resize(t->dims());
      auto* data = t->mutable_data<float>(platform::CPUPlace());

      if (mixed_precision == phi::DataType::FLOAT16 &&
          !weights_should_be_fp32.count(param_name)) {
        mixed_tensor.set_type(paddle::experimental::DataType::FLOAT16);
        auto* mixed_data =
            mixed_tensor.mutable_data<float16>(platform::CPUPlace());
        for (int i = 0; i < t->numel(); i++) {
          mixed_data[i] = static_cast<float16>(data[i]);
        }
        t->clear();
        paddle::framework::TensorCopySync(mixed_tensor, place, t);
      } else if (mixed_precision == phi::DataType::BFLOAT16 &&
                 !weights_should_be_fp32.count(param_name)) {
        mixed_tensor.set_type(paddle::experimental::DataType::BFLOAT16);
        auto* mixed_data =
            mixed_tensor.mutable_data<bfloat16>(platform::CPUPlace());
        for (int i = 0; i < t->numel(); i++) {
          mixed_data[i] = static_cast<bfloat16>(data[i]);
        }
        t->clear();
        paddle::framework::TensorCopySync(mixed_tensor, place, t);
      }
    }
  }

  StrToBinary(mixed_model_file,
              mixed_program_desc->Proto()->SerializeAsString());
  StrToBinary(mixed_params_file, SerializeParams(scope, parameters));
}

bool PhiKernelSupportPrecision(
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
    const std::string& op_type,
    phi::Backend backend,
    phi::DataType data_type,
    phi::DataLayout layout = phi::DataLayout::ALL_LAYOUT) {
  auto kernels = phi::KernelFactory::Instance().kernels();
  if (kernels.find(op_type) == kernels.end()) {
    return false;
  }
  phi::KernelKey kernel_key(backend, layout, data_type);
  return phi::KernelFactory::Instance().HasKernel(op_type, kernel_key);
}

bool GpuKernelSupportPrecision(
    const std::string& op_type,
    phi::DataType data_type,
    phi::DataLayout layout = phi::DataLayout::ALL_LAYOUT) {
W
Wilber 已提交
215 216 217 218 219 220 221 222 223 224 225
  auto phi_op_type = phi::TransToPhiKernelName(op_type);
  bool res = PhiKernelSupportPrecision(
      phi_op_type, phi::Backend::GPU, data_type, layout);
  res |= PhiKernelSupportPrecision(
      phi_op_type, phi::Backend::GPUDNN, data_type, layout);

  if (!res) {
    auto& all_kernels = OperatorWithKernel::AllOpKernels();
    auto it = all_kernels.find(op_type);
    if (it != all_kernels.end()) {
      for (auto& kern_pair : it->second) {
226 227
        if (platform::is_gpu_place(kern_pair.first.place_) &&
            kern_pair.first.data_type_ == framework::proto::VarType::FP16) {
W
Wilber 已提交
228 229 230 231 232
          res = true;
        }
      }
    }
  }
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
  return res;
}

// Just process special cases.
bool OutShouldNotConvert(ir::Node* var_node) {
  auto op_node = var_node->inputs[0];
  auto* op_desc = op_node->Op();

  // batch_norm's input and output (variance and mean) are the same.
  if (op_desc->Type() == "batch_norm") {
    auto vecs = op_desc->Output("MeanOut");
    if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("VarianceOut");
    if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("SavedMean");
    if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("SavedVariance");
    if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
      return true;
    }
  }

  return false;
}
263 264 265 266 267 268 269 270 271 272 273 274
void ProcessOutputNode(
    const std::vector<framework::ir::Graph*>& graphes,
    int block_idx,
    ir::Node* var_node,
    framework::proto::VarType::Type to_type,
    std::unordered_map<std::string,
                       std::pair<framework::proto::VarType::Type, int>>*
        vars_in_multi_block_map) {
  auto* real_node =
      GetRealNode(graphes, block_idx, var_node, vars_in_multi_block_map);
  if (!NodeVarHasDtype(real_node)) return;
  auto* out_var = real_node->Var();
W
Wilber 已提交
275 276 277
  if (out_var->GetDataType() == framework::proto::VarType::FP32) {
    if (OutShouldNotConvert(var_node)) return;
    out_var->SetDataType(to_type);
278
  }
W
Wilber 已提交
279 280
  VLOG(3) << " out_node name " << var_node->Name() << " data_type "
          << out_var->GetDataType();
281 282
}

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
// Just process special cases for weights conversion.
bool WeightsShouldNotConvert(ir::Node* var_node) {
  auto op_nodes = var_node->outputs;
  for (auto* op_node : op_nodes) {
    auto* op_desc = op_node->Op();
    // batch_norm op's bias, mean, scale and variance just be float32, so we can
    // not convert the dtype.
    if (op_desc->Type() == "batch_norm") {
      auto vecs = op_desc->Input("Bias");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }
      vecs = op_desc->Input("Mean");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }
      vecs = op_desc->Input("Scale");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }
      vecs = op_desc->Input("Variance");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
    } else if (op_desc->Type() == "fused_multi_transformer") {
      auto vecs = op_desc->Input("LnScale");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }

      vecs = op_desc->Input("LnBias");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }

      vecs = op_desc->Input("FFNLnScale");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }

      vecs = op_desc->Input("FFNLnBias");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }
327 328 329 330 331
    }
  }

  return false;
}
W
Wilber 已提交
332 333 334
inline bool IsFloatVarType(framework::proto::VarType::Type type) {
  if (type == framework::proto::VarType::FP16 ||
      type == framework::proto::VarType::FP32 ||
335
      type == framework::proto::VarType::BF16)
W
Wilber 已提交
336 337 338
    return true;
  return false;
}
W
Wilber 已提交
339 340
void ProcessInputNode(
    bool support_precision,
341
    std::vector<framework::ir::Graph*> graphes,
W
Wilber 已提交
342 343 344 345 346 347
    ir::Node* in_node,
    ir::Node* op_node,
    int* suffix,
    framework::BlockDesc* block_desc,
    std::unordered_map<framework::ir::Node*, framework::ir::Node*>* cast_map,
    framework::proto::VarType::Type to_type,
348 349 350
    int block_idx,
    std::unordered_map<std::string,
                       std::pair<framework::proto::VarType::Type, int>>*
W
Wilber 已提交
351
        vars_in_multi_block_map) {
352 353 354 355 356 357
  auto* real_node =
      GetRealNode(graphes, block_idx, in_node, vars_in_multi_block_map);
  if (!NodeVarHasDtype(real_node)) return;
  auto graph = graphes[block_idx];
  bool is_main_block = block_idx == 0;
  auto* in_var = real_node->Var();
W
Wilber 已提交
358
  auto in_var_type = in_var->GetDataType();
359 360 361 362
  bool is_in_multi_block = vars_in_multi_block_map->count(in_var->Name());

  if (!is_main_block && is_in_multi_block) {
    in_var_type = vars_in_multi_block_map->at(in_var->Name()).first;
W
Wilber 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
  }
  if (support_precision) {
    if (in_var->Persistable() &&
        in_var_type == framework::proto::VarType::FP32) {
      if (WeightsShouldNotConvert(in_node)) return;
      in_var->SetDataType(to_type);
    } else if (!in_var->Persistable() && IsFloatVarType(in_var_type) &&
               in_var_type != to_type) {
      AddCastOp(graph,
                in_node,
                op_node,
                in_var_type,
                to_type,
                suffix,
                block_desc,
                cast_map);
    }
  } else {
    if (!in_var->Persistable() && IsFloatVarType(in_var_type) &&
        in_var_type != to_type) {
      AddCastOp(graph,
                in_node,
                op_node,
                in_var_type,
                to_type,
                suffix,
                block_desc,
                cast_map);
    }
  }
393
  VLOG(3) << " in_node name " << in_var->Name() << " data_type " << in_var_type;
W
Wilber 已提交
394
}
W
Wilber 已提交
395

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
void ConvertAllFp64ToFp32(framework::ir::Graph* graph) {
  auto op_nodes = framework::ir::TopologySortOperations(*graph);
  for (auto* op_node : op_nodes) {
    if (!op_node->IsOp()) continue;
    auto op_type = op_node->Op()->Type();
    if (op_type == "feed" || op_type == "fetch") continue;

    if (op_type == "fill_constant") {
      if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("dtype")) ==
          static_cast<int>(framework::proto::VarType::FP64))
        op_node->Op()->SetAttr(
            "dtype", static_cast<int>(framework::proto::VarType::FP32));
    } else if (op_type == "assign_value") {
      if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("dtype")) ==
          static_cast<int>(framework::proto::VarType::FP64))
        op_node->Op()->SetAttr(
            "dtype", static_cast<int>(framework::proto::VarType::FP32));
    } else if (op_type == "eye") {
      if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("dtype")) ==
          static_cast<int>(framework::proto::VarType::FP64))
        op_node->Op()->SetAttr(
            "dtype", static_cast<int>(framework::proto::VarType::FP32));
    } else if (op_type == "fill_any_like") {
      if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("dtype")) ==
          static_cast<int>(framework::proto::VarType::FP64))
        op_node->Op()->SetAttr(
            "dtype", static_cast<int>(framework::proto::VarType::FP32));
    } else if (op_type == "cast") {
      if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("in_dtype")) ==
          static_cast<int>(framework::proto::VarType::FP64))
        op_node->Op()->SetAttr(
            "in_dtype", static_cast<int>(framework::proto::VarType::FP32));
      if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("out_dtype")) ==
          static_cast<int>(framework::proto::VarType::FP64))
        op_node->Op()->SetAttr(
            "out_dtype", static_cast<int>(framework::proto::VarType::FP32));
    }

    auto inputs = op_node->inputs;
    for (auto* in_node : inputs) {
      if (in_node->IsCtrlVar()) continue;
      auto* in_var = in_node->Var();
      if (!in_var->Persistable() &&
          in_var->GetDataType() == framework::proto::VarType::FP64) {
        in_var->SetDataType(framework::proto::VarType::FP32);
      }
    }
  }
}

// Handle special ops which contains dtype attribute. e.g., fill_constant,
// assign_value.
void HandleSpecialOps(framework::OpDesc* op_desc) {
  if (op_desc->Type() == "fill_constant") {
    if (PADDLE_GET_CONST(int, op_desc->GetAttr("dtype")) ==
        static_cast<int>(framework::proto::VarType::FP32))
      op_desc->SetAttr("dtype",
                       static_cast<int>(framework::proto::VarType::FP16));
  } else if (op_desc->Type() == "assign_value") {
    if (PADDLE_GET_CONST(int, op_desc->GetAttr("dtype")) ==
        static_cast<int>(framework::proto::VarType::FP32))
      op_desc->SetAttr("dtype",
                       static_cast<int>(framework::proto::VarType::FP16));
  } else if (op_desc->Type() == "eye") {
    if (PADDLE_GET_CONST(int, op_desc->GetAttr("dtype")) ==
        static_cast<int>(framework::proto::VarType::FP32))
      op_desc->SetAttr("dtype",
                       static_cast<int>(framework::proto::VarType::FP16));
  } else if (op_desc->Type() == "fill_any_like") {
    if (PADDLE_GET_CONST(int, op_desc->GetAttr("dtype")) ==
        static_cast<int>(framework::proto::VarType::FP32))
      op_desc->SetAttr("dtype",
                       static_cast<int>(framework::proto::VarType::FP16));
W
Wilber 已提交
469 470 471 472 473
  } else if (op_desc->Type() == "fill_constant_batch_size_like") {
    if (PADDLE_GET_CONST(int, op_desc->GetAttr("dtype")) ==
        static_cast<int>(framework::proto::VarType::FP32))
      op_desc->SetAttr("dtype",
                       static_cast<int>(framework::proto::VarType::FP16));
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
  }
}

// We modify op's input output precision, and we need to fix cast op in_dtype
// and out_dtype attribute.
void FixCastAttr(framework::ir::Graph* graph) {
  auto op_nodes = framework::ir::TopologySortOperations(*graph);
  for (auto* op_node : op_nodes) {
    if (!op_node->IsOp()) continue;
    auto op_type = op_node->Op()->Type();
    if (op_type != "cast") continue;

    auto input = op_node->inputs[0];
    auto output = op_node->outputs[0];
    op_node->Op()->SetAttr("in_dtype",
                           static_cast<int>(input->Var()->GetDataType()));
    op_node->Op()->SetAttr("out_dtype",
                           static_cast<int>(output->Var()->GetDataType()));
  }
}

W
Wilber 已提交
495 496
void FindVarsInMultiBlock(
    framework::ProgramDesc* program_desc,
497 498 499 500 501 502
    std::unordered_map<std::string,
                       std::pair<framework::proto::VarType::Type, int>>*
        vars_in_multi_block_map,
    std::vector<std::set<std::string>>* vars_appear_multi_in_one_block) {
  std::vector<std::set<std::string>> block_var_names_set(program_desc->Size());
  for (size_t i = 0; i < program_desc->Size(); ++i) {
W
Wilber 已提交
503 504
    for (auto op : program_desc->Block(i).AllOps()) {
      auto in_names = op->InputArgumentNames();
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
      block_var_names_set[i].insert(in_names.begin(), in_names.end());
      auto out_names = op->OutputArgumentNames();
      if (op->HasAttr("sub_block") == false) {
        for (auto& n : out_names) {
          if (block_var_names_set[i].count(n)) {
            (*vars_appear_multi_in_one_block)[i].insert(n);
          }
        }
      }
      block_var_names_set[i].insert(out_names.begin(), out_names.end());
    }
  }

  for (size_t i = 0; i < program_desc->Size() - 1; ++i) {
    for (size_t j = i + 1; j < program_desc->Size(); ++j) {
      std::set<std::string> vars_in_multi_block;
      std::set_intersection(
          block_var_names_set[i].begin(),
          block_var_names_set[i].end(),
          block_var_names_set[j].begin(),
          block_var_names_set[j].end(),
          std::inserter(vars_in_multi_block, vars_in_multi_block.begin()));

      for (auto name : vars_in_multi_block) {
        vars_in_multi_block_map->emplace(
            name, std::make_pair(framework::proto::VarType::FP32, i));
      }
532
    }
533 534
  }
}
W
Wilber 已提交
535

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
bool OpInOutHasTensorArray(
    std::vector<framework::ir::Graph*> graphes,
    int block_idx,
    framework::ir::Node* op_node,
    std::unordered_map<std::string,
                       std::pair<framework::proto::VarType::Type, int>>*
        vars_in_multi_block_map) {
  CHECK_EQ(op_node->IsOp(), true);
  for (auto in : op_node->inputs) {
    auto* real_node =
        GetRealNode(graphes, block_idx, in, vars_in_multi_block_map);
    if (!NodeVarHasDtype(real_node)) continue;
    if (real_node->Var()->GetType() ==
        framework::proto::VarType::LOD_TENSOR_ARRAY)
      return true;
W
Wilber 已提交
551 552
  }

553 554 555 556 557 558 559 560
  for (auto out : op_node->outputs) {
    auto* real_node =
        GetRealNode(graphes, block_idx, out, vars_in_multi_block_map);
    if (!NodeVarHasDtype(real_node)) continue;

    if (real_node->Var()->GetType() ==
        framework::proto::VarType::LOD_TENSOR_ARRAY)
      return true;
561
  }
562
  return false;
563 564
}

W
Wilber 已提交
565 566
void ConvertTensorDtype(
    framework::ProgramDesc* program_desc,
567
    std::vector<framework::ir::Graph*> graphes,
W
Wilber 已提交
568 569 570 571
    const std::unordered_set<std::string>& blacklist,
    bool keep_io_types,
    phi::Backend backend,
    phi::DataType tensor_dtype,
572 573 574 575 576 577
    int block_idx,
    std::unordered_map<std::string,
                       std::pair<framework::proto::VarType::Type, int>>*
        vars_in_multi_block_map,
    const std::vector<std::set<std::string>>& vars_appear_multi_in_one_block) {
  auto graph = graphes[block_idx];
578 579 580 581 582 583 584
  framework::proto::VarType::Type to_type;
  if (tensor_dtype == phi::DataType::FLOAT16) {
    to_type = framework::proto::VarType::FP16;
  } else if (tensor_dtype == phi::DataType::BFLOAT16) {
    to_type = framework::proto::VarType::BF16;
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
W
Wilber 已提交
585
        "mixed_precision currently not supported dtype %d, we now only "
586
        "support fp16 and bf16.",
587 588 589
        static_cast<int>(tensor_dtype)));
  }

W
Wilber 已提交
590 591 592
  auto* block_desc =
      framework::ir::TopologySortOperations(*graph)[0]->Op()->Block();

593 594 595 596
  int num_low_precision = 0;
  int suffix = 0;
  std::vector<framework::ir::Node*> output_nodes;
  std::unordered_map<framework::ir::Node*, framework::ir::Node*> cast_map;
597 598
  auto op_nodes = framework::ir::TopologySortOperations(*graph);
  for (auto* op_node : op_nodes) {
599 600
    if (!op_node->IsOp()) continue;
    auto op_type = op_node->Op()->Type();
W
Wilber 已提交
601 602
    VLOG(3) << "-------------------- op_type " << op_type << ", phi_type "
            << phi::TransToPhiKernelName(op_type);
603 604 605 606 607 608 609 610 611 612 613
    // 1. set input dtype.
    if (op_type == "feed") {
      auto feed_var = op_node->outputs[0]->Var();
      if (!keep_io_types &&
          feed_var->GetDataType() == framework::proto::VarType::FP32) {
        feed_var->SetDataType(to_type);
      }
    } else if (op_type == "fetch") {
      auto* fetch_var = op_node->inputs[0];
      output_nodes.push_back(fetch_var);
      continue;
614 615
    } else if (op_type == "cast") {
      continue;
616 617
    }

W
Wilber 已提交
618 619 620 621 622
    else if (op_node->Op()->HasAttr("sub_block")) {  // NOLINT
      // sub_block op's output dtype should be same as input dtype, if have the
      // same name.
      std::unordered_map<std::string, framework::ir::Node*> in_name_to_node;
      for (auto* in : op_node->inputs) {
623 624 625
        auto* real_node =
            GetRealNode(graphes, block_idx, in, vars_in_multi_block_map);
        if (NodeVarHasDtype(real_node)) {
W
Wilber 已提交
626 627 628 629 630
          in_name_to_node[in->Name()] = in;
        }
      }

      for (auto out : op_node->outputs) {
631 632 633
        auto* real_node =
            GetRealNode(graphes, block_idx, out, vars_in_multi_block_map);
        if (NodeVarHasDtype(real_node)) {
W
Wilber 已提交
634
          if (in_name_to_node.count(out->Name()))
635
            real_node->Var()->SetDataType(
W
Wilber 已提交
636 637 638 639 640 641 642
                in_name_to_node[out->Name()]->Var()->GetDataType());
        }
      }

      continue;
    }

643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
    // A strange case found in multi block.
    else if (op_type == "assign" &&  // NOLINT
             op_node->inputs[0]->Name() == op_node->outputs[0]->Name()) {
      VLOG(2) << " in out are same, continue";
      continue;
    }

    // Handle tensor array.
    else if (OpInOutHasTensorArray(  // NOLINT
                 graphes,
                 block_idx,
                 op_node,
                 vars_in_multi_block_map)) {
      VLOG(2) << "  in or out has tensor array, continue";
      continue;
    }

660 661 662 663
    // 2. if op support fp16/bf16 and not in blacklist.
    //      - cast weight to fp16/bf16.
    //      - add cast op if the input dtype is not fp16/bf16.
    //      - set output dtype.
664 665 666 667 668 669 670 671 672
    //
    // If a var(op's out var) appears multiple times in a block, we should not
    // convert to fp16.
    else if (blacklist.count(op_type) == 0 &&  // NOLINT
             !VarIsMultiOpsOut(graphes,
                               block_idx,
                               op_node,
                               vars_in_multi_block_map,
                               vars_appear_multi_in_one_block)) {
673
      bool support_precision =
W
Wilber 已提交
674
          OpSupportPrecision(op_type, backend, tensor_dtype, blacklist);
675
      VLOG(2) << " support low precision " << support_precision;
676

677
      if (support_precision) {
678
        HandleSpecialOps(op_node->Op());
679 680
        ++num_low_precision;
        auto inputs = op_node->inputs;
W
Wilber 已提交
681
        // Process inputs.
682
        for (auto* in_node : inputs) {
W
Wilber 已提交
683
          ProcessInputNode(true,
684
                           graphes,
W
Wilber 已提交
685 686 687 688 689 690
                           in_node,
                           op_node,
                           &suffix,
                           block_desc,
                           &cast_map,
                           to_type,
691
                           block_idx,
W
Wilber 已提交
692
                           vars_in_multi_block_map);
693
        }
W
Wilber 已提交
694
        // Process outputs.
695
        for (auto* out_node : op_node->outputs) {
696 697
          ProcessOutputNode(
              graphes, block_idx, out_node, to_type, vars_in_multi_block_map);
698 699 700 701
        }
      } else {
        auto inputs = op_node->inputs;
        for (auto* in_node : inputs) {
W
Wilber 已提交
702
          ProcessInputNode(false,
703
                           graphes,
W
Wilber 已提交
704 705 706 707 708 709
                           in_node,
                           op_node,
                           &suffix,
                           block_desc,
                           &cast_map,
                           framework::proto::VarType::FP32,
710
                           block_idx,
W
Wilber 已提交
711
                           vars_in_multi_block_map);
712 713 714 715 716 717 718
        }
      }
    }

    // 3. check op not support fp16/bf16 or in blacklist.
    //      - add cast op if the input dtype is not fp32.
    else {  // NOLINT
719 720
      auto ins = op_node->inputs;
      for (auto* in_node : ins) {
W
Wilber 已提交
721
        if (in_node->IsCtrlVar()) continue;
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
        auto* in_var = in_node->Var();
        if (in_var->GetDataType() == to_type) {
          AddCastOp(graph,
                    in_node,
                    op_node,
                    to_type,
                    framework::proto::VarType::FP32,
                    &suffix,
                    block_desc,
                    &cast_map);
        }
      }
    }
  }

W
Wilber 已提交
737 738
  // 4. if output_op's dtype is not compatible to output dtype, then just
  // insert cast.
739
  for (auto* node : output_nodes) {
W
Wilber 已提交
740
    if (node->IsCtrlVar()) continue;
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
    auto var = node->Var();
    if (keep_io_types && var->GetDataType() == to_type) {
      // fp16/bf16 -> fp32.
      AddCastOp(graph,
                node,
                node->outputs[0],
                to_type,
                framework::proto::VarType::FP32,
                &suffix,
                block_desc,
                &cast_map);
    } else if (!keep_io_types &&
               var->GetDataType() == framework::proto::VarType::FP32) {
      // fp32 -> fp16/bf16
      AddCastOp(graph,
                node,
                node->outputs[0],
                framework::proto::VarType::FP32,
                to_type,
                &suffix,
                block_desc,
                &cast_map);
    }
  }

766 767 768 769 770 771 772 773 774
  for (auto node : graph->Nodes()) {
    auto* real_node =
        GetRealNode(graphes, block_idx, node, vars_in_multi_block_map);
    if (!NodeVarHasDtype(real_node)) continue;

    if (vars_in_multi_block_map->count(real_node->Name()) &&
        vars_in_multi_block_map->at(real_node->Name()).second == block_idx) {
      vars_in_multi_block_map->at(real_node->Name()).first =
          real_node->Var()->GetDataType();
W
Wilber 已提交
775 776 777
    }
  }

778
  if (num_low_precision)
779 780
    LOG(INFO) << "---  detected " << num_low_precision
              << " low precision ops in " << block_idx << " subgraph";
781 782 783
}
}  // namespace

W
Wilber 已提交
784
bool OpSupportPrecision(const std::string& op_type,
785 786 787
                        phi::Backend backend,
                        phi::DataType precision,
                        const std::unordered_set<std::string>& blacklist) {
W
Wilber 已提交
788
  auto phi_op_type = phi::TransToPhiKernelName(op_type);
789
  bool support_precision = false;
W
Wilber 已提交
790
  if (blacklist.count(op_type) == 0) {
791
    if (backend == phi::Backend::GPU)
W
Wilber 已提交
792
      support_precision = GpuKernelSupportPrecision(op_type, precision);
793 794
    else
      support_precision =
W
Wilber 已提交
795
          PhiKernelSupportPrecision(phi_op_type, backend, precision);
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
  }
  return support_precision;
}

void AddCastOp(
    framework::ir::Graph* graph,
    framework::ir::Node* node,
    framework::ir::Node* next_op,
    framework::proto::VarType::Type from_type,
    framework::proto::VarType::Type to_type,
    int* suffix,
    framework::BlockDesc* block_desc,
    std::unordered_map<framework::ir::Node*, framework::ir::Node*>* map) {
  auto update_cast_desc = [&](framework::OpDesc& desc,
                              const std::string& x_name,
                              const std::string& out_name,
                              const int in_dtype,
                              const int out_dtype) {
    desc.SetType("cast");
    desc.SetInput("X", {x_name});
    desc.SetOutput("Out", {out_name});
    desc.SetAttr("in_dtype", in_dtype);
    desc.SetAttr("out_dtype", out_dtype);
    desc.SetAttr("use_mkldnn", false);
    desc.SetAttr("with_quant_attr", false);
    desc.Flush();
  };

  if (map->count(node) == 0) {
    // insert cast op before node.
    std::string cast_input_name = node->Var()->Name();
    std::string cast_output_name =
        node->Var()->Name() + "_cast.tmp_" + std::to_string((*suffix)++);
    CHECK_NOTNULL(block_desc);
    framework::OpDesc cast_op_desc(block_desc);
    update_cast_desc(cast_op_desc,
                     cast_input_name,
                     cast_output_name,
                     static_cast<int>(from_type),
                     static_cast<int>(to_type));
    auto* cast_op_node = graph->CreateOpNode(&cast_op_desc);
    auto* cast_output_vardesc = block_desc->Var(cast_output_name);
    cast_output_vardesc->SetPersistable(false);
    cast_output_vardesc->SetDataType(to_type);
    cast_output_vardesc->SetShape(node->Var()->GetShape());
    auto* cast_output_node = graph->CreateVarNode(cast_output_vardesc);
    IR_NODE_LINK_TO(cast_op_node, cast_output_node);
    (*map)[node] = cast_output_node;
  }
  next_op->Op()->RenameInput(node->Name(), map->at(node)->Name());
  IR_NODE_LINK_TO(node, map->at(node)->inputs[0]);
  IR_NODE_LINK_TO(map->at(node), next_op);
}

void ConvertToMixedPrecision(const std::string& model_file,
                             const std::string& params_file,
                             const std::string& mixed_model_file,
                             const std::string& mixed_params_file,
                             phi::DataType mixed_precision,
                             phi::Backend backend,
                             bool keep_io_types,
                             std::unordered_set<std::string> black_list) {
  paddle::CPUPlace place;
  framework::Executor executor(place);
  framework::Scope scope;
  auto program_desc =
      inference::Load(&executor, &scope, model_file, params_file);
W
Wilber 已提交
863
  auto main_graph = std::unique_ptr<framework::ir::Graph>(
864 865
      new framework::ir::Graph(*program_desc));

866 867
  std::unordered_map<std::string,
                     std::pair<framework::proto::VarType::Type, int>>
W
Wilber 已提交
868
      vars_in_multi_block_map;
869 870 871 872 873
  std::vector<std::set<std::string>> vars_appear_multi_in_one_block(
      program_desc->Size());
  FindVarsInMultiBlock(program_desc.get(),
                       &vars_in_multi_block_map,
                       &vars_appear_multi_in_one_block);
W
Wilber 已提交
874

875
  std::vector<framework::ir::Graph*> graphes;
W
Wilber 已提交
876 877
  for (size_t i = 0; i < main_graph->SubGraphsSize(); ++i) {
    auto graph = main_graph->GetSubGraph(i);
878
    graphes.push_back(graph);
W
Wilber 已提交
879
    VLOG(2) << " --------  handle subgraph " << i << ", has "
880
            << graph->Nodes().size() << " nodes --------";
W
Wilber 已提交
881 882 883

    ConvertAllFp64ToFp32(graph);
    ConvertTensorDtype(program_desc.get(),
884
                       graphes,
W
Wilber 已提交
885 886 887 888
                       black_list,
                       keep_io_types,
                       backend,
                       mixed_precision,
889 890 891
                       i,
                       &vars_in_multi_block_map,
                       vars_appear_multi_in_one_block);
W
Wilber 已提交
892
    FixCastAttr(graph);
893 894
  }

W
Wilber 已提交
895 896 897 898 899 900 901 902
  framework::ProgramDesc mixed_program_desc;
  framework::ir::GraphToProgram(*main_graph, &mixed_program_desc);

  SaveMixedModel(main_graph.get(),
                 &scope,
                 &mixed_program_desc,
                 mixed_model_file,
                 mixed_params_file,
903 904
                 mixed_precision,
                 vars_in_multi_block_map);
905 906 907 908 909
}

}  // namespace analysis
}  // namespace inference
}  // namespace paddle