metrics.py 22.3 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fluid Metrics

17
The metrics are accomplished via Python natively.
D
dzhwinter 已提交
18
"""
19 20 21

from __future__ import print_function

D
dzhwinter 已提交
22 23 24
import numpy as np
import copy
import warnings
25
import six
D
dzhwinter 已提交
26 27 28 29

__all__ = [
    'MetricBase',
    'CompositeMetric',
30 31
    'Precision',
    'Recall',
D
dzhwinter 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
    'Accuracy',
    'ChunkEvaluator',
    'EditDistance',
    'DetectionMAP',
    'Auc',
]


def _is_numpy_(var):
    return isinstance(var, (np.ndarray, np.generic))


def _is_number_(var):
    return isinstance(var, int) or isinstance(var, float) or (isinstance(
        var, np.ndarray) and var.shape == (1, ))


def _is_number_or_matrix_(var):
    return _is_number_(var) or isinstance(var, np.ndarray)


class MetricBase(object):
    """
55 56 57 58 59 60 61 62 63
    Base Class for all Metrics.
    MetricBase define a group of interfaces for the
    model evaluation methods. Metrics accumulate metric states between
    consecutive minibatches, at every minibatch, use update
    interface to add current minibatch value to global states.
    Use eval to compute accumative metric value from last reset()
    or from scratch on.
    If you need to custom a new metric, please inherit from MetricBase and
    custom implementation.
D
dzhwinter 已提交
64 65

    Args:
66 67 68
        name(str): The name of metric instance. such as, "accuracy".
                  It needed if you want to distinct different metrics in a model.

D
dzhwinter 已提交
69 70
    """

71
    def __init__(self, name):
D
dzhwinter 已提交
72 73 74 75 76 77 78
        self._name = str(name) if name != None else self.__class__.__name__

    def __str__(self):
        return self._name

    def reset(self):
        """
79 80 81 82
        reset clear the states of metrics. By default, the states
        are the members who do not has _ prefix, reset set them to inital states.
        If you violate the implicit name rule, please also custom the reset
        interface.
D
dzhwinter 已提交
83 84 85
        """
        states = {
            attr: value
M
minqiyang 已提交
86
            for attr, value in six.iteritems(self.__dict__)
D
dzhwinter 已提交
87 88
            if not attr.startswith("_")
        }
M
minqiyang 已提交
89
        for attr, value in six.iteritems(states):
D
dzhwinter 已提交
90 91 92 93 94 95 96 97 98 99
            if isinstance(value, int):
                setattr(self, attr, 0)
            elif isinstance(value, float):
                setattr(self, attr, .0)
            elif isinstance(value, (np.ndarray, np.generic)):
                setattr(self, attr, np.zeros_like(value))
            else:
                setattr(self, attr, None)

    def get_config(self):
100 101 102 103 104 105 106 107 108 109
        """
        Get the metric and current states.
        The states are the members who do not has "_" prefix.

        Args:
            None

        Returns:
            dict: a dict of metric and states
        """
D
dzhwinter 已提交
110 111
        states = {
            attr: value
M
minqiyang 已提交
112
            for attr, value in six.iteritems(self.__dict__)
D
dzhwinter 已提交
113 114
            if not attr.startswith("_")
        }
115
        config = {}
D
dzhwinter 已提交
116 117 118
        config.update({"name": self._name, "states": copy.deepcopy(states)})
        return config

119 120 121 122 123 124 125 126 127 128 129 130 131
    def update(self, preds, labels):
        """
        Updates the metric states at every minibatch.
        One user can compute the minibatch metric via pure Python, or
        via a c++ operator.

        Args:
            preds(numpy.array): the predictions of current minibatch
            labels(numpy.array): the labels of current minibatch, if the label is one-hot
                               or soft-label, should custom the corresponding update rule.
        """
        raise NotImplementedError(
            "Should not use it directly, please extend it.")
D
dzhwinter 已提交
132 133

    def eval(self):
134 135 136 137 138 139 140 141
        """
        Evalute the current metrics based the accumulated states.

        Returns:
            float|list(float)|numpy.array: the metrics via Python.
        """
        raise NotImplementedError(
            "Should not use it directly, please extend it.")
D
dzhwinter 已提交
142 143 144 145


class CompositeMetric(MetricBase):
    """
146
    Composite multiple metrics in one instance.
D
dzhwinter 已提交
147
    for example, merge F1, accuracy, recall into one Metric.
148

149 150
    Examples:
        .. code-block:: python
151

152 153 154 155 156 157 158 159 160 161 162 163 164 165
          labels = fluid.layers.data(name="data", shape=[1], dtype="int32")
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="int32")
          pred = fluid.layers.fc(input=data, size=1000, act="tanh")
          comp = fluid.metrics.CompositeMetric()
          acc = fluid.metrics.Precision()
          recall = fluid.metrics.Recall()
          comp.add_metric(acc)
          comp.add_metric(recall)
          for pass in range(PASSES):
            comp.reset()
            for data in train_reader():
                loss, preds, labels = exe.run(fetch_list=[cost, preds, labels])
            comp.update(preds=preds, labels=labels)
            numpy_acc, numpy_recall = comp.eval()
D
dzhwinter 已提交
166 167
    """

168 169
    def __init__(self, name=None):
        super(CompositeMetric, self).__init__(name)
D
dzhwinter 已提交
170 171
        self._metrics = []

Q
qiaolongfei 已提交
172
    def add_metric(self, metric):
173 174 175 176 177 178
        """
        add one metric instance to CompositeMetric.

        Args:
            metric: a instance of MetricBase.
        """
D
dzhwinter 已提交
179 180 181 182
        if not isinstance(metric, MetricBase):
            raise ValueError("SubMetric should be inherit from MetricBase.")
        self._metrics.append(metric)

183 184 185 186 187 188 189 190 191 192 193 194
    def update(self, preds, labels):
        """
        Update every metrics in sequence.

        Args:
            preds(numpy.array): the predictions of current minibatch
            labels(numpy.array): the labels of current minibatch, if the label is one-hot
                               or soft-label, should custom the corresponding update rule.
        """
        for m in self._metrics:
            ans.append(m.update(preds, labels))

D
dzhwinter 已提交
195
    def eval(self):
196 197 198 199 200 201
        """
        Evaluate every metrics in sequence.

        Returns:
            list(float|numpy.array): a list of metrics value in Python.
        """
D
dzhwinter 已提交
202 203 204 205 206 207
        ans = []
        for m in self._metrics:
            ans.append(m.eval())
        return ans


208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
class Precision(MetricBase):
    """
    Precision (also called positive predictive value) is the fraction of
    relevant instances among the retrieved instances.
    https://en.wikipedia.org/wiki/Evaluation_of_binary_classifiers

    Note Precision is different with Accuracy in binary classifiers.
    accuracy = true positive / total instances
    precision = true positive / all positive instance

    Examples:
        .. code-block:: python

        metric = fluid.metrics.Precision()
        for pass in range(PASSES):
            metric.reset()
            for data in train_reader():
                loss, preds, labels = exe.run(fetch_list=[cost, preds, labels])
            metric.update(preds=preds, labels=labels)
            numpy_precision = metric.eval()
    """

    def __init__(self, name=None):
        super(Precision, self).__init__(name)
        self.tp = 0  # true positive
        self.fp = 0  # false positive

    def update(self, preds, labels):
        if not _is_numpy_(preds):
            raise ValueError("The 'preds' must be a numpy ndarray.")
        if not _is_numpy_(labels):
            raise ValueError("The 'labels' must be a numpy ndarray.")
        sample_num = labels[0]
        for i in range(sample_num):
            pred = preds[i].astype("int32")
            label = labels[i]
            if label == 1:
                if pred == label:
                    self.tp += 1
                else:
                    self.fp += 1

    def eval(self):
        ap = self.tp + self.fp
        return float(self.tp) / ap if ap != 0 else .0


class Recall(MetricBase):
    """
    Recall (also known as sensitivity) is the fraction of
    relevant instances that have been retrieved over the
    total amount of relevant instances

    https://en.wikipedia.org/wiki/Precision_and_recall

    Examples:
        .. code-block:: python

        metric = fluid.metrics.Recall()
        for pass in range(PASSES):
            metric.reset()
            for data in train_reader():
                loss, preds, labels = exe.run(fetch_list=[cost, preds, labels])
            metric.update(preds=preds, labels=labels)
            numpy_recall = metric.eval()
    """

    def __init__(self, name=None):
        super(Recall, self).__init__(name)
        self.tp = 0  # true positive
        self.fn = 0  # false negtive

    def update(self, preds, labels):
        if not _is_numpy_(preds):
            raise ValueError("The 'preds' must be a numpy ndarray.")
        if not _is_numpy_(labels):
            raise ValueError("The 'labels' must be a numpy ndarray.")
        sample_num = labels[0]
        for i in range(sample_num):
            pred = preds[i].astype("int32")
            label = labels[i]
            if label == 1:
                if pred == label:
                    self.tp += 1
            else:
                if pred != label:
                    self.fn += 1

    def eval(self):
        recall = self.tp + self.fn
        return float(self.tp) / recall if recall != 0 else .0


D
dzhwinter 已提交
301 302 303 304
class Accuracy(MetricBase):
    """
    Accumulate the accuracy from minibatches and compute the average accuracy
    for every pass.
305
    https://en.wikipedia.org/wiki/Accuracy_and_precision
D
dzhwinter 已提交
306 307 308 309

    Args:
       name: the metrics name

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
    Examples:
        .. code-block:: python

            labels = fluid.layers.data(name="data", shape=[1], dtype="int32")
            data = fluid.layers.data(name="data", shape=[32, 32], dtype="int32")
            pred = fluid.layers.fc(input=data, size=1000, act="tanh")
            minibatch_accuracy = fluid.layers.accuracy(pred, label)
            accuracy_evaluator = fluid.metrics.Accuracy()
            for pass in range(PASSES):
                accuracy_evaluator.reset()
                for data in train_reader():
                    batch_size = data[0]
                    loss = exe.run(fetch_list=[cost, minibatch_accuracy])
                accuracy_evaluator.update(value=minibatch_accuracy, weight=batch_size)
                numpy_acc = accuracy_evaluator.eval()
D
dzhwinter 已提交
325 326 327 328 329 330 331 332
    """

    def __init__(self, name=None):
        super(Accuracy, self).__init__(name)
        self.value = .0
        self.weight = .0

    def update(self, value, weight):
333 334 335 336 337 338 339
        """
        Update minibatch states.

        Args:
            value(float|numpy.array): accuracy of one minibatch.
            weight(int|float): batch size.
        """
D
dzhwinter 已提交
340 341 342 343 344 345 346 347 348 349
        if not _is_number_or_matrix_(value):
            raise ValueError(
                "The 'value' must be a number(int, float) or a numpy ndarray.")
        if not _is_number_(weight):
            raise ValueError("The 'weight' must be a number(int, float).")
        self.value += value * weight
        self.weight += weight

    def eval(self):
        if self.weight == 0:
350 351
            raise ValueError("There is no data in Accuracy Metrics. \
                Please check layers.accuracy output has added to Accuracy.")
D
dzhwinter 已提交
352 353 354
        return self.value / self.weight


355
class ChunkEvaluator(MetricBase):
D
dzhwinter 已提交
356 357 358 359
    """
    Accumulate counter numbers output by chunk_eval from mini-batches and
    compute the precision recall and F1-score using the accumulated counter
    numbers.
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.
    ChunkEvalEvaluator computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.

    Examples:
        .. code-block:: python

            labels = fluid.layers.data(name="data", shape=[1], dtype="int32")
            data = fluid.layers.data(name="data", shape=[32, 32], dtype="int32")
            pred = fluid.layers.fc(input=data, size=1000, act="tanh")
            precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks = layers.chunk_eval(
                input=pred,
                label=label)
            metric = fluid.metrics.ChunkEvaluator()
            for data in train_reader():
                loss, preds, labels = exe.run(fetch_list=[cost, preds, labels])
                metric.update(num_infer_chunks, num_label_chunks, num_correct_chunks)
                numpy_precision, numpy_recall, numpy_f1 = metric.eval()
D
dzhwinter 已提交
379 380 381
    """

    def __init__(self, name=None):
T
update  
typhoonzero 已提交
382
        super(ChunkEvaluator, self).__init__(name)
D
dzhwinter 已提交
383 384 385 386 387
        self.num_infer_chunks = 0
        self.num_label_chunks = 0
        self.num_correct_chunks = 0

    def update(self, num_infer_chunks, num_label_chunks, num_correct_chunks):
388 389 390 391 392 393 394 395
        """
        Update the states based on the layers.chunk_eval() ouputs.
        Args:
            num_infer_chunks(int|numpy.array): The number of chunks in Inference on the given minibatch.
            num_label_chunks(int|numpy.array): The number of chunks in Label on the given mini-batch.
            num_correct_chunks(int|float|numpy.array): The number of chunks both in Inference and Label on the
                                                  given mini-batch.
        """
D
dzhwinter 已提交
396 397
        if not _is_number_or_matrix_(num_infer_chunks):
            raise ValueError(
398
                "The 'num_infer_chunks' must be a number(int) or a numpy ndarray."
D
dzhwinter 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
            )
        if not _is_number_or_matrix_(num_label_chunks):
            raise ValueError(
                "The 'num_label_chunks' must be a number(int, float) or a numpy ndarray."
            )
        if not _is_number_or_matrix_(num_correct_chunks):
            raise ValueError(
                "The 'num_correct_chunks' must be a number(int, float) or a numpy ndarray."
            )
        self.num_infer_chunks += num_infer_chunks
        self.num_label_chunks += num_label_chunks
        self.num_correct_chunks += num_correct_chunks

    def eval(self):
        precision = float(
            self.num_correct_chunks
        ) / self.num_infer_chunks if self.num_infer_chunks else 0
        recall = float(self.num_correct_chunks
                       ) / self.num_label_chunks if self.num_label_chunks else 0
        f1_score = float(2 * precision * recall) / (
            precision + recall) if self.num_correct_chunks else 0
        return precision, recall, f1_score


class EditDistance(MetricBase):
    """
425 426 427 428 429
    Edit distance is a way of quantifying how dissimilar two strings
    (e.g., words) are to one another by counting the minimum number
    of operations required to transform one string into the other.
    Refer to https://en.wikipedia.org/wiki/Edit_distance

D
dzhwinter 已提交
430 431 432 433 434 435
    Accumulate edit distance sum and sequence number from mini-batches and
    compute the average edit_distance and instance error of all batches.

    Args:
        name: the metrics name

436 437 438 439 440 441 442 443 444 445 446
    Examples:
        .. code-block:: python

            distances, seq_num = fluid.layers.edit_distance(input, label)
            distance_evaluator = fluid.metrics.EditDistance()
            for epoch in PASS_NUM:
                distance_evaluator.reset()
                for data in batches:
                    loss = exe.run(fetch_list=[cost] + list(edit_distance_metrics))
                distance_evaluator.update(distances, seq_num)
                distance, instance_error = distance_evaluator.eval()
D
dzhwinter 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470

        In the above example:
        'distance' is the average of the edit distance in a pass.
        'instance_error' is the instance error rate in a pass.

    """

    def __init__(self, name):
        super(EditDistance, self).__init__(name)
        self.total_distance = .0
        self.seq_num = 0
        self.instance_error = 0

    def update(self, distances, seq_num):
        if not _is_numpy_(distances):
            raise ValueError("The 'distances' must be a numpy ndarray.")
        if not _is_number_(seq_num):
            raise ValueError("The 'seq_num' must be a number(int, float).")
        seq_right_count = np.sum(distances == 0)
        total_distance = np.sum(distances)
        self.seq_num += seq_num
        self.instance_error += seq_num - seq_right_count
        self.total_distance += total_distance

Q
qiaolongfei 已提交
471
    def eval(self):
D
dzhwinter 已提交
472 473 474 475 476 477 478 479 480 481 482 483
        if self.seq_num == 0:
            raise ValueError(
                "There is no data in EditDistance Metric. Please check layers.edit_distance output has been added to EditDistance."
            )
        avg_distance = self.total_distance / self.seq_num
        avg_instance_error = self.instance_error / self.seq_num
        return avg_distance, avg_instance_error


class DetectionMAP(MetricBase):
    """
    Calculate the detection mean average precision (mAP).
484 485 486
    mAP is the metric to measure the accuracy of object detectors
    like Faster R-CNN, SSD, etc.
    It is the average of the maximum precisions at different recall values.
D
dzhwinter 已提交
487 488
    Please get more information from the following articles:
      https://sanchom.wordpress.com/tag/average-precision/
489

D
dzhwinter 已提交
490
      https://arxiv.org/abs/1512.02325
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515

    The general steps are as follows:

        1. calculate the true positive and false positive according to the input
            of detection and labels.
        2. calculate mAP value, support two versions: '11 point' and 'integral'.

    Examples:
        .. code-block:: python

            pred = fluid.layers.fc(input=data, size=1000, act="tanh")
            batch_map = layers.detection_map(
                input,
                label,
                class_num,
                background_label,
                overlap_threshold=overlap_threshold,
                evaluate_difficult=evaluate_difficult,
                ap_version=ap_version)
            metric = fluid.metrics.DetectionMAP()
            for data in train_reader():
                loss, preds, labels = exe.run(fetch_list=[cost, batch_map])
                batch_size = data[0]
                metric.update(value=batch_map, weight=batch_size)
                numpy_map = metric.eval()
D
dzhwinter 已提交
516 517 518 519 520 521
    """

    def __init__(self, name=None):
        super(DetectionMAP, self).__init__(name)
        # the current map value
        self.value = .0
Q
qiaolongfei 已提交
522
        self.weight = .0
D
dzhwinter 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543

    def update(self, value, weight):
        if not _is_number_or_matrix_(value):
            raise ValueError(
                "The 'value' must be a number(int, float) or a numpy ndarray.")
        if not _is_number_(weight):
            raise ValueError("The 'weight' must be a number(int, float).")
        self.value += value
        self.weight += weight

    def eval(self):
        if self.weight == 0:
            raise ValueError(
                "There is no data in DetectionMAP Metrics. "
                "Please check layers.detection_map output has added to DetectionMAP."
            )
        return self.value / self.weight


class Auc(MetricBase):
    """
544 545 546
    Auc metric adapts to the binary classification.
    Refer to https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve
    Need to note that auc metric compute the value via Python natively.
D
dzhwinter 已提交
547 548 549
    If you concern the speed, please use the fluid.layers.auc instead.

    The `auc` function creates four local variables, `true_positives`,
550 551 552 553 554 555
    `true_negatives`, `false_positives` and `false_negatives` that are used to
    compute the AUC. To discretize the AUC curve, a linearly spaced set of
    thresholds is used to compute pairs of recall and precision values. The area
    under the ROC-curve is therefore computed using the height of the recall
    values by the false positive rate, while the area under the PR-curve is the
    computed using the height of the precision values by the recall.
D
dzhwinter 已提交
556 557 558 559 560 561 562 563 564

    Args:
        name: metric name
        curve: Specifies the name of the curve to be computed, 'ROC' [default] or
          'PR' for the Precision-Recall-curve.
        num_thresholds: The number of thresholds to use when discretizing the roc
            curve.

    "NOTE: only implement the ROC curve type via Python now."
565 566 567 568 569 570 571 572 573 574

    Examples:
        .. code-block:: python

            pred = fluid.layers.fc(input=data, size=1000, act="tanh")
            metric = fluid.metrics.Auc()
            for data in train_reader():
                loss, preds, labels = exe.run(fetch_list=[cost, preds, labels])
                metric.update(preds, labels)
                numpy_auc = metric.eval()
D
dzhwinter 已提交
575 576 577
    """

    def __init__(self, name, curve='ROC', num_thresholds=200):
Q
fix auc  
qiaolongfei 已提交
578
        super(Auc, self).__init__(name=name)
D
dzhwinter 已提交
579 580 581
        self._curve = curve
        self._num_thresholds = num_thresholds
        self._epsilon = 1e-6
Q
fix auc  
qiaolongfei 已提交
582 583 584 585
        self.tp_list = np.zeros((num_thresholds, ))
        self.fn_list = np.zeros((num_thresholds, ))
        self.tn_list = np.zeros((num_thresholds, ))
        self.fp_list = np.zeros((num_thresholds, ))
D
dzhwinter 已提交
586

Q
qiaolongfei 已提交
587
    def update(self, preds, labels):
D
dzhwinter 已提交
588 589
        if not _is_numpy_(labels):
            raise ValueError("The 'labels' must be a numpy ndarray.")
Q
qiaolongfei 已提交
590
        if not _is_numpy_(preds):
D
dzhwinter 已提交
591 592 593
            raise ValueError("The 'predictions' must be a numpy ndarray.")

        kepsilon = 1e-7  # to account for floating point imprecisions
Q
qiaolongfei 已提交
594 595
        thresholds = [(i + 1) * 1.0 / (self._num_thresholds - 1)
                      for i in range(self._num_thresholds - 2)]
D
dzhwinter 已提交
596 597
        thresholds = [0.0 - kepsilon] + thresholds + [1.0 + kepsilon]

Q
Qiao Longfei 已提交
598
        # calculate TP, FN, TN, FP count
D
dzhwinter 已提交
599 600 601 602
        for idx_thresh, thresh in enumerate(thresholds):
            tp, fn, tn, fp = 0, 0, 0, 0
            for i, lbl in enumerate(labels):
                if lbl:
Q
qiaolongfei 已提交
603
                    if preds[i, 1] >= thresh:
D
dzhwinter 已提交
604 605 606 607
                        tp += 1
                    else:
                        fn += 1
                else:
Q
qiaolongfei 已提交
608
                    if preds[i, 1] >= thresh:
D
dzhwinter 已提交
609 610 611
                        fp += 1
                    else:
                        tn += 1
Q
qiaolongfei 已提交
612 613 614 615
            self.tp_list[idx_thresh] += tp
            self.fn_list[idx_thresh] += fn
            self.tn_list[idx_thresh] += tn
            self.fp_list[idx_thresh] += fp
D
dzhwinter 已提交
616 617 618 619

    def eval(self):
        epsilon = self._epsilon
        num_thresholds = self._num_thresholds
Q
qiaolongfei 已提交
620 621 622 623 624 625
        tpr = (self.tp_list.astype("float32") + epsilon) / (
            self.tp_list + self.fn_list + epsilon)
        fpr = self.fp_list.astype("float32") / (
            self.fp_list + self.tn_list + epsilon)
        rec = (self.tp_list.astype("float32") + epsilon) / (
            self.tp_list + self.fp_list + epsilon)
D
dzhwinter 已提交
626 627 628 629 630

        x = fpr[:num_thresholds - 1] - fpr[1:]
        y = (tpr[:num_thresholds - 1] + tpr[1:]) / 2.0
        auc_value = np.sum(x * y)
        return auc_value