api_custom_impl.cc 46.6 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/api/lib/api_custom_impl.h"
16

17
#include "glog/logging.h"
18
#include "paddle/phi/api/lib/api_gen_utils.h"
19 20
#include "paddle/phi/api/lib/data_transform.h"
#include "paddle/phi/api/lib/kernel_dispatch.h"
21
#include "paddle/phi/api/lib/tensor_copy.h"
Z
zyfncg 已提交
22
#include "paddle/phi/common/type_traits.h"
23
#include "paddle/phi/core/compat/convert_utils.h"
24 25
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/meta_tensor.h"
26
#include "paddle/phi/infermeta/backward.h"
27 28 29
#include "paddle/phi/infermeta/binary.h"
#include "paddle/phi/infermeta/multiary.h"
#include "paddle/phi/infermeta/nullary.h"
30
#include "paddle/phi/infermeta/unary.h"
31 32 33 34

namespace paddle {
namespace experimental {

35
////////////////// Forward api impls //////////////////////
36

C
chentianyu03 已提交
37 38 39 40 41 42 43 44
std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor> adamw_impl(
    const Tensor& param,
    const Tensor& grad,
    const Tensor& learning_rate,
    const Tensor& moment1,
    const Tensor& moment2,
    const Tensor& beta1_pow,
    const Tensor& beta2_pow,
45 46
    const paddle::optional<Tensor>& master_param,
    const paddle::optional<Tensor>& skip_update,
C
chentianyu03 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
    const Scalar& beta1,
    const Scalar& beta2,
    const Scalar& epsilon,
    float lr_ratio,
    float coeff,
    bool with_decay,
    bool lazy_mode,
    int64_t min_row_size_to_use_multithread,
    bool multi_precision,
    bool use_global_beta_pow) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;
  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(param);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }
  std::string kernel_name = "adamw";
76
  auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
C
chentianyu03 已提交
77
      kernel_name, {kernel_backend, kernel_layout, kernel_data_type});
78
  const auto& kernel = kernel_result.kernel;
C
chentianyu03 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91
  VLOG(6) << kernel_name << " API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << kernel_name << " API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto input_param = PrepareData(param, kernel.InputAt(0), {});
  auto input_grad = PrepareData(grad, kernel.InputAt(1), {});
  auto input_lr = PrepareData(learning_rate, kernel.InputAt(2), {});
  auto input_moment1 = PrepareData(moment1, kernel.InputAt(3), {});
  auto input_moment2 = PrepareData(moment2, kernel.InputAt(4), {});
  auto input_beta1_pow = PrepareData(beta1_pow, kernel.InputAt(5), {});
  auto input_beta2_pow = PrepareData(beta2_pow, kernel.InputAt(6), {});
92 93
  auto input_master_param = PrepareData(master_param, kernel.InputAt(7), {});
  auto input_skip_update = PrepareData(skip_update, kernel.InputAt(8), {});
C
chentianyu03 已提交
94 95 96 97 98 99 100 101

  std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor> api_output;
  auto kernel_out_0 = input_param.get();
  auto kernel_out_1 = input_moment1.get();
  auto kernel_out_2 = input_moment2.get();
  auto kernel_out_3 = input_beta1_pow.get();
  auto kernel_out_4 = input_beta2_pow.get();
  phi::DenseTensor* kernel_out_5 = nullptr;
102 103
  if (input_master_param) {
    kernel_out_5 = input_master_param.get_ptr();
C
chentianyu03 已提交
104 105
  }

106
  auto input_meta_ref_master_param = MakeMetaTensor(input_master_param);
C
chentianyu03 已提交
107

108
  auto input_meta_ref_skip_update = MakeMetaTensor(input_skip_update);
C
chentianyu03 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

  phi::MetaTensor meta_out_0(kernel_out_0);
  phi::MetaTensor meta_out_1(kernel_out_1);
  phi::MetaTensor meta_out_2(kernel_out_2);
  phi::MetaTensor meta_out_3(kernel_out_3);
  phi::MetaTensor meta_out_4(kernel_out_4);
  phi::MetaTensor meta_out_5(kernel_out_5);

  phi::AdamwInferMeta(MakeMetaTensor(*input_param),
                      MakeMetaTensor(*input_grad),
                      MakeMetaTensor(*input_lr),
                      MakeMetaTensor(*input_moment1),
                      MakeMetaTensor(*input_moment2),
                      MakeMetaTensor(*input_beta1_pow),
                      MakeMetaTensor(*input_beta2_pow),
                      input_meta_ref_master_param,
                      input_meta_ref_skip_update,
                      beta1,
                      beta2,
                      epsilon,
                      lr_ratio,
                      coeff,
                      with_decay,
                      lazy_mode,
                      min_row_size_to_use_multithread,
                      multi_precision,
                      use_global_beta_pow,
                      &meta_out_0,
                      &meta_out_1,
                      &meta_out_2,
                      &meta_out_3,
                      &meta_out_4,
                      &meta_out_5);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
151 152
                                    const paddle::optional<phi::DenseTensor>&,
                                    const paddle::optional<phi::DenseTensor>&,
C
chentianyu03 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
                                    const Scalar&,
                                    const Scalar&,
                                    const Scalar&,
                                    float,
                                    float,
                                    bool,
                                    bool,
                                    int64_t,
                                    bool,
                                    bool,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();

  (*kernel_fn)(*dev_ctx,
               *input_param,
               *input_grad,
               *input_lr,
               *input_moment1,
               *input_moment2,
               *input_beta1_pow,
               *input_beta2_pow,
               input_master_param,
               input_skip_update,
               beta1,
               beta2,
               epsilon,
               lr_ratio,
               coeff,
               with_decay,
               lazy_mode,
               min_row_size_to_use_multithread,
               multi_precision,
               use_global_beta_pow,
               kernel_out_0,
               kernel_out_1,
               kernel_out_2,
               kernel_out_3,
               kernel_out_4,
               kernel_out_5);

  return api_output;
}

H
hong 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
Tensor conv2d_impl(const Tensor& input,
                   const Tensor& filter,
                   const std::vector<int>& strides,
                   const std::vector<int>& paddings,
                   const std::string& paddding_algorithm,
                   int groups,
                   const std::vector<int>& dilations,
                   const std::string& data_format,
                   bool use_addto,
                   int workspace_size_MB,
                   bool exhaustive_search) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  kernel_data_type = ParseDataType(input);

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(input, filter);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }

  VLOG(6) << "conv2d API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
236
  auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
H
hong 已提交
237
      "conv2d", {kernel_backend, kernel_layout, kernel_data_type}, true);
238
  const auto& kernel = kernel_result.kernel;
H
hong 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
  VLOG(6) << "conv2d API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  phi::TensorArgDef args0 = kernel.InputAt(0);
  phi::TensorArgDef args1 = kernel.InputAt(1);
  if (kernel_backend == Backend::GPU) {
    args0.backend = Backend::GPU;
    args1.backend = Backend::GPU;
  }

  auto input_input = PrepareData(input, args0, {});
  auto input_filter = PrepareData(filter, args1, {});

  Tensor api_output;
  auto kernel_out = SetKernelOutput(kernel_backend, &api_output);
  phi::MetaTensor meta_out(kernel_out);

  phi::ConvInferMeta(MakeMetaTensor(*input_input),
                     MakeMetaTensor(*input_filter),
                     strides,
                     paddings,
                     paddding_algorithm,
                     groups,
                     dilations,
                     data_format,
                     use_addto,
                     workspace_size_MB,
                     exhaustive_search,
                     &meta_out);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const std::vector<int>&,
                                    const std::vector<int>&,
                                    const std::string&,
                                    int,
                                    const std::vector<int>&,
                                    const std::string&,
                                    bool,
                                    int,
                                    bool,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();

  {
    (*kernel_fn)(*dev_ctx,
                 *input_input,
                 *input_filter,
                 strides,
                 paddings,
                 paddding_algorithm,
                 groups,
                 dilations,
                 data_format,
                 use_addto,
                 workspace_size_MB,
                 exhaustive_search,
                 kernel_out);
  }

  return api_output;
}

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
Tensor conv3d_impl(const Tensor& input,
                   const Tensor& filter,
                   const std::vector<int>& strides,
                   const std::vector<int>& paddings,
                   const std::string& paddding_algorithm,
                   int groups,
                   const std::vector<int>& dilations,
                   const std::string& data_format,
                   bool use_addto,
                   int workspace_size_MB,
                   bool exhaustive_search) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  kernel_data_type = ParseDataType(input);

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(input, filter);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }

  VLOG(6) << "conv3d API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
339
  auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
340
      "conv3d", {kernel_backend, kernel_layout, kernel_data_type}, true);
341
  const auto& kernel = kernel_result.kernel;
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
  VLOG(6) << "conv3d API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  phi::TensorArgDef args0 = kernel.InputAt(0);
  phi::TensorArgDef args1 = kernel.InputAt(1);
  if (kernel_backend == Backend::GPU) {
    args0.backend = Backend::GPU;
    args1.backend = Backend::GPU;
  }

  auto input_input = PrepareData(input, args0, {});
  auto input_filter = PrepareData(filter, args1, {});

  Tensor api_output;
  auto kernel_out = SetKernelOutput(kernel_backend, &api_output);
  phi::MetaTensor meta_out(kernel_out);

  phi::ConvInferMeta(MakeMetaTensor(*input_input),
                     MakeMetaTensor(*input_filter),
                     strides,
                     paddings,
                     paddding_algorithm,
                     groups,
                     dilations,
                     data_format,
                     use_addto,
                     workspace_size_MB,
                     exhaustive_search,
                     &meta_out);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const std::vector<int>&,
                                    const std::vector<int>&,
                                    const std::string&,
                                    int,
                                    const std::vector<int>&,
                                    const std::string&,
                                    bool,
                                    int,
                                    bool,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();

  {
    (*kernel_fn)(*dev_ctx,
                 *input_input,
                 *input_filter,
                 strides,
                 paddings,
                 paddding_algorithm,
                 groups,
                 dilations,
                 data_format,
                 use_addto,
                 workspace_size_MB,
                 exhaustive_search,
                 kernel_out);
  }

  return api_output;
}

407 408 409 410 411 412 413 414 415 416 417 418 419 420
void conv2d_grad_impl(const Tensor& input,
                      const Tensor& filter,
                      const Tensor& out_grad,
                      const std::vector<int>& strides,
                      const std::vector<int>& paddings,
                      const std::string& paddding_algorithm,
                      int groups,
                      const std::vector<int>& dilations,
                      const std::string& data_format,
                      bool use_addto,
                      int workspace_size_MB,
                      bool exhaustive_search,
                      Tensor* input_grad,
                      Tensor* filter_grad) {
H
hong 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(input, filter, out_grad);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }

  VLOG(6) << "conv2d_grad API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
443
  auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
H
hong 已提交
444
      "conv2d_grad", {kernel_backend, kernel_layout, kernel_data_type}, true);
445
  const auto& kernel = kernel_result.kernel;
H
hong 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
  VLOG(6) << "conv2d_grad API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  phi::TensorArgDef args0 = kernel.InputAt(0);
  phi::TensorArgDef args1 = kernel.InputAt(1);
  phi::TensorArgDef args2 = kernel.InputAt(2);
  if (kernel_backend == Backend::GPU) {
    args0.backend = Backend::GPU;
    args1.backend = Backend::GPU;
    args2.backend = Backend::GPU;
  }

  auto input_input = PrepareData(input, args0, {});
  auto input_filter = PrepareData(filter, args1, {});
  auto input_out_grad = PrepareData(out_grad, args2, {});

463 464
  auto kernel_out_0 = SetKernelOutput(kernel_backend, input_grad);
  auto kernel_out_1 = SetKernelOutput(kernel_backend, filter_grad);
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
  phi::MetaTensor meta_out_0(kernel_out_0);
  phi::MetaTensor meta_out_1(kernel_out_1);

  phi::GeneralBinaryGradInferMeta(MakeMetaTensor(*input_input),
                                  MakeMetaTensor(*input_filter),
                                  kernel_out_0 ? &meta_out_0 : nullptr,
                                  kernel_out_1 ? &meta_out_1 : nullptr);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const std::vector<int>&,
                                    const std::vector<int>&,
                                    const std::string&,
                                    int,
                                    const std::vector<int>&,
                                    const std::string&,
                                    bool,
                                    int,
                                    bool,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();

  {
    (*kernel_fn)(*dev_ctx,
                 *input_input,
                 *input_filter,
                 *input_out_grad,
                 strides,
                 paddings,
                 paddding_algorithm,
                 groups,
                 dilations,
                 data_format,
                 use_addto,
                 workspace_size_MB,
                 exhaustive_search,
                 kernel_out_0,
                 kernel_out_1);
  }
}

void conv3d_grad_impl(const Tensor& input,
                      const Tensor& filter,
                      const Tensor& out_grad,
                      const std::vector<int>& strides,
                      const std::vector<int>& paddings,
                      const std::string& paddding_algorithm,
                      int groups,
                      const std::vector<int>& dilations,
                      const std::string& data_format,
                      bool use_addto,
                      int workspace_size_MB,
                      bool exhaustive_search,
                      Tensor* input_grad,
                      Tensor* filter_grad) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(input, filter, out_grad);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }

  VLOG(6) << "conv3d_grad API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
545
  auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
546
      "conv3d_grad", {kernel_backend, kernel_layout, kernel_data_type}, true);
547
  const auto& kernel = kernel_result.kernel;
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
  VLOG(6) << "conv3d_grad API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  phi::TensorArgDef args0 = kernel.InputAt(0);
  phi::TensorArgDef args1 = kernel.InputAt(1);
  phi::TensorArgDef args2 = kernel.InputAt(2);
  if (kernel_backend == Backend::GPU) {
    args0.backend = Backend::GPU;
    args1.backend = Backend::GPU;
    args2.backend = Backend::GPU;
  }

  auto input_input = PrepareData(input, args0, {});
  auto input_filter = PrepareData(filter, args1, {});
  auto input_out_grad = PrepareData(out_grad, args2, {});

  auto kernel_out_0 = SetKernelOutput(kernel_backend, input_grad);
  auto kernel_out_1 = SetKernelOutput(kernel_backend, filter_grad);
H
hong 已提交
567 568 569 570 571
  phi::MetaTensor meta_out_0(kernel_out_0);
  phi::MetaTensor meta_out_1(kernel_out_1);

  phi::GeneralBinaryGradInferMeta(MakeMetaTensor(*input_input),
                                  MakeMetaTensor(*input_filter),
572 573
                                  kernel_out_0 ? &meta_out_0 : nullptr,
                                  kernel_out_1 ? &meta_out_1 : nullptr);
H
hong 已提交
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const std::vector<int>&,
                                    const std::vector<int>&,
                                    const std::string&,
                                    int,
                                    const std::vector<int>&,
                                    const std::string&,
                                    bool,
                                    int,
                                    bool,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();

  {
    (*kernel_fn)(*dev_ctx,
                 *input_input,
                 *input_filter,
                 *input_out_grad,
                 strides,
                 paddings,
                 paddding_algorithm,
                 groups,
                 dilations,
                 data_format,
                 use_addto,
                 workspace_size_MB,
                 exhaustive_search,
                 kernel_out_0,
                 kernel_out_1);
  }
}

611
Tensor copy_to_impl(const Tensor& x, Place place, bool blocking) {
612
  Tensor out;
613
  copy(x, place, blocking, &out);
614 615 616
  return out;
}

Z
zyfncg 已提交
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
Tensor embedding_impl(const Tensor& x,
                      const Tensor& weight,
                      int64_t padding_idx,
                      bool sparse) {
  DataType kernel_data_type = ParseDataType(weight);
  auto kernel_key_set = ParseKernelKeyByInputArgs(weight);
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
  VLOG(6) << "embedding API kernel key: [" << kernel_key.backend() << ", "
          << kernel_key.layout() << ", " << kernel_data_type << "]";

  auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend());

  Tensor api_output;

  if (phi::DenseTensor::classof(weight.impl().get())) {
632
    auto kernel_result =
Z
zyfncg 已提交
633 634 635
        phi::KernelFactory::Instance().SelectKernelOrThrowError(
            "embedding",
            {kernel_key.backend(), kernel_key.layout(), kernel_data_type});
636
    const auto& kernel = kernel_result.kernel;
Z
zyfncg 已提交
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
    VLOG(6) << "embedding API kernel: " << kernel;

    auto input_x = PrepareData(x, kernel.InputAt(0), {});
    auto input_weight = PrepareData(weight, kernel.InputAt(1), {});

    auto* kernel_out = SetKernelOutput(kernel_key.backend(), &api_output);
    phi::MetaTensor meta_out(kernel_out);

    phi::EmbeddingInferMeta(MakeMetaTensor(*input_x),
                            MakeMetaTensor(*input_weight),
                            padding_idx,
                            sparse,
                            &meta_out);

    using kernel_signature = void (*)(const platform::DeviceContext&,
                                      const phi::DenseTensor&,
                                      const phi::DenseTensor&,
                                      int64_t,
                                      phi::DenseTensor*);
    auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
    {
      (*kernel_fn)(*dev_ctx, *input_x, *input_weight, padding_idx, kernel_out);
    }
  } else {
661
    auto kernel_result =
Z
zyfncg 已提交
662 663 664
        phi::KernelFactory::Instance().SelectKernelOrThrowError(
            "sparse_weight_embedding",
            {kernel_key.backend(), kernel_key.layout(), kernel_data_type});
665
    const auto& kernel = kernel_result.kernel;
Z
zyfncg 已提交
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
    VLOG(6) << "sparse_weight_embedding API kernel: " << kernel;

    auto input_x = PrepareData(x, kernel.InputAt(0), {});
    auto input_weight = TensorToSelectedRows(weight);

    auto* kernel_out = SetKernelOutput(kernel_key.backend(), &api_output);
    phi::MetaTensor meta_out(kernel_out);

    phi::EmbeddingInferMeta(MakeMetaTensor(*input_x),
                            MakeMetaTensor(*input_weight),
                            padding_idx,
                            sparse,
                            &meta_out);

    using kernel_signature = void (*)(const platform::DeviceContext&,
                                      const phi::DenseTensor&,
                                      const phi::SelectedRows&,
                                      int64_t,
                                      phi::DenseTensor*);
    auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
    {
      (*kernel_fn)(*dev_ctx, *input_x, *input_weight, padding_idx, kernel_out);
    }
  }
  return api_output;
}

693
std::vector<Tensor> split_impl(const Tensor& x,
694
                               const IntArray& num_or_sections,
695 696
                               const Scalar& axis) {
  auto kernel_key_set = ParseKernelKeyByInputArgs(x);
697
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
698 699 700 701

  Backend kernel_backend = kernel_key.backend();
  DataLayout kernel_layout = kernel_key.layout();
  DataType kernel_data_type = kernel_key.dtype();
C
chentianyu03 已提交
702

703
  auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
C
chentianyu03 已提交
704
      "split", {kernel_backend, kernel_layout, kernel_data_type});
705
  const auto& kernel = kernel_result.kernel;
C
chentianyu03 已提交
706 707 708 709 710 711 712 713 714 715
  VLOG(6) << "split API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "split API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto dense_x = PrepareData(x, kernel.InputAt(0), {});

  // Calculate the number of out tensors
  size_t out_number;
716
  if (num_or_sections.size() == 1) {
C
chentianyu03 已提交
717 718
    out_number = num_or_sections.GetData()[0];
  } else {
719
    out_number = num_or_sections.size();
C
chentianyu03 已提交
720 721 722 723
  }

  std::vector<Tensor> out;
  auto dense_outs = SetKernelOutput(out_number, kernel_backend, &out);
724
  std::vector<phi::MetaTensor> meta_outs;
725 726 727
  meta_outs.reserve(out_number);
  std::vector<phi::MetaTensor*> meta_out_ptrs;
  meta_out_ptrs.reserve(out_number);
C
chentianyu03 已提交
728 729
  for (size_t i = 0; i < out_number; ++i) {
    meta_outs.push_back(dense_outs[i]);
730
    meta_out_ptrs.push_back(&meta_outs.back());
C
chentianyu03 已提交
731 732
  }

733
  phi::SplitInferMeta(
734
      MakeMetaTensor(*dense_x), num_or_sections, axis, meta_out_ptrs);
C
chentianyu03 已提交
735 736

  using kernel_signature = void (*)(const platform::DeviceContext&,
737
                                    const phi::DenseTensor&,
738
                                    const phi::IntArray&,
739 740
                                    const phi::Scalar&,
                                    std::vector<phi::DenseTensor*>&);
C
chentianyu03 已提交
741 742 743
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(*dev_ctx,
               *dense_x,
744
               phi::IntArray(num_or_sections),
745
               phi::Scalar(axis),
C
chentianyu03 已提交
746 747 748 749
               dense_outs);

  return out;
}
750

751 752 753 754 755
std::tuple<Tensor, Tensor, Tensor> momentum_impl(
    const Tensor& param,
    const Tensor& grad,
    const Tensor& velocity,
    const Tensor& learning_rate,
756
    const paddle::optional<Tensor>& master_param,
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
    float mu,
    bool use_nesterov,
    const std::string& regularization_method,
    float regularization_coeff,
    bool multi_precision,
    float rescale_grad) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;
  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(param);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }
  std::string kernel_name = "momentum";
  if (grad.is_selected_rows()) {
    kernel_name = "momentum_dense_param_sparse_grad";
  }
785
  auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
786
      kernel_name, {kernel_backend, kernel_layout, kernel_data_type});
787
  const auto& kernel = kernel_result.kernel;
788 789 790 791 792 793 794 795 796 797
  VLOG(6) << kernel_name << " API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << kernel_name << " API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto input_param = PrepareData(param, kernel.InputAt(0), {});
  auto input_grad = PrepareData(grad, kernel.InputAt(1), {});
  auto input_velocity = PrepareData(velocity, kernel.InputAt(2), {});
  auto input_learning_rate = PrepareData(learning_rate, kernel.InputAt(3), {});
798
  auto input_master_param = PrepareData(master_param, kernel.InputAt(4), {});
799 800 801 802 803

  std::tuple<Tensor, Tensor, Tensor> api_output;
  auto kernel_out_0 = input_param.get();
  auto kernel_out_1 = input_velocity.get();
  phi::DenseTensor* kernel_out_2 = nullptr;
804 805
  if (input_master_param) {
    kernel_out_2 = input_master_param.get_ptr();
806 807
  }

808 809
  auto input_meta_ref_master_param = MakeMetaTensor(input_master_param);

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
  phi::MetaTensor meta_out_0(kernel_out_0);
  phi::MetaTensor meta_out_1(kernel_out_1);
  if (kernel_out_2) {
    phi::MetaTensor meta_out_2(kernel_out_2);
    phi::MomentumInferMeta(MakeMetaTensor(*input_param),
                           MakeMetaTensor(*input_grad),
                           MakeMetaTensor(*input_velocity),
                           MakeMetaTensor(*input_learning_rate),
                           input_meta_ref_master_param,
                           mu,
                           use_nesterov,
                           regularization_method,
                           regularization_coeff,
                           multi_precision,
                           rescale_grad,
                           &meta_out_0,
                           &meta_out_1,
                           &meta_out_2);
  } else {
    phi::MomentumInferMeta(MakeMetaTensor(*input_param),
                           MakeMetaTensor(*input_grad),
                           MakeMetaTensor(*input_velocity),
                           MakeMetaTensor(*input_learning_rate),
                           input_meta_ref_master_param,
                           mu,
                           use_nesterov,
                           regularization_method,
                           regularization_coeff,
                           multi_precision,
                           rescale_grad,
                           &meta_out_0,
                           &meta_out_1,
                           nullptr);
  }

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
850
                                    const paddle::optional<phi::DenseTensor>&,
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
                                    float,
                                    bool,
                                    const std::string&,
                                    float,
                                    bool,
                                    float,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();

  (*kernel_fn)(*dev_ctx,
               *input_param,
               *input_grad,
               *input_velocity,
               *input_learning_rate,
               input_master_param,
               mu,
               use_nesterov,
               regularization_method,
               regularization_coeff,
               multi_precision,
               rescale_grad,
               kernel_out_0,
               kernel_out_1,
               kernel_out_2);

  return api_output;
}

881 882
////////////////// Backward(grad) api impls //////////////////////

H
hong 已提交
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor> batch_norm_impl(
    const Tensor& x,
    const Tensor& scale,
    const Tensor& bias,
    const Tensor& mean,
    const Tensor& variance,
    float momentum,
    float epsilon,
    const std::string& data_layout,
    bool is_test,
    bool use_global_stats,
    bool trainable_statistics,
    bool fuse_with_relu) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  kernel_data_type = ParseDataType(x);

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(x);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }

918
  auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
H
hong 已提交
919
      "batch_norm", {kernel_backend, kernel_layout, kernel_data_type});
920
  const auto& kernel = kernel_result.kernel;
H
hong 已提交
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
  VLOG(6) << "batch_norm API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "batch_norm API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto input_x = PrepareData(x, kernel.InputAt(0), {});
  auto input_scale = PrepareData(scale, kernel.InputAt(1), {});
  auto input_bias = PrepareData(bias, kernel.InputAt(2), {});
  auto input_mean = PrepareData(mean, kernel.InputAt(3), {});
  auto input_variance = PrepareData(variance, kernel.InputAt(4), {});

  std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor> api_output;
  auto kernel_out_0 = SetKernelOutput(kernel_backend, &std::get<0>(api_output));
  std::get<1>(api_output).set_impl(mean.impl());
  std::get<2>(api_output).set_impl(variance.impl());
  auto kernel_out_1 = SetKernelOutput(kernel_backend, &std::get<1>(api_output));
  auto kernel_out_2 = SetKernelOutput(kernel_backend, &std::get<2>(api_output));
  auto kernel_out_3 = SetKernelOutput(kernel_backend, &std::get<3>(api_output));
  auto kernel_out_4 = SetKernelOutput(kernel_backend, &std::get<4>(api_output));
  auto kernel_out_5 = SetKernelOutput(kernel_backend, &std::get<5>(api_output));
  phi::MetaTensor meta_out_0(kernel_out_0);
  phi::MetaTensor meta_out_1(kernel_out_1);
  phi::MetaTensor meta_out_2(kernel_out_2);
  phi::MetaTensor meta_out_3(kernel_out_3);
  phi::MetaTensor meta_out_4(kernel_out_4);
  phi::MetaTensor meta_out_5(kernel_out_5);

  phi::BatchNormInferMeta(MakeMetaTensor(*input_x),
                          MakeMetaTensor(*input_scale),
                          MakeMetaTensor(*input_bias),
                          MakeMetaTensor(*input_mean),
                          MakeMetaTensor(*input_variance),
                          momentum,
                          epsilon,
                          data_layout,
                          is_test,
                          use_global_stats,
                          trainable_statistics,
                          fuse_with_relu,
                          &meta_out_0,
                          &meta_out_1,
                          &meta_out_2,
                          &meta_out_3,
                          &meta_out_4,
                          &meta_out_5);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    float,
                                    float,
                                    const std::string&,
                                    bool,
                                    bool,
                                    bool,
                                    bool,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  {
    (*kernel_fn)(*dev_ctx,
                 *input_x,
                 *input_scale,
                 *input_bias,
                 *input_mean,
                 *input_variance,
                 momentum,
                 epsilon,
                 data_layout,
                 is_test,
                 use_global_stats,
                 trainable_statistics,
                 fuse_with_relu,
                 kernel_out_0,
                 kernel_out_1,
                 kernel_out_2,
                 kernel_out_3,
                 kernel_out_4,
                 kernel_out_5);
  }

  return api_output;
}

1013
void imag_grad_impl(const Tensor& out_grad, Tensor* x_grad) {
Z
zyfncg 已提交
1014 1015 1016
  phi::KernelKey kernel_key{ParseBackend(out_grad),
                            out_grad.layout(),
                            phi::dtype::ToComplex(out_grad.dtype())};
1017
  auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
Z
zyfncg 已提交
1018
      "imag_grad", kernel_key);
1019
  const auto& kernel = kernel_result.kernel;
Z
zyfncg 已提交
1020 1021 1022 1023 1024 1025 1026 1027

  VLOG(6) << "imag_grad API kernel key: " << kernel_key;
  VLOG(6) << "imag_grad API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend());

  auto dense_out_grad = TensorToDenseTensor(out_grad);

1028
  auto kernel_out = SetKernelOutput(kernel_key.backend(), x_grad);
Z
zyfncg 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
  phi::MetaTensor meta_out(kernel_out);
  phi::RealAndImagGradInferMeta(*dense_out_grad, &meta_out);

  using kernel_signature = void (*)(
      const phi::DeviceContext&, const phi::DenseTensor&, phi::DenseTensor*);

  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(*dev_ctx, *dense_out_grad, kernel_out);
}

Z
zyfncg 已提交
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
void embedding_grad_impl(const Tensor& x,
                         const Tensor& weight,
                         const Tensor& out_grad,
                         int64_t padding_idx,
                         bool sparse,
                         Tensor* weight_grad) {
  DataType kernel_data_type = ParseDataType(weight);
  auto kernel_key_set = ParseKernelKeyByInputArgs(weight);
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
  VLOG(6) << "embedding_grad API kernel key: [" << kernel_key.backend() << ", "
          << kernel_key.layout() << ", " << kernel_data_type << "]";

  auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend());

  if (phi::DenseTensor::classof(weight.impl().get())) {
    std::string kernel_name =
        sparse ? "embedding_sparse_grad" : "embedding_grad";
1056
    auto kernel_result =
Z
zyfncg 已提交
1057 1058 1059
        phi::KernelFactory::Instance().SelectKernelOrThrowError(
            kernel_name,
            {kernel_key.backend(), kernel_key.layout(), kernel_data_type});
1060
    const auto& kernel = kernel_result.kernel;
Z
zyfncg 已提交
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
    VLOG(6) << kernel_name << " API kernel: " << kernel;

    auto input_x = PrepareData(x, kernel.InputAt(0), {});
    auto input_weight = PrepareData(weight, kernel.InputAt(1), {});
    auto input_out_grad = PrepareData(out_grad, kernel.InputAt(2), {});

    if (sparse) {
      auto* kernel_out =
          SetSelectedRowsKernelOutput(kernel_key.backend(), weight_grad);
      phi::MetaTensor meta_out(kernel_out);
      meta_out.set_dims(input_weight->dims());
      meta_out.set_dtype(input_weight->dtype());
      kernel_out->set_height(input_weight->dims()[0]);

      using kernel_signature = void (*)(const platform::DeviceContext&,
                                        const phi::DenseTensor&,
                                        const phi::DenseTensor&,
                                        const phi::DenseTensor&,
                                        int64_t,
                                        phi::SelectedRows*);
      auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
      (*kernel_fn)(*dev_ctx,
                   *input_x,
                   *input_weight,
                   *input_out_grad,
                   padding_idx,
                   kernel_out);
    } else {
      auto* kernel_out = SetKernelOutput(kernel_key.backend(), weight_grad);
      phi::MetaTensor meta_out(kernel_out);
      phi::UnchangedInferMeta(MakeMetaTensor(*input_weight), &meta_out);
      using kernel_signature = void (*)(const platform::DeviceContext&,
                                        const phi::DenseTensor&,
                                        const phi::DenseTensor&,
                                        const phi::DenseTensor&,
                                        int64_t,
                                        phi::DenseTensor*);
      auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
      (*kernel_fn)(*dev_ctx,
                   *input_x,
                   *input_weight,
                   *input_out_grad,
                   padding_idx,
                   kernel_out);
    }
  } else {
    std::string kernel_name = sparse ? "sparse_weight_embedding_sparse_grad"
                                     : "sparse_weight_embedding_grad";
1109
    auto kernel_result =
Z
zyfncg 已提交
1110 1111 1112
        phi::KernelFactory::Instance().SelectKernelOrThrowError(
            kernel_name,
            {kernel_key.backend(), kernel_key.layout(), kernel_data_type});
1113
    const auto& kernel = kernel_result.kernel;
Z
zyfncg 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
    VLOG(6) << kernel_name << " API kernel: " << kernel;

    auto input_x = PrepareData(x, kernel.InputAt(0), {});
    auto input_weight = TensorToSelectedRows(weight);
    auto input_out_grad = PrepareData(out_grad, kernel.InputAt(2), {});

    if (sparse) {
      auto* kernel_out =
          SetSelectedRowsKernelOutput(kernel_key.backend(), weight_grad);
      phi::MetaTensor meta_out(kernel_out);
      phi::UnchangedInferMeta(MakeMetaTensor(*input_weight), &meta_out);
      using kernel_signature = void (*)(const platform::DeviceContext&,
                                        const phi::DenseTensor&,
                                        const phi::SelectedRows&,
                                        const phi::DenseTensor&,
                                        int64_t,
                                        phi::SelectedRows*);
      auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
      (*kernel_fn)(*dev_ctx,
                   *input_x,
                   *input_weight,
                   *input_out_grad,
                   padding_idx,
                   kernel_out);
    } else {
      auto* kernel_out = SetKernelOutput(kernel_key.backend(), weight_grad);
      phi::MetaTensor meta_out(kernel_out);
      meta_out.set_dims(input_weight->GetCompleteDims());
      meta_out.set_dtype(input_weight->dtype());
      using kernel_signature = void (*)(const platform::DeviceContext&,
                                        const phi::DenseTensor&,
                                        const phi::SelectedRows&,
                                        const phi::DenseTensor&,
                                        int64_t,
                                        phi::DenseTensor*);
      auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
      (*kernel_fn)(*dev_ctx,
                   *input_x,
                   *input_weight,
                   *input_out_grad,
                   padding_idx,
                   kernel_out);
    }
  }
}

1160
void real_grad_impl(const Tensor& out_grad, Tensor* x_grad) {
Z
zyfncg 已提交
1161 1162 1163
  phi::KernelKey kernel_key{ParseBackend(out_grad),
                            out_grad.layout(),
                            phi::dtype::ToComplex(out_grad.dtype())};
1164
  auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
Z
zyfncg 已提交
1165
      "real_grad", kernel_key);
1166
  const auto& kernel = kernel_result.kernel;
Z
zyfncg 已提交
1167 1168 1169 1170 1171 1172 1173 1174

  VLOG(6) << "real_grad API kernel key: " << kernel_key;
  VLOG(6) << "real_grad API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend());

  auto dense_out_grad = TensorToDenseTensor(out_grad);

1175
  auto kernel_out = SetKernelOutput(kernel_key.backend(), x_grad);
Z
zyfncg 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
  phi::MetaTensor meta_out(kernel_out);
  phi::RealAndImagGradInferMeta(*dense_out_grad, &meta_out);

  using kernel_signature = void (*)(
      const phi::DeviceContext&, const phi::DenseTensor&, phi::DenseTensor*);

  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(*dev_ctx, *dense_out_grad, kernel_out);
}

1186 1187
}  // namespace experimental
}  // namespace paddle