cross_entropy_op.cc 14.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/cross_entropy_op.h"
S
sneaxiy 已提交
16
#include <memory>
C
chengduo 已提交
17
#include <string>
18
#include <unordered_map>
Q
Qiao Longfei 已提交
19 20 21 22

namespace paddle {
namespace operators {

S
sneaxiy 已提交
23
class CrossEntropyOpBase : public framework::OperatorWithKernel {
S
sneaxiy 已提交
24 25 26 27 28 29
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
S
sneaxiy 已提交
30

S
sneaxiy 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
    PADDLE_ENFORCE(ctx->HasOutput("Y"), "Output(Y) should be not null.");

    auto x_dims = ctx->GetInputDim("X");
    auto label_dims = ctx->GetInputDim("Label");
    int rank = x_dims.size();
    PADDLE_ENFORCE_EQ(rank, label_dims.size(),
                      "Input(X) and Input(Label) shall have the same rank.");
    bool check = true;
    if ((!ctx->IsRuntime()) && (framework::product(x_dims) <= 0 ||
                                framework::product(label_dims) <= 0)) {
      check = false;
    }
    if (check) {
      PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
                        framework::slice_ddim(label_dims, 0, rank - 1),
                        "Input(X) and Input(Label) shall have the same shape "
                        "except the last dimension.");
    }
S
sneaxiy 已提交
49 50

    if (IsSoftLabel(ctx)) {
S
sneaxiy 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
      if (check) {
        PADDLE_ENFORCE_EQ(x_dims[rank - 1], label_dims[rank - 1],
                          "If Attr(soft_label) == true, the last dimension of "
                          "Input(X) and Input(Label) should be equal.");
      }
    } else {
      PADDLE_ENFORCE_EQ(label_dims[rank - 1], 1UL,
                        "If Attr(softLabel) == false, the last dimension of "
                        "Input(Label) should be 1.");
    }

    auto y_dims = x_dims;
    y_dims[rank - 1] = 1;
    ctx->SetOutputDim("Y", y_dims);
    ctx->ShareLoD("X", /*->*/ "Y");
  }

 protected:
  // Explicitly set that the data type of computation kernel of cross_entropy
  // is determined by its input "X".
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   ctx.device_context());
  }
S
sneaxiy 已提交
76 77 78 79

  virtual bool IsSoftLabel(framework::InferShapeContext* ctx) const {
    return ctx->Attrs().Get<bool>("soft_label");
  }
S
sneaxiy 已提交
80 81
};

S
sneaxiy 已提交
82
class CrossEntropyGradientOpBase : public framework::OperatorWithKernel {
S
sneaxiy 已提交
83 84 85
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

S
sneaxiy 已提交
86
  void InferShape(framework::InferShapeContext* ctx) const {
S
sneaxiy 已提交
87 88 89 90 91 92
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
                   "Input(Y@GRAD) shoudl be not null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "Output(X@GRAD) should be not null.");

S
sneaxiy 已提交
93
    auto x_dims = GetXDim(ctx);
S
sneaxiy 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    auto label_dims = ctx->GetInputDim("Label");
    auto dy_dims = ctx->GetInputDim(framework::GradVarName("Y"));
    int rank = x_dims.size();
    PADDLE_ENFORCE_EQ(dy_dims.size(), rank,
                      "Input(Y@Grad) and Input(X) should have the same rank.");
    PADDLE_ENFORCE_EQ(label_dims.size(), rank,
                      "Input(Label) and Input(X) should have the same rank.");

    bool check = true;
    if ((!ctx->IsRuntime()) && (framework::product(x_dims) <= 0 ||
                                framework::product(label_dims) <= 0)) {
      check = false;
    }

    if (check) {
      PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
                        framework::slice_ddim(label_dims, 0, rank - 1),
                        "The Input(X) and Input(Label) should have the same "
                        "shape except the last dimension.");
      PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
                        framework::slice_ddim(dy_dims, 0, rank - 1),
                        "The Input(X) and Input(Y@Grad) should have the same "
                        "shape except the last dimension.");
    }
S
sneaxiy 已提交
118
    if (IsSoftLabel(ctx)) {
S
sneaxiy 已提交
119 120 121 122 123 124 125 126 127 128 129 130
      if (check) {
        PADDLE_ENFORCE_EQ(
            x_dims[rank - 1], label_dims[rank - 1],
            "When Attr(soft_label) == true, the last dimension of "
            "Input(X) and Input(Label) should be equal.");
      }
    } else {
      PADDLE_ENFORCE_EQ(label_dims[rank - 1], 1,
                        "When Attr(soft_label) == false, the last dimension of "
                        "Input(Label) should be 1.");
    }
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
S
sneaxiy 已提交
131 132 133 134
    PADDLE_ENFORCE_EQ(dy_dims[rank - 1], 1,
                      "The last dimension of Input(Y@Grad) should be 1.");
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    ctx->ShareLoD(VarNameWithXLoD(), framework::GradVarName("X"));
S
sneaxiy 已提交
135 136 137 138 139 140 141
  }

 protected:
  // Explicitly set that the data type of computation kernel of cross_entropy
  // is determined by its input "X".
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
S
sneaxiy 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    return framework::OpKernelType(
        ctx.Input<Tensor>(framework::GradVarName("Y"))->type(),
        ctx.device_context());
  }

  virtual framework::DDim GetXDim(framework::InferShapeContext* ctx) const {
    return ctx->GetInputDim("X");
  }

  virtual const char* VarNameWithXLoD() const { return "X"; }

  virtual bool IsSoftLabel(framework::InferShapeContext* ctx) const {
    return ctx->Attrs().Get<bool>("soft_label");
  }
};

class CrossEntropyOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Y"}};
S
sneaxiy 已提交
164 165 166
  }
};

167
class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
168
 public:
Y
Yu Yang 已提交
169
  void Make() override {
C
caoying03 已提交
170
    AddInput("X",
F
stash  
fengjiayi 已提交
171 172 173 174 175 176 177 178 179 180
             "(Tensor, default Tensor<float>), a tensor whose last dimension "
             "size is equal to the number of classes. This input is a "
             "probability computed by the previous operator, which is almost "
             "always the result of a softmax operator.");
    AddInput(
        "Label",
        "(Tensor), the tensor which represents the ground truth. It has the "
        "same shape with 'X' except the last dimension. When soft_label is set "
        "to false, the last dimension size is 1; when soft_label is set to "
        "true, the last dimension size is equal to the number of classes.");
C
caoying03 已提交
181
    AddOutput("Y",
F
stash  
fengjiayi 已提交
182 183 184
              "(Tensor, default Tensor<float>), a tensor whose shape is same "
              "with 'X' except that the last dimension size is 1. It "
              "represents the cross entropy loss.");
C
caoying03 已提交
185 186 187
    AddAttr<bool>("soft_label",
                  "(bool, default false), a flag indicating whether to "
                  "interpretate the given labels as soft labels.")
188
        .SetDefault(false);
189 190 191 192 193
    AddAttr<int>("ignore_index",
                 "(int, default -100), Specifies a target value that is"
                 "ignored and does not contribute to the input gradient."
                 "Only valid if soft_label is set to False")
        .SetDefault(-100);
Q
Qiao Longfei 已提交
194
    AddComment(R"DOC(
195
CrossEntropy Operator.
Q
Qiao Longfei 已提交
196

F
stash  
fengjiayi 已提交
197 198 199 200 201 202
The input 'X' and 'Label' will first be logically flattened to 2-D matrixs. 
The matrix's second dimension(row length) is as same as the original last 
dimension, and the first dimension(column length) is the product of all other 
original dimensions. Then the softmax computation will take palce on each raw 
of flattened matrixs.

203 204 205
It supports both standard cross-entropy and soft-label cross-entropy loss
computation.
1) One-hot cross-entropy:
206
    soft_label = false, Label[i, 0] indicates the class index for sample i:
207

K
Kexin Zhao 已提交
208
                $Y[i] = -\log(X[i, Label[i]])$
Q
Qiao Longfei 已提交
209

210
2) Soft-label cross-entropy:
211
    soft_label = true, Label[i, j] indicates the soft label of class j
212
    for sample i:
213

K
Kexin Zhao 已提交
214
                $Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}$
215

216
   Please make sure that in this case the summuation of each row of Label
217 218 219 220 221 222
   equals one.

3) One-hot cross-entropy with vecterized Input(Label):
     As a special case of 2), when each row of Input(Label) has only one
     non-zero element (equals 1), soft-label cross-entropy degenerates to a
     one-hot cross-entropy with one-hot label representation.
D
dangqingqing 已提交
223

K
Kexin Zhao 已提交
224 225 226
Both the input X and Label can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input X.

Q
Qiao Longfei 已提交
227 228 229
)DOC");
  }
};
C
chengduo 已提交
230

S
sneaxiy 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
class CrossEntropyGradientOp : public CrossEntropyGradientOpBase {
 public:
  using CrossEntropyGradientOpBase::CrossEntropyGradientOpBase;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
    CrossEntropyGradientOpBase::InferShape(ctx);
  }
};

class CrossEntropyOp2 : public CrossEntropyOpBase {
 public:
  using CrossEntropyOpBase::CrossEntropyOpBase;

  void InferShape(framework::InferShapeContext* ctx) const override {
    CrossEntropyOpBase::InferShape(ctx);

    PADDLE_ENFORCE(ctx->HasOutput("XShape"),
                   "Output(XShape) should be not null.");

S
sneaxiy 已提交
251 252
    PADDLE_ENFORCE(ctx->HasOutput("MatchX"),
                   "Output(MatchX) should be not null.");
S
sneaxiy 已提交
253 254 255 256
    auto x_dims = ctx->GetInputDim("X");
    auto x_dims_vec = framework::vectorize(x_dims);
    x_dims_vec.push_back(0);
    ctx->SetOutputDim("XShape", framework::make_ddim(x_dims_vec));
S
sneaxiy 已提交
257 258
    x_dims[x_dims.size() - 1] = 1;
    ctx->SetOutputDim("MatchX", x_dims);
S
sneaxiy 已提交
259 260 261
    ctx->ShareLoD("X", /*->*/ "XShape");
  }

S
sneaxiy 已提交
262
 protected:
S
sneaxiy 已提交
263 264 265 266 267 268 269 270
  bool IsSoftLabel(framework::InferShapeContext* ctx) const override {
    return false;
  }
};

class CrossEntropyGradientOp2 : public CrossEntropyGradientOpBase {
 public:
  using CrossEntropyGradientOpBase::CrossEntropyGradientOpBase;
S
sneaxiy 已提交
271 272 273 274
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("MatchX"), "Input(MatchX) must exist");
    CrossEntropyGradientOpBase::InferShape(ctx);
  }
S
sneaxiy 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305

 protected:
  virtual framework::DDim GetXDim(framework::InferShapeContext* ctx) const {
    auto x_shape = ctx->GetInputDim("XShape");
    return framework::DDim(x_shape.Get(), x_shape.size() - 1);
  }

  virtual const char* VarNameWithXLoD() const { return "XShape"; }

  virtual bool IsSoftLabel(framework::InferShapeContext* ctx) const {
    return false;
  }
};

class CrossEntropyOpMaker2 : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor, default Tensor<float>), a tensor whose last dimension "
             "size is equal to the number of classes. This input is a "
             "probability computed by the previous operator, which is almost "
             "always the result of a softmax operator.");
    AddInput(
        "Label",
        "(Tensor), the tensor which represents the ground truth. It has the "
        "same shape with 'X' except the last dimension. One hot Tensor.");
    AddOutput("Y",
              "(Tensor, default Tensor<float>), a tensor whose shape is same "
              "with 'X' except that the last dimension size is 1. It "
              "represents the cross entropy loss.");
    AddOutput("XShape", "Temporaily variable to save shape and LoD of X.");
S
sneaxiy 已提交
306 307
    AddOutput("MatchX",
              "X value that matches label, used for gradient computation.");
S
sneaxiy 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
    AddAttr<int>("ignore_index",
                 "(int, default -100), Specifies a target value that is"
                 "ignored and does not contribute to the input gradient."
                 "Only valid if soft_label is set to False")
        .SetDefault(-100);
    AddComment(R"DOC(
Hard-label CrossEntropy Operator.

The input 'X' and 'Label' will first be logically flattened to 2-D matrixs. 
The matrix's second dimension(row length) is as same as the original last 
dimension, and the first dimension(column length) is the product of all other 
original dimensions. Then the softmax computation will take palce on each raw 
of flattened matrixs.

Only support hard label.

Both the input X and Label can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input X.

)DOC");
  }
};

class CrossEntropyGradOpDescMaker2 : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("cross_entropy_grad2");
    op->SetInput("Label", Input("Label"));
S
sneaxiy 已提交
340
    op->SetInput("MatchX", Output("MatchX"));
S
sneaxiy 已提交
341 342 343 344 345
    op->SetInput("XShape", Output("XShape"));
    op->SetInput(framework::GradVarName("Y"), OutputGrad("Y"));
    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetAttrMap(Attrs());
    return op;
S
sneaxiy 已提交
346 347
  }
};
S
sneaxiy 已提交
348

Q
Qiao Longfei 已提交
349 350 351
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
352
namespace ops = paddle::operators;
353 354
using CPUCtx = paddle::platform::CPUDeviceContext;

S
sneaxiy 已提交
355 356
REGISTER_OPERATOR(cross_entropy, ops::CrossEntropyOpBase,
                  ops::CrossEntropyOpMaker, ops::CrossEntropyOpInferVarType,
357 358
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(cross_entropy_grad, ops::CrossEntropyGradientOp);
359 360
REGISTER_OP_CPU_KERNEL(cross_entropy, ops::CrossEntropyOpKernel<CPUCtx, float>,
                       ops::CrossEntropyOpKernel<CPUCtx, double>);
361
REGISTER_OP_CPU_KERNEL(cross_entropy_grad,
362 363
                       ops::CrossEntropyGradientOpKernel<CPUCtx, float>,
                       ops::CrossEntropyGradientOpKernel<CPUCtx, double>);
S
sneaxiy 已提交
364 365 366 367 368 369 370 371 372 373 374

REGISTER_OPERATOR(cross_entropy2, ops::CrossEntropyOp2,
                  ops::CrossEntropyOpMaker2, ops::CrossEntropyOpInferVarType,
                  ops::CrossEntropyGradOpDescMaker2);
REGISTER_OPERATOR(cross_entropy_grad2, ops::CrossEntropyGradientOp2);
REGISTER_OP_CPU_KERNEL(cross_entropy2,
                       ops::CrossEntropyOpKernel2<CPUCtx, float>,
                       ops::CrossEntropyOpKernel2<CPUCtx, double>);
REGISTER_OP_CPU_KERNEL(cross_entropy_grad2,
                       ops::CrossEntropyGradientOpKernel2<CPUCtx, float>,
                       ops::CrossEntropyGradientOpKernel2<CPUCtx, double>);