data_transform.cc 5.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/data_transform.h"
16

Y
Yi Wang 已提交
17 18 19
#include "paddle/fluid/framework/data_device_transform.h"
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/data_type_transform.h"
Q
Qiao Longfei 已提交
20

W
wanghuancoder 已提交
21 22 23 24 25 26
namespace paddle {
namespace framework {
class Variable;
}  // namespace framework
}  // namespace paddle

27 28 29 30
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

Q
Qiao Longfei 已提交
31 32 33
namespace paddle {
namespace framework {

Y
yuyang18 已提交
34
static void PassTensorData(Tensor *from, Tensor *to) {
35 36 37 38
  to->ShareDataWith(*from);
  *from = Tensor();
}

Y
yuyang18 已提交
39 40 41
void TransformData(const OpKernelType &expected_kernel_type,
                   const OpKernelType &kernel_type_for_var,
                   const Tensor &input_tensor, Tensor *output_tensor) {
42 43 44 45
  bool transformed = false;
  Tensor in;
  in.ShareDataWith(input_tensor);
  Tensor out;
46 47
  const DataLayout lin = kernel_type_for_var.data_layout_;
  const DataLayout lout = expected_kernel_type.data_layout_;
48
  // do layout transform
M
mozga-intel 已提交
49
  if (NeedTransformLayout(lout, lin)) {
50
#ifdef PADDLE_WITH_MKLDNN
M
mozga-intel 已提交
51
    if (lin == DataLayout::kMKLDNN || lout == DataLayout::kMKLDNN) {
52 53 54 55
      PADDLE_ENFORCE_EQ(
          !(lin == DataLayout::kMKLDNN && lout == DataLayout::kMKLDNN), true,
          platform::errors::PreconditionNotMet(
              "No layout transform needed between two MKLDNN OPKernels."));
M
mozga-intel 已提交
56 57 58 59

      if (lin != DataLayout::kMKLDNN && lout == DataLayout::kMKLDNN) {
        // Case1 - transform from Non-MKLDNN OPKernel to MKLDNN OPKernel
        // Just set layout/format. No real transform occur
60

61 62 63
        auto out_format = platform::MKLDNNFormatForSize(in.dims().size(),
                                                        ToMKLDNNFormat(lin));
        out.ShareDataWith(input_tensor);
64 65
        // For NHWC data we need reshape of tensors as MKL-DNN
        // is expecting NHWC dims description order
J
Jacek Czaja 已提交
66 67 68 69 70 71 72
        if (lin == DataLayout::kNHWC) {
          platform::MatchShapeToLayout(&out, lin, lout);
          // We register only NHWC assuming that model is consistent e.g. either
          // NHWC or NCHW
          paddle::platform::MKLDNNDeviceContext::tls()
              .set_cur_paddle_data_layout(lin);
        }
73 74
        out.set_layout(DataLayout::kMKLDNN);
        out.set_format(out_format);
M
mozga-intel 已提交
75 76 77 78 79 80 81 82 83 84
      } else {
        // Case2 - transfrom from MKLDNN OPKernel to Non-MKLDNN OPKernel
        // Do transform via MKLDNN lib
        TransDataLayoutFromMKLDNN(kernel_type_for_var, expected_kernel_type, in,
                                  &out);
      }
    } else {
      // Case3 - transfrom between Non-MKLDNN OPKernels
      TransDataLayout(kernel_type_for_var, expected_kernel_type, in, &out);
    }
85 86 87 88
#else
    // Case3 - transfrom between Non-MKLDNN OPKernels
    TransDataLayout(kernel_type_for_var, expected_kernel_type, in, &out);
#endif
89 90 91 92
    transformed = true;
    PassTensorData(&out, &in);
  }

93
  // do data type transform
Q
Qiao Longfei 已提交
94 95 96 97 98 99
  if (expected_kernel_type.data_type_ != kernel_type_for_var.data_type_) {
    TransDataType(kernel_type_for_var, expected_kernel_type, in, &out);
    transformed = true;
    PassTensorData(&out, &in);
  }

100
  // do device transform
101 102
  if (!platform::is_same_place(kernel_type_for_var.place_,
                               expected_kernel_type.place_)) {
Q
Qiao Longfei 已提交
103
    TransDataDevice(in, expected_kernel_type.place_, &out);
104 105
    transformed = true;
    PassTensorData(&out, &in);
106
  }
107

108 109 110 111
  PADDLE_ENFORCE_EQ(
      transformed, true,
      platform::errors::PreconditionNotMet(
          "No transform is applied for the data needs to be transformed."));
112 113
  // get output data
  output_tensor->ShareDataWith(in);
114 115
}

Y
yuyang18 已提交
116 117
void SetTensorToVariable(const Variable &in_var, const Tensor &tensor,
                         Variable *out_var) {
118
  if (in_var.IsType<LoDTensor>()) {
Y
yuyang18 已提交
119 120
    auto &in_lod_tensor = in_var.Get<LoDTensor>();
    auto *tran_lod_tensor = out_var->GetMutable<LoDTensor>();
121 122
    tran_lod_tensor->set_lod(in_lod_tensor.lod());
    tran_lod_tensor->set_layout(in_lod_tensor.layout());
J
Jacek Czaja 已提交
123 124 125
#ifdef PADDLE_WITH_MKLDNN
    tran_lod_tensor->set_format(in_lod_tensor.format());
#endif
126
    tran_lod_tensor->ShareDataWith(tensor);
127 128 129
  } else if (in_var.IsType<pten::SelectedRows>()) {
    auto &in_selected_rows = in_var.Get<pten::SelectedRows>();
    auto *trans_selected_rows = out_var->GetMutable<pten::SelectedRows>();
130 131 132 133
    trans_selected_rows->set_height(in_selected_rows.height());
    trans_selected_rows->set_rows(in_selected_rows.rows());
    trans_selected_rows->mutable_value()->ShareDataWith(tensor);
  } else {
134 135 136 137
    PADDLE_THROW(platform::errors::Unavailable(
        "Unsupported variable type, only supports LoDTensor or SelectedRows, "
        "but the input variable type is %s.",
        ToTypeName(in_var.Type())));
138 139 140
  }
}

Q
Qiao Longfei 已提交
141 142
}  // namespace framework
}  // namespace paddle