nanmedian_grad_kernel.cu 4.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/platform/device/gpu/gpu_launch_config.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_meta.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/nanmedian_grad_kernel.h"

namespace phi {

using paddle::platform::PADDLE_CUDA_NUM_THREADS;
inline int GET_BLOCKS(const int N) {
  return (N + PADDLE_CUDA_NUM_THREADS - 1) / PADDLE_CUDA_NUM_THREADS;
}

template <typename T>
__global__ void KernelNanmedianGrad(const T* x_ptr,
                                    const int64_t* medians_ptr,
                                    const T* out_grad_ptr,
                                    T* x_grad_ptr,
                                    int64_t stride,
                                    int64_t pre_dim,
                                    T div_factor) {
  CUDA_KERNEL_LOOP(index, pre_dim) {
    int64_t offset = index * stride;
    if (medians_ptr[2 * index] >= 0) {
      if (medians_ptr[2 * index] == medians_ptr[2 * index + 1]) {
        x_grad_ptr[offset + medians_ptr[2 * index]] = out_grad_ptr[index];
      } else {
        x_grad_ptr[offset + medians_ptr[2 * index]] =
            out_grad_ptr[index] / div_factor;
        x_grad_ptr[offset + medians_ptr[2 * index + 1]] =
            out_grad_ptr[index] / div_factor;
      }
    }
  }
}

template <typename T, typename Context>
void CalcMedianGradKernel(const Context& dev_ctx,
                          const DenseTensor& x,
                          const DenseTensor& median_index,
                          const DenseTensor& out_grad,
                          DenseTensor* x_grad,
                          T* x_grad_ptr) {
  phi::funcs::SetConstant<Context, T> set_zero;
  set_zero(dev_ctx, x_grad, static_cast<T>(0));

  auto stream = dev_ctx.stream();
  const T* x_ptr = x.data<T>();
  const int64_t* m_ptr = median_index.data<int64_t>();
  const T* out_grad_ptr = out_grad.data<T>();

  int64_t numel = x.numel();
  auto x_dim = x.dims();
  int64_t x_rank = x_dim.size();
  int64_t stride = x_dim[x_rank - 1];
  int64_t pre_dim = numel / stride;

  T div_factor = static_cast<T>(2.0);
  KernelNanmedianGrad<
      T><<<GET_BLOCKS(pre_dim), PADDLE_CUDA_NUM_THREADS, 0, stream>>>(
      x_ptr, m_ptr, out_grad_ptr, x_grad_ptr, stride, pre_dim, div_factor);
}

template <typename T, typename Context>
void BaseMedianGradKernel(const Context& dev_ctx,
                          const DenseTensor& x,
                          const DenseTensor& median_index,
                          const DenseTensor& out_grad,
                          const IntArray& axes,
                          DenseTensor* x_grad) {
  auto rank = x.dims().size();
  T* x_grad_ptr = dev_ctx.template Alloc<T>(x_grad);
  if (axes.size() && (rank > 1)) {
    DenseTensor tmp_x_grad(*x_grad);
    CalcMedianGradKernel<T, Context>(
        dev_ctx, x, median_index, out_grad, &tmp_x_grad, x_grad_ptr);
    PostprocessMedianGradKernel<T, Context>(dev_ctx, &tmp_x_grad, axes, x_grad);
  } else {
    CalcMedianGradKernel<T, Context>(
        dev_ctx, x, median_index, out_grad, x_grad, x_grad_ptr);
  }
}

template <typename T, typename Context>
void NanmedianGradKernel(const Context& dev_ctx,
                         const DenseTensor& input,
                         const DenseTensor& median_index,
                         const DenseTensor& out_grad,
                         const IntArray& axes,
                         bool keep_dim,
                         DenseTensor* x_grad) {
  BaseMedianGradKernel<T, Context>(
      dev_ctx, input, median_index, out_grad, axes, x_grad);
}

}  // namespace phi

PD_REGISTER_KERNEL(nanmedian_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::NanmedianGradKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   phi::dtype::float16) {}