test_mnist_if_else_op.py 5.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import paddle.v2.fluid.layers as layers
16
from paddle.v2.fluid.framework import Program, program_guard, default_main_program, default_startup_program
Y
Yu Yang 已提交
17 18 19 20 21 22 23 24 25 26
from paddle.v2.fluid.executor import Executor
from paddle.v2.fluid.optimizer import MomentumOptimizer
import paddle.v2.fluid.core as core
import paddle.v2 as paddle
import unittest
import numpy as np


class TestMNISTIfElseOp(unittest.TestCase):
    def test_raw_api(self):
27 28 29 30
        prog = Program()
        startup_prog = Program()
        with program_guard(prog, startup_prog):
            image = layers.data(name='x', shape=[784], dtype='float32')
Y
Yu Yang 已提交
31

32
            label = layers.data(name='y', shape=[1], dtype='int64')
Y
Yu Yang 已提交
33

34 35 36 37 38
            limit = layers.fill_constant_batch_size_like(
                input=label, dtype='int64', shape=[1], value=5.0)
            cond = layers.less_than(x=label, y=limit)
            true_image, false_image = layers.split_lod_tensor(
                input=image, mask=cond)
Y
Yu Yang 已提交
39

40 41
            true_out = layers.create_tensor(dtype='float32')
            true_cond = layers.ConditionalBlock([true_image])
Y
Yu Yang 已提交
42

43 44 45 46
            with true_cond.block():
                hidden = layers.fc(input=true_image, size=100, act='tanh')
                prob = layers.fc(input=hidden, size=10, act='softmax')
                layers.assign(input=prob, output=true_out)
Y
Yu Yang 已提交
47

48 49
            false_out = layers.create_tensor(dtype='float32')
            false_cond = layers.ConditionalBlock([false_image])
Y
Yu Yang 已提交
50

51 52 53 54
            with false_cond.block():
                hidden = layers.fc(input=false_image, size=200, act='tanh')
                prob = layers.fc(input=hidden, size=10, act='softmax')
                layers.assign(input=prob, output=false_out)
Y
Yu Yang 已提交
55

56 57 58 59
            prob = layers.merge_lod_tensor(
                in_true=true_out, in_false=false_out, mask=cond, x=image)
            loss = layers.cross_entropy(input=prob, label=label)
            avg_loss = layers.mean(x=loss)
Y
Yu Yang 已提交
60

61 62
            optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(avg_loss, startup_prog)
Y
Yu Yang 已提交
63 64 65 66 67 68 69 70 71

        train_reader = paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.mnist.train(), buf_size=8192),
            batch_size=200)

        place = core.CPUPlace()
        exe = Executor(place)

72
        exe.run(startup_prog)
Y
Yu Yang 已提交
73 74 75 76 77 78 79
        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for data in train_reader():
                x_data = np.array(map(lambda x: x[0], data)).astype("float32")
                y_data = np.array(map(lambda x: x[1], data)).astype("int64")
                y_data = np.expand_dims(y_data, axis=1)

80
                outs = exe.run(prog,
D
dzhwinter 已提交
81 82 83
                               feed={'x': x_data,
                                     'y': y_data},
                               fetch_list=[avg_loss])
Y
Yu Yang 已提交
84 85 86 87 88 89
                print outs[0]
                if outs[0] < 1.0:
                    return
        self.assertFalse(True)

    def test_ifelse(self):
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
        prog = Program()
        startup_prog = Program()
        with program_guard(prog, startup_prog):
            image = layers.data(name='x', shape=[784], dtype='float32')

            label = layers.data(name='y', shape=[1], dtype='int64')

            limit = layers.fill_constant_batch_size_like(
                input=label, dtype='int64', shape=[1], value=5.0)
            cond = layers.less_than(x=label, y=limit)
            ie = layers.IfElse(cond)

            with ie.true_block():
                true_image = ie.input(image)
                hidden = layers.fc(input=true_image, size=100, act='tanh')
                prob = layers.fc(input=hidden, size=10, act='softmax')
                ie.output(prob)

            with ie.false_block():
                false_image = ie.input(image)
                hidden = layers.fc(input=false_image, size=200, act='tanh')
                prob = layers.fc(input=hidden, size=10, act='softmax')
                ie.output(prob)

            prob = ie()
            loss = layers.cross_entropy(input=prob[0], label=label)
            avg_loss = layers.mean(x=loss)

            optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(avg_loss, startup_prog)
Y
Yu Yang 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133
        train_reader = paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.mnist.train(), buf_size=8192),
            batch_size=200)

        place = core.CPUPlace()
        exe = Executor(place)

        exe.run(kwargs['startup_program'])
        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for data in train_reader():
                x_data = np.array(map(lambda x: x[0], data)).astype("float32")
                y_data = np.array(map(lambda x: x[1], data)).astype("int64")
D
dzhwinter 已提交
134
                y_data = y_data.reshape((y_data.shape[0], 1))
Y
Yu Yang 已提交
135

D
dzhwinter 已提交
136 137 138 139
                outs = exe.run(kwargs['main_program'],
                               feed={'x': x_data,
                                     'y': y_data},
                               fetch_list=[avg_loss])
Y
Yu Yang 已提交
140 141 142 143 144 145 146
                print outs[0]
                if outs[0] < 1.0:
                    return
        self.assertFalse(True)


if __name__ == '__main__':
147 148
    # temp disable if else unittest since it could be buggy.
    exit(0)