lookup_table_op.h 9.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16

#pragma once

17 18 19
#include <string>
#include <vector>

Y
Yi Wang 已提交
20 21 22 23
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
M
minqiyang 已提交
24
#include "paddle/fluid/operators/math/blas.h"
25 26 27 28

namespace paddle {
namespace operators {

C
chengduoZH 已提交
29
using Tensor = framework::Tensor;
F
fengjiayi 已提交
30
using LoDTensor = framework::LoDTensor;
31
using SelectedRows = framework::SelectedRows;
32 33
using DDim = framework::DDim;

Q
qiaolongfei 已提交
34
constexpr int64_t kNoPadding = -1;
35 36

template <typename T>
Y
Yu Yang 已提交
37
class LookupTableKernel : public framework::OpKernel<T> {
38
 public:
39
  void Compute(const framework::ExecutionContext &context) const override {
40 41
    auto *ids_t = context.Input<LoDTensor>("Ids");      // int tensor
    auto *output_t = context.Output<LoDTensor>("Out");  // float tensor
42
    auto *table_var = context.InputVar("W");
43

H
hong 已提交
44 45 46
    auto id_name = context.InputNames("Ids").front();
    auto embedding_name = context.InputNames("W").front();
    auto out_name = context.OutputNames("Out").front();
Q
Qiao Longfei 已提交
47

48 49
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");
    bool is_test = context.Attr<bool>("is_test");
Q
Qiao Longfei 已提交
50

51 52
    int64_t *ids = const_cast<int64_t *>(ids_t->data<int64_t>());
    int64_t ids_numel = ids_t->numel();
Q
Qiao Longfei 已提交
53

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
    if (table_var->IsType<LoDTensor>()) {
      auto *table_t = context.Input<LoDTensor>("W");
      int64_t row_number = table_t->dims()[0];
      int64_t row_width = table_t->dims()[1];

      auto *table = table_t->data<T>();
      auto *output = output_t->mutable_data<T>(context.GetPlace());

      for (int64_t i = 0; i < ids_numel; ++i) {
        if (padding_idx != kNoPadding && ids[i] == padding_idx) {
          memset(output + i * row_width, 0, row_width * sizeof(T));
        } else {
          PADDLE_ENFORCE_LT(
              ids[i], row_number,
              platform::errors::InvalidArgument(
                  "Variable value (input) of OP(fluid.layers.embedding) "
                  "expected >= 0 and < %ld, but got %ld. Please check input "
                  "value.",
                  row_number, ids[i]));
          PADDLE_ENFORCE_GE(
              ids[i], 0,
              platform::errors::InvalidArgument(
                  "Variable value (input) of OP(fluid.layers.embedding) "
                  "expected >= 0 and < %ld, but got %ld. Please check input "
                  "value.",
                  row_number, ids[i]));
          memcpy(output + i * row_width, table + ids[i] * row_width,
                 row_width * sizeof(T));
82
        }
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
      }

    } else if (table_var->IsType<SelectedRows>()) {
      const auto &table_t = table_var->Get<SelectedRows>();
      int64_t row_width = table_t.value().dims()[1];
      const auto *table = table_t.value().data<T>();
      auto *output = output_t->mutable_data<T>(context.GetPlace());
      auto input_data_type = table_t.value().type();
      for (int64_t i = 0; i < ids_numel; ++i) {
        if (padding_idx != kNoPadding && ids[i] == padding_idx) {
          memset(output + i * row_width, 0, row_width * sizeof(T));
        } else {
          PADDLE_ENFORCE_GE(
              ids[i], 0,
              platform::errors::InvalidArgument(
                  "Variable value (input) of OP(fluid.layers.embedding) "
                  "expected >= 0. But received %ld",
                  ids[i]));
          if (is_test) {
            auto id_index = table_t.GetIndexFromId(ids[i]);

            if (id_index != -1) {
              if (input_data_type == framework::proto::VarType::INT8) {
                memcpy(output + i * row_width, table + id_index * row_width,
                       row_width * sizeof(T));
              } else {
                auto blas =
                    math::GetBlas<platform::CPUDeviceContext, T>(context);
                blas.VCOPY(row_width, table + id_index * row_width,
                           output + i * row_width);
              }
            } else {
              memset(output + i * row_width, 0, row_width * sizeof(T));
            }
Q
Qiao Longfei 已提交
117
          } else {
118
            auto id_index = table_t.Index(ids[i]);
119 120
            PADDLE_ENFORCE_GE(
                ids[i], 0,
121 122 123 124
                platform::errors::InvalidArgument(
                    "Variable value (input) of OP(fluid.layers.embedding) "
                    "expected >= 0. But received %ld",
                    ids[i]));
125
            PADDLE_ENFORCE_GE(
126 127 128 129
                id_index, 0,
                platform::errors::InvalidArgument(
                    "the input key should be exists. But received %d.",
                    id_index));
130

131 132 133 134 135 136 137 138
            if (input_data_type == framework::proto::VarType::INT8) {
              memcpy(output + i * row_width, table + id_index * row_width,
                     row_width * sizeof(T));
            } else {
              auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
              blas.VCOPY(row_width, table + id_index * row_width,
                         output + i * row_width);
            }
Q
Qiao Longfei 已提交
139
          }
140 141
        }
      }
142 143 144 145 146
    }
  }
};

template <typename T>
Y
Yu Yang 已提交
147
class LookupTableGradKernel : public framework::OpKernel<T> {
148
 public:
149
  void Compute(const framework::ExecutionContext &context) const override {
Q
qiaolongfei 已提交
150 151 152 153 154 155 156 157
    auto *table_var = context.InputVar("W");
    DDim table_dim;
    if (table_var->IsType<LoDTensor>()) {
      table_dim = context.Input<LoDTensor>("W")->dims();
    } else if (table_var->IsType<SelectedRows>()) {
      auto *table_t = context.Input<SelectedRows>("W");
      table_dim = table_t->value().dims();
    } else {
158
      PADDLE_THROW(platform::errors::InvalidArgument(
Q
qiaolongfei 已提交
159
          "The parameter W of a LookupTable "
160
          "must be either LoDTensor or SelectedRows"));
Q
qiaolongfei 已提交
161 162
    }

163
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");
164
    bool is_sparse = context.Attr<bool>("is_sparse");
165 166
    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
167
    if (is_sparse) {
168 169 170
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<SelectedRows>(framework::GradVarName("W"));
171

172
      auto *ids_data = ids->data<int64_t>();
173
      int64_t ids_num = ids->numel();
174

M
minqiyang 已提交
175
      std::vector<int64_t> new_rows;
M
minqiyang 已提交
176 177
      new_rows.resize(ids_num);
      std::memcpy(&new_rows[0], ids_data, ids_num * sizeof(int64_t));
178
      d_table->set_rows(new_rows);
179

180
      auto *d_table_value = d_table->mutable_value();
181
      d_table_value->Resize({ids_num, table_dim[1]});
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
      d_table_value->mutable_data<T>(context.GetPlace());
      d_table->set_height(table_dim[0]);

      auto *d_output_data = d_output->data<T>();
      auto *d_table_data = d_table_value->data<T>();

      auto d_output_dims = d_output->dims();
      auto d_output_dims_2d =
          framework::flatten_to_2d(d_output_dims, d_output_dims.size() - 1);
      PADDLE_ENFORCE_EQ(d_table_value->dims(), d_output_dims_2d,
                        platform::errors::InvalidArgument(
                            "ShapeError: The shape of lookup_table@Grad and "
                            "output@Grad should be same. "
                            "But received lookup_table@Grad's shape = [%s], "
                            "output@Grad's shape = [%s].",
                            d_table_value->dims(), d_output_dims_2d));
      memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel());
199
    } else {
200 201 202
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<LoDTensor>(framework::GradVarName("W"));
203

204
      auto *ids_data = ids->data<int64_t>();
205

206 207
      int64_t N = table_dim[0];
      int64_t D = table_dim[1];
208

209 210
      auto *d_output_data = d_output->data<T>();
      auto *d_table_data = d_table->mutable_data<T>(context.GetPlace());
211

212 213
      memset(d_table_data, 0, d_table->numel() * sizeof(T));

214
      for (int64_t i = 0; i < ids->numel(); ++i) {
Q
Qiao Longfei 已提交
215 216 217 218
        if (padding_idx != kNoPadding && ids_data[i] == padding_idx) {
          // the gradient of padding_idx should be 0, already done by memset, so
          // do nothing.
        } else {
219 220
          PADDLE_ENFORCE_LT(
              ids_data[i], N,
221 222 223 224 225
              platform::errors::InvalidArgument(
                  "Variable value (input) of OP(fluid.layers.embedding) "
                  "expected >= 0 and < %ld, but got %ld. Please check input "
                  "value.",
                  N, ids_data[i]));
226 227
          PADDLE_ENFORCE_GE(
              ids_data[i], 0,
228 229 230 231 232
              platform::errors::InvalidArgument(
                  "Variable value (input) of OP(fluid.layers.embedding) "
                  "expected >= 0 and < %ld, but got %ld. Please check input"
                  "value.",
                  N, ids_data[i]));
233 234 235
          for (int j = 0; j < D; ++j) {
            d_table_data[ids_data[i] * D + j] += d_output_data[i * D + j];
          }
236
        }
237 238 239 240 241 242 243
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle