importpaddle.v2aspaddleimportnumpyasnppaddle.init(use_gpu=False)x=paddle.layer.data(name='x',type=paddle.data_type.dense_vector(2))y_predict=paddle.layer.fc(input=x,size=1,act=paddle.activation.Linear())# loading the model which generated by trainingwithopen('hello_params_pass_90.tar','r')asf:parameters=paddle.parameters.Parameters.from_tar(f)i=[[[1,2]]]printpaddle.infer(output_layer=y_predict,parameters=parameters,input=i)