auto_gradient_check.md 6.1 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
## auto gradient check Design

## Backgraound:
- Operator forward computing is easy to check if the result is right because it has a clear definition. **But** backpropagation is a notoriously difficult algorithm to debug and get right:
  - **Firstly** you should get the right backpropagation formula according to the forward computation.
  - **Secondly** you should implement it right in CPP.
  - **Thirdly** it's difficult to prepare test data.

- Auto gradient check gets a numeric gradient by forward Operator and use it as a reference of the backward Operator's result. It has several advantages:
  - **Firstly** numeric gradient checker only need forward operator.
  - **Secondly** user only need to prepare the input data for forward Operator.

## mathematical theory
The following two document from stanford has a detailed explanation of how to get numeric gradient and why it's useful.

- [Gradient checking and advanced optimization(en)](http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization)
- [Gradient checking and advanced optimization(cn)](http://ufldl.stanford.edu/wiki/index.php/%E6%A2%AF%E5%BA%A6%E6%A3%80%E9%AA%8C%E4%B8%8E%E9%AB%98%E7%BA%A7%E4%BC%98%E5%8C%96)


## Numeric Gradient Implementation
### Interface
```python
def get_numeric_gradient(op,
                         input_values,
                         output_name,
                         input_to_check,
                         delta=0.005,
                         local_scope=None):
    """
    Get Numeric Gradient for an operator's input.

    :param op: C++ operator instance, could be an network
    :param input_values: The input variables. Should be an dictionary, key is
    variable name. Value is numpy array.
    :param output_name: The final output variable name.
    :param input_to_check: The input variable need to get gradient.
    :param delta: The perturbation value for numeric gradient method. The
    smaller delta is, the more accurate result will get. But if that delta is
     too small, it could occur numerical stability problem.
    :param local_scope: The local scope used for get_numeric_gradient.
    :return: The gradient array in numpy format.
    """
```

### Explaination:

1. Why need `output_name`
  - One Operator may have multiple Output, you can get independent gradient from each Output. So user should set one output to calculate.

1. Why need `input_to_check`
  - One operator may have multiple inputs. Gradient Op can calculate the gradient of these Inputs at the same time. But Numeric Gradient needs to calculate them one by one. So `get_numeric_gradient` is designed to calculate the gradient for one input. If you need to compute multiple inputs, you can call `get_numeric_gradient` multiple times.


### Core algorithm implement


```python
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
    for i in xrange(tensor_size):
        # get one input element throw it's index i.
        origin = tensor_to_check.get_float_element(i)

        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
        tensor_to_check.set_float_element(i, x_pos)
        y_pos = get_output()

        # plus delta to this element, run op and get the sum of the result tensor.
        x_neg = origin - delta
        tensor_to_check.set_float_element(i, x_neg)
        y_neg = get_output()

        # restore old value
        tensor_to_check.set_float_element(i, origin)

        # compute the gradient of this element and store it into a numpy array.
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

    # reshape the gradient result to the shape of the source tensor.
    return gradient_flat.reshape(tensor_to_check.get_dims())
```

## auto check framework design

Each Operator Kernel has three kinds of Gradient:

- 1. Numeric Gradient
- 2. CPU Operator Gradient
- 3. GPU Operator Gradient(if supported)

Numeric Gradient Only relies on forward Operator. So we use Numeric Gradient as the reference value.

- **Firstly** calculate the numeric gradient.
- **Secondly** calculate CPU kernel Gradient with the backward Operator and compare it with the numeric gradient.
- **Thirdly** calculate GPU kernel Gradient with the backward Operator and compare it with the numeric gradient.(if support GPU)

#### auto check python Interface

```python
    def check_grad(self,
                   forward_op,
                   input_vars,
                   inputs_to_check,
                   output_name,
                   no_grad_set=None,
                   only_cpu=False,
                   max_relative_error=0.005):
        """
        :param forward_op: used to create backward_op
        :param input_vars: numpy value of input variable. The following
            computation will use these variables.
        :param inputs_to_check: inputs var names that should check gradient.
        :param output_name: output name that used to
        :param max_relative_error: The relative tolerance parameter.
        :param no_grad_set: used when create backward ops
        :param only_cpu: only compute and check gradient on cpu kernel.
        :return:
        """
```

### How two check two numpy array is close enough?
if `abs_numeric_grad` is nearly zero, then use abs error for numeric_grad, not relative

```python
numeric_grad = ...
operator_grad = numpy.array(scope.find_var(grad_var_name(name)).get_tensor())

abs_numeric_grad = numpy.abs(numeric_grad)
# if abs_numeric_grad is nearly zero, then use abs error for numeric_grad, not relative
# error.
abs_numeric_grad[abs_numeric_grad < 1e-3] = 1

diff_mat = numpy.abs(abs_numeric_grad - operator_grad) / abs_numeric_grad
max_diff = numpy.max(diff_mat)
```


#### Notes:
1,The Input data for auto gradient checker should be reasonable to avoid numeric problem.


#### refs:

- [Gradient checking and advanced optimization(en)](http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization)
- [Gradient checking and advanced optimization(cn)](http://ufldl.stanford.edu/wiki/index.php/%E6%A2%AF%E5%BA%A6%E6%A3%80%E9%AA%8C%E4%B8%8E%E9%AB%98%E7%BA%A7%E4%BC%98%E5%8C%96)