test_optimizer.py 13.8 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4
import unittest

import paddle.v2.framework.framework as framework
import paddle.v2.framework.optimizer as optimizer
5
from paddle.v2.framework.backward import append_backward_ops
Q
Qiao Longfei 已提交
6 7 8 9


class TestOptimizer(unittest.TestCase):
    def test_sgd_optimizer(self):
Q
Qiao Longfei 已提交
10
        init_program = framework.Program()
11
        program = framework.Program()
Q
Qiao Longfei 已提交
12 13 14 15 16 17 18
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
19
        block.append_op(
Q
Qiao Longfei 已提交
20 21 22 23 24 25
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
        sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.01)
Q
Qiao Longfei 已提交
26
        opts = sgd_optimizer.minimize(mul_out, init_program)
Q
Qiao Longfei 已提交
27 28 29 30
        self.assertEqual(len(opts), 1)
        sgd_op = opts[0]
        self.assertEqual(sgd_op.type, "sgd")

31
    def test_sgd_optimizer_with_global_step(self):
Q
Qiao Longfei 已提交
32
        init_program = framework.Program()
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
        global_step = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="step")
Q
Qiao Longfei 已提交
49
        learning_rate = 0.01
50
        sgd_optimizer = optimizer.SGDOptimizer(
Q
Qiao Longfei 已提交
51 52
            learning_rate=learning_rate, global_step=global_step)
        opts = sgd_optimizer.minimize(mul_out, init_program)
53 54 55 56 57 58
        self.assertEqual(len(opts), 2)
        sgd_op = opts[0]
        self.assertEqual(sgd_op.type, "sgd")
        increment_op = opts[1]
        self.assertEqual(increment_op.type, "increment")

Q
Qiao Longfei 已提交
59 60 61 62 63 64
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 1)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)

Q
Qiao Longfei 已提交
65

66 67 68 69 70 71 72 73
class TestMomentumOptimizer(unittest.TestCase):
    class MockMomentum(optimizer.MomentumOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_velocity_str(self):
            return self._velocity_acc_str

74
    def test_vanilla_momentum_optimizer(self):
Q
Qiao Longfei 已提交
75
        init_program = framework.Program()
76 77 78 79 80 81 82 83 84 85 86 87 88 89
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
Q
Qiao Longfei 已提交
90 91 92
        learning_rate = 0.01
        momentum_optimizer = self.MockMomentum(
            learning_rate=learning_rate, momentum=0.2)
93
        params_grads = append_backward_ops(mul_out)
94 95
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(momentum_optimizer.get_accumulators()), 0)
Q
Qiao Longfei 已提交
96 97
        opts = momentum_optimizer.create_optimization_pass(
            params_grads, mul_out, init_program)
98 99 100
        self.assertEqual(len(opts), 1)
        sgd_op = opts[0]
        self.assertEqual(sgd_op.type, "momentum")
101 102 103 104 105 106 107 108 109 110
        self.assertFalse(sgd_op.attr('useNesterov'))

        # Check accumulators
        accumulators = momentum_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(momentum_optimizer.get_velocity_str() in accumulators)
        velocity_acc = accumulators[momentum_optimizer.get_velocity_str()]
        self.assertEqual(len(velocity_acc), 1)
        self.assertTrue(mul_x.name in velocity_acc)

Q
Qiao Longfei 已提交
111 112 113 114 115 116 117 118
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)
        self.assertEqual(init_ops[1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[1].attr('value'), 0.0)

119
    def test_nesterov_momentum_optimizer(self):
Q
Qiao Longfei 已提交
120
        init_program = framework.Program()
121 122 123 124 125 126 127 128 129 130 131 132 133 134
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
Q
Qiao Longfei 已提交
135
        learning_rate = 0.01
136
        momentum_optimizer = self.MockMomentum(
Q
Qiao Longfei 已提交
137
            learning_rate=learning_rate, momentum=0.2, use_nesterov=True)
138 139 140
        params_grads = append_backward_ops(mul_out)
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(momentum_optimizer.get_accumulators()), 0)
Q
Qiao Longfei 已提交
141 142
        opts = momentum_optimizer.create_optimization_pass(
            params_grads, mul_out, init_program)
143 144 145 146
        self.assertEqual(len(opts), 1)
        sgd_op = opts[0]
        self.assertEqual(sgd_op.type, "momentum")
        self.assertTrue(sgd_op.attr('useNesterov'))
147 148 149 150 151 152 153 154 155

        # Check accumulators
        accumulators = momentum_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(momentum_optimizer.get_velocity_str() in accumulators)
        velocity_acc = accumulators[momentum_optimizer.get_velocity_str()]
        self.assertEqual(len(velocity_acc), 1)
        self.assertTrue(mul_x.name in velocity_acc)

Q
Qiao Longfei 已提交
156 157 158 159 160 161 162 163
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)
        self.assertEqual(init_ops[1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[1].attr('value'), 0.0)

164

165 166 167 168 169 170 171 172 173
class TestAdagradOptimizer(unittest.TestCase):
    class MockAdagrad(optimizer.AdagradOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment_str(self):
            return self._moment_acc_str

    def test_adagrad_optimizer(self):
Q
Qiao Longfei 已提交
174
        init_program = framework.Program()
175 176 177 178 179 180 181 182 183 184 185 186 187 188
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
Q
Qiao Longfei 已提交
189 190 191
        learning_rate = 0.01
        adagrad_optimizer = self.MockAdagrad(
            learning_rate=learning_rate, epsilon=1.0e-6)
192
        params_grads = append_backward_ops(mul_out)
193 194
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(adagrad_optimizer.get_accumulators()), 0)
Q
Qiao Longfei 已提交
195 196
        opts = adagrad_optimizer.create_optimization_pass(params_grads, mul_out,
                                                          init_program)
197 198 199 200 201 202 203 204 205 206 207 208
        self.assertEqual(len(opts), 1)
        adagrad_op = opts[0]
        self.assertEqual(adagrad_op.type, "adagrad")

        # check accumulators
        accumulators = adagrad_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(adagrad_optimizer.get_moment_str() in accumulators)
        moment_acc = accumulators[adagrad_optimizer.get_moment_str()]
        self.assertEqual(len(moment_acc), 1)
        self.assertTrue(mul_x.name in moment_acc)

Q
Qiao Longfei 已提交
209 210 211 212 213 214 215 216
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)
        self.assertEqual(init_ops[1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[1].attr('value'), 0.0)

217

218 219 220 221 222 223 224 225 226 227 228 229
class TestAdamOptimizer(unittest.TestCase):
    class MockAdam(optimizer.AdamOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment1_str(self):
            return self._moment1_acc_str

        def get_moment2_str(self):
            return self._moment2_acc_str

    def test_adam_optimizer(self):
Q
Qiao Longfei 已提交
230
        init_program = framework.Program()
231 232 233 234 235 236 237 238 239 240 241 242 243 244
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
Q
Qiao Longfei 已提交
245
        learning_rate = 0.01
246
        adam_optimizer = self.MockAdam(
Q
Qiao Longfei 已提交
247
            learning_rate=learning_rate, beta1=0.9, beta2=0.999)
248
        params_grads = append_backward_ops(mul_out)
249 250
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(adam_optimizer.get_accumulators()), 0)
Q
Qiao Longfei 已提交
251 252
        opts = adam_optimizer.create_optimization_pass(params_grads, mul_out,
                                                       init_program)
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
        self.assertEqual(len(opts), 3)
        adam_op = opts[0]
        self.assertEqual(adam_op.type, "adam")

        # Check accumulators
        accumulators = adam_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 2)
        self.assertTrue(adam_optimizer.get_moment1_str() in accumulators)
        self.assertTrue(adam_optimizer.get_moment2_str() in accumulators)
        moment1_acc = accumulators[adam_optimizer.get_moment1_str()]
        moment2_acc = accumulators[adam_optimizer.get_moment2_str()]
        self.assertEqual(len(moment1_acc), 1)
        self.assertEqual(len(moment2_acc), 1)
        self.assertTrue(mul_x.name in moment1_acc)
        self.assertTrue(mul_x.name in moment2_acc)

Q
Qiao Longfei 已提交
269 270 271 272 273 274
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 5)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)

275

276 277 278 279 280 281 282 283 284 285 286 287
class TestAdamaxOptimizer(unittest.TestCase):
    class MockAdamax(optimizer.AdamaxOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment_str(self):
            return self._moment_acc_str

        def get_inf_norm_str(self):
            return self._inf_norm_acc_str

    def test_adamax_optimizer(self):
Q
Qiao Longfei 已提交
288
        init_program = framework.Program()
289 290 291 292 293 294 295 296 297 298 299 300 301 302
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
Q
Qiao Longfei 已提交
303
        learning_rate = 0.01
304
        adamax_optimizer = self.MockAdamax(
Q
Qiao Longfei 已提交
305
            learning_rate=learning_rate, beta1=0.9, beta2=0.999)
306 307 308
        params_grads = append_backward_ops(mul_out)
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(adamax_optimizer.get_accumulators()), 0)
Q
Qiao Longfei 已提交
309 310
        opts = adamax_optimizer.create_optimization_pass(params_grads, mul_out,
                                                         init_program)
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
        self.assertEqual(len(opts), 2)
        adam_op = opts[0]
        self.assertEqual(adam_op.type, "adamax")

        # Check accumulators
        accumulators = adamax_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 2)
        self.assertTrue(adamax_optimizer.get_moment_str() in accumulators)
        self.assertTrue(adamax_optimizer.get_inf_norm_str() in accumulators)
        moment_acc = accumulators[adamax_optimizer.get_moment_str()]
        inf_norm_acc = accumulators[adamax_optimizer.get_inf_norm_str()]
        self.assertEqual(len(moment_acc), 1)
        self.assertEqual(len(inf_norm_acc), 1)
        self.assertTrue(mul_x.name in moment_acc)
        self.assertTrue(mul_x.name in inf_norm_acc)

Q
Qiao Longfei 已提交
327 328 329 330 331 332
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 4)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)

333

Q
Qiao Longfei 已提交
334 335
if __name__ == '__main__':
    unittest.main()