executor.cc 6.8 KB
Newer Older
Q
qijun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/framework/executor.h"
Y
Yang Yang 已提交
16

Y
Yang Yang 已提交
17
#include <algorithm>
Y
Yang Yang 已提交
18
#include <iostream>
Q
qijun 已提交
19
#include <memory>
Y
Yang Yang 已提交
20
#include <set>
Y
Yang Yang 已提交
21
#include <vector>
Y
Yang Yang 已提交
22

Y
Yang Yang 已提交
23
#include "paddle/framework/lod_tensor.h"
Q
qijun 已提交
24
#include "paddle/framework/op_registry.h"
Q
qijun 已提交
25
#include "paddle/framework/scope.h"
Q
qijun 已提交
26

Y
Yang Yang 已提交
27 28
#include <boost/range/adaptor/reversed.hpp>

Q
qijun 已提交
29 30 31
namespace paddle {
namespace framework {

Y
Yang Yang 已提交
32 33 34
const std::string kFeedOpType = "feed";
const std::string kFetchOpType = "fetch";

Q
qijun 已提交
35
Executor::Executor(const std::vector<platform::Place>& places) {
Y
Yang Yang 已提交
36
  PADDLE_ENFORCE_GT(places.size(), 0);
Q
qijun 已提交
37
  device_contexts_.resize(places.size());
Q
qijun 已提交
38
  for (size_t i = 0; i < places.size(); i++) {
Q
qijun 已提交
39
    if (platform::is_cpu_place(places[i])) {
Q
qijun 已提交
40 41 42
      device_contexts_[i] = new platform::CPUDeviceContext(
          boost::get<platform::CPUPlace>(places[i]));
    } else if (platform::is_gpu_place(places[i])) {
Q
qijun 已提交
43
#ifdef PADDLE_WITH_CUDA
Q
qijun 已提交
44 45
      device_contexts_[i] = new platform::CUDADeviceContext(
          boost::get<platform::GPUPlace>(places[i]));
Q
qijun 已提交
46
#else
Q
qijun 已提交
47 48 49
      PADDLE_THROW(
          "'GPUPlace' is not supported, Please re-compile with WITH_GPU "
          "option");
Q
qijun 已提交
50 51
#endif
    }
Q
qijun 已提交
52 53 54
  }
}

Q
qijun 已提交
55 56
Executor::~Executor() {
  for (auto& device_context : device_contexts_) {
Y
Yang Yang 已提交
57
    delete device_context;
Q
qijun 已提交
58 59 60
  }
}

Y
Yang Yang 已提交
61
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id) {
Y
Yang Yang 已提交
62
  // TODO(tonyyang-svail):
Y
Yang Yang 已提交
63
  //    - only runs on the first device (i.e. no interdevice communication)
Y
Yang Yang 已提交
64
  //    - will change to use multiple blocks for RNN op and Cond Op
Y
Yang Yang 已提交
65 66
  PADDLE_ENFORCE_GT(pdesc.blocks_size(), block_id);
  auto& block = pdesc.blocks(block_id);
Y
Yang Yang 已提交
67
  auto& device = device_contexts_[0];
Y
Yang Yang 已提交
68

Y
Yang Yang 已提交
69
  // Instantiate all the vars in the global scope
Y
Yang Yang 已提交
70 71 72 73
  for (auto& var : block.vars()) {
    scope->NewVar(var.name());
  }

Y
Yang Yang 已提交
74 75
  Scope& local_scope = scope->NewScope();

Y
Yang Yang 已提交
76
  std::vector<bool> should_run = Prune(pdesc, block_id);
Y
Yang Yang 已提交
77
  PADDLE_ENFORCE_EQ(should_run.size(), static_cast<size_t>(block.ops_size()));
Y
Yang Yang 已提交
78
  for (size_t i = 0; i < should_run.size(); ++i) {
Y
Yang Yang 已提交
79
    if (should_run[i]) {
Y
Yang Yang 已提交
80 81
      for (auto& var : block.ops(i).outputs()) {
        for (auto& argu : var.arguments()) {
Y
Yang Yang 已提交
82 83 84 85 86
          if (local_scope.FindVar(argu) == nullptr) {
            local_scope.NewVar(argu);
          }
        }
      }
Y
Yang Yang 已提交
87
      auto op = paddle::framework::OpRegistry::CreateOp(block.ops(i));
Y
Yang Yang 已提交
88
      op->Run(local_scope, *device);
Y
Yang Yang 已提交
89
    }
Y
Yang Yang 已提交
90
  }
Y
Yang Yang 已提交
91 92 93

  // TODO(tonyyang-svail):
  //  - Destroy local_scope
Y
Yang Yang 已提交
94 95
}

Y
Yang Yang 已提交
96
std::vector<bool> Executor::Prune(const ProgramDesc& pdesc, int block_id) {
Y
Yang Yang 已提交
97
  // TODO(tonyyang-svail):
Y
Yang Yang 已提交
98
  //    - will change to use multiple blocks for RNN op and Cond Op
Y
Yang Yang 已提交
99

Y
Yang Yang 已提交
100
  auto& block = pdesc.blocks(block_id);
Y
Yang Yang 已提交
101 102 103 104
  auto& ops = block.ops();

  bool expect_feed = true;
  for (auto& op_desc : ops) {
Y
Yang Yang 已提交
105
    PADDLE_ENFORCE(op_desc.type() != kFeedOpType || expect_feed,
Y
Yang Yang 已提交
106
                   "All FeedOps are at the beginning of the ProgramDesc");
Y
Yang Yang 已提交
107
    expect_feed = (op_desc.type() == kFeedOpType);
Y
Yang Yang 已提交
108 109 110 111 112
  }

  bool expect_fetch = true;
  for (auto op_iter = ops.rbegin(); op_iter != ops.rend(); ++op_iter) {
    auto& op_desc = *op_iter;
Y
Yang Yang 已提交
113
    PADDLE_ENFORCE(op_desc.type() != kFetchOpType || expect_fetch,
Y
Yang Yang 已提交
114
                   "All FetchOps must at the end of the ProgramDesc");
Y
Yang Yang 已提交
115
    expect_fetch = (op_desc.type() == kFetchOpType);
Y
Yang Yang 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
  }

  std::set<std::string> dependent_vars;
  std::vector<bool> should_run;
  for (auto op_iter = ops.rbegin(); op_iter != ops.rend(); ++op_iter) {
    auto& op_desc = *op_iter;

    bool found_dependent_vars = false;
    for (auto& var : op_desc.outputs()) {
      for (auto& argu : var.arguments()) {
        if (dependent_vars.count(argu) != 0) {
          found_dependent_vars = true;
        }
      }
    }

Y
Yang Yang 已提交
132
    if (op_desc.type() == kFetchOpType || found_dependent_vars) {
Y
Yang Yang 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
      // erase its output to the dependency graph
      for (auto& var : op_desc.outputs()) {
        for (auto& argu : var.arguments()) {
          dependent_vars.erase(argu);
        }
      }

      // insert its input to the dependency graph
      for (auto& var : op_desc.inputs()) {
        for (auto& argu : var.arguments()) {
          dependent_vars.insert(argu);
        }
      }

      should_run.push_back(true);
    } else {
      should_run.push_back(false);
Q
qijun 已提交
150 151
    }
  }
Y
Yang Yang 已提交
152

Y
Yang Yang 已提交
153 154 155 156
  // TODO(tonyyang-svail):
  //    - check this after integration of Init
  // PADDLE_ENFORCE(dependent_vars.empty());

Y
Yang Yang 已提交
157 158 159 160 161
  // since we are traversing the ProgramDesc in reverse order
  // we reverse the should_run vector
  std::reverse(should_run.begin(), should_run.end());

  return should_run;
Q
qijun 已提交
162 163
}

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
Executor::Executor(const std::vector<platform::Place>& places) {
  PADDLE_ENFORCE_GT(places.size(), 0);
  device_contexts_.resize(places.size());
  for (size_t i = 0; i < places.size(); i++) {
    if (platform::is_cpu_place(places[i])) {
      device_contexts_[i] = new platform::CPUDeviceContext(
          boost::get<platform::CPUPlace>(places[i]));
    } else if (platform::is_gpu_place(places[i])) {
#ifdef PADDLE_WITH_CUDA
      device_contexts_[i] = new platform::CUDADeviceContext(
          boost::get<platform::GPUPlace>(places[i]));
#else
      PADDLE_THROW("'GPUPlace' is not supported in CPU only device.");
#endif
    }
  }
}

Executor::~Executor() {
  for (auto& device_context : device_contexts_) {
    delete device_context;
  }
}

void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id) {
  // TODO(tonyyang-svail):
  //    - only runs on the first device (i.e. no interdevice communication)
  //    - will change to use multiple blocks for RNN op and Cond Op
  PADDLE_ENFORCE_GT(pdesc.blocks_size(), block_id);
  auto& block = pdesc.blocks(block_id);
  auto& device = device_contexts_[0];

  // Instantiate all the vars in the global scope
  for (auto& var : block.vars()) {
    scope->NewVar(var.name());
  }

  Scope& local_scope = scope->NewScope();

  std::vector<bool> should_run = Prune(pdesc, block_id);
  PADDLE_ENFORCE_EQ(should_run.size(), static_cast<size_t>(block.ops_size()));
  for (size_t i = 0; i < should_run.size(); ++i) {
    if (should_run[i]) {
      for (auto& var : block.ops(i).outputs()) {
        for (auto& argu : var.arguments()) {
          if (local_scope.FindVar(argu) == nullptr) {
            local_scope.NewVar(argu);
          }
        }
      }
      auto op = paddle::framework::OpRegistry::CreateOp(block.ops(i));
      op->Run(local_scope, *device);
    }
  }

  // TODO(tonyyang-svail):
  //  - Destroy local_scope
}

Q
qijun 已提交
223 224
}  // namespace framework
}  // namespace paddle