concat_mkldnn_op.cc 8.5 KB
Newer Older
M
Michal Gallus 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

M
Michal Gallus 已提交
15
#include <memory>
16

M
Michal Gallus 已提交
17
#include "paddle/fluid/operators/concat_op.h"
18
#include "paddle/fluid/operators/utils.h"
M
Michal Gallus 已提交
19
#include "paddle/fluid/platform/mkldnn_helper.h"
20
#include "paddle/fluid/platform/mkldnn_reuse.h"
M
Michal Gallus 已提交
21 22 23 24

namespace paddle {
namespace operators {

25
using dnnl::concat;
26 27 28
using dnnl::memory;
using dnnl::primitive;
using dnnl::stream;
29 30 31
using framework::DataLayout;
using framework::LoDTensor;
using framework::Tensor;
M
Michal Gallus 已提交
32 33
using platform::to_void_cast;

34 35 36 37 38
template <typename T>
class ConcatMKLDNNHandler
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::concat> {
 public:
  ConcatMKLDNNHandler(const framework::ExecutionContext& ctx,
39
                      const dnnl::engine mkldnn_engine,
40 41
                      const std::vector<const Tensor*>& inputs,
                      Tensor* output)
42 43 44 45 46
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::concat>(mkldnn_engine,
                                                           ctx.GetPlace()) {
    int concat_axis = ctx.Attr<int>("axis");
    const int rank = inputs[0]->dims().size();
    PADDLE_ENFORCE_EQ(
47 48
        concat_axis >= -rank && concat_axis < rank,
        true,
49 50
        platform::errors::InvalidArgument(
            "The axis is expected to be in range of [%d, %d), but got %d",
51 52 53
            -rank,
            rank,
            concat_axis));
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

    if (ctx.HasInput("AxisTensor")) {
      auto* axis_tensor = ctx.Input<Tensor>("AxisTensor");
      concat_axis = GetDataFromTensor(axis_tensor)[0];
      auto out_dims = inputs[0]->dims();
      for (size_t i = 1; i < inputs.size(); ++i) {
        out_dims[concat_axis] += inputs[i]->dims()[concat_axis];
      }
      output->Resize(out_dims);
    }

    if (concat_axis < 0) {
      concat_axis = concat_axis + rank;
    }

69 70
    memory::data_type dt = framework::ToMKLDNNDataType(
        framework::TransToProtoVarType(inputs[0]->dtype()));
71 72 73 74 75
    std::vector<memory::desc> srcs_md;
    srcs_md.reserve(inputs.size());

    // Create memory descriptors for each of inputs
    for (size_t i = 0; i < inputs.size(); ++i) {
76
      srcs_md.push_back(inputs[i]->mem_desc());
77 78
    }

79
    auto dst_dims = phi::vectorize<int64_t>(output->dims());
80 81 82 83 84 85 86 87
    auto dst_md = memory::desc(dst_dims, dt, MKLDNNMemoryFormat::any);

    this->AcquireForwardPrimitiveDescriptor(dst_md, concat_axis, srcs_md);
  }

  // (jczaja) concat oneDNN prim is not having .desc attribute so
  // we cannot use base AcquireForwardPrimitiveDescriptor
  void AcquireForwardPrimitiveDescriptor(
88 89
      const memory::desc& dst_md,
      const int concat_axis,
90 91 92 93 94
      const std::vector<memory::desc>& srcs_md) {
    this->fwd_pd_.reset(new dnnl::concat::primitive_desc(
        dst_md, concat_axis, srcs_md, this->engine_));
  }

95
  std::shared_ptr<dnnl::memory> AcquireSrcMemory(const Tensor& input, int i) {
96 97 98 99 100 101
    const T* input_data = input.data<T>();
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->src_desc(i),
                                            to_void_cast<T>(input_data));
  }
};

M
Michal Gallus 已提交
102 103
static void EnforceLayouts(const std::vector<const Tensor*> inputs) {
  for (auto* input : inputs) {
104
    PADDLE_ENFORCE_EQ(
105 106
        input->layout(),
        DataLayout::kMKLDNN,
107
        platform::errors::InvalidArgument("Wrong layout set for Input tensor"));
M
Michal Gallus 已提交
108 109 110
  }
}

111 112 113 114
// From a multi-input, gather only nonempty inputs
static const std::vector<const Tensor*> ReduceMultiInput(
    const std::vector<const Tensor*>& inputs) {
  std::vector<const Tensor*> reduced(inputs.size());
115 116 117 118
  auto end_it = std::copy_if(
      inputs.begin(), inputs.end(), reduced.begin(), [](const Tensor* t) {
        return t->numel() > 0;
      });
119 120 121 122
  reduced.resize(std::distance(reduced.begin(), end_it));
  return reduced;
}

M
Michal Gallus 已提交
123 124 125 126
template <typename T>
class ConcatMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
127 128 129
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();
130 131
    // If any of the multiple inputs of concat has an input size of 0, the
    // actual size of the multi_input will change
132
    auto multi_input = ReduceMultiInput(ctx.MultiInput<Tensor>("X"));
M
Michal Gallus 已提交
133 134
    EnforceLayouts(multi_input);
    Tensor* output = ctx.Output<Tensor>("Out");
135

136
    ConcatMKLDNNHandler<T> handler(ctx, mkldnn_engine, multi_input, output);
137

138 139
    std::vector<std::shared_ptr<memory>> srcs;
    srcs.reserve(multi_input.size());
A
Adam 已提交
140

141 142
    auto dst_mem = handler.AcquireDstMemory(output);
    auto concat_p = handler.AcquireForwardPrimitive();
143

144
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
A
Adam 已提交
145 146
    std::unordered_map<int, memory> args;
    for (size_t i = 0; i < multi_input.size(); ++i) {
147
      srcs.push_back(handler.AcquireSrcMemory(*(multi_input[i]), i));
148
      args.insert({DNNL_ARG_MULTIPLE_SRC + i, *(srcs.at(i))});
A
Adam 已提交
149
    }
150
    args.insert({DNNL_ARG_DST, *dst_mem});
A
Adam 已提交
151 152 153

    concat_p->execute(astream, args);
    astream.wait();
M
Michal Gallus 已提交
154

155
    output->set_mem_desc(dst_mem->get_desc());
M
Michal Gallus 已提交
156 157
  }
};
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

template <typename T>
class ConcatGradMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    const auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();

    auto out_var_names = ctx.OutputNames(framework::GradVarName("X"));

    const auto x = ctx.MultiInput<LoDTensor>("X");
    const auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto dx = ctx.MultiOutput<LoDTensor>(framework::GradVarName("X"));

    for (size_t i = 0; i < dx.size(); ++i) {
      if (dx[i] != nullptr) {
        dx[i]->set_lod(x[i]->lod());
      }
    }

    int axis = ctx.Attr<int>("axis");
    if (ctx.HasInput("AxisTensor")) {
      auto* axis_tensor = ctx.Input<Tensor>("AxisTensor");
      axis = GetDataFromTensor<int>(axis_tensor)[0];
    }

187
    auto dout_vec_dims = phi::vectorize(dout->dims());
188 189 190 191 192

    axis = ComputeAxis(axis, dout_vec_dims.size());

    std::vector<int64_t> offset(dout_vec_dims.size(), 0);

193 194 195
    dnnl::memory::data_type dout_type = framework::ToMKLDNNDataType(
        framework::TransToProtoVarType(dout->dtype()));
    platform::ReorderMKLDNNHandler reorder_handler(
196 197 198
        dout_vec_dims,
        framework::TransToProtoVarType(dout->dtype()),
        dout_type,
199
        onednn_engine);
200
    auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
201
        dout->mem_desc(), platform::to_void_cast(dout->data<T>()));
202 203 204 205

    for (size_t i = 0; i < dx.size(); ++i) {
      if (out_var_names[i] != framework::kEmptyVarName &&
          dx[i]->numel() != 0UL) {
206
        auto dx_vec_dims = phi::vectorize(dx[i]->dims());
207 208 209 210
        auto slice_mem_p = reorder_handler.AcquireSubmemory(
            dx_vec_dims, offset, reorder_src_memory_p);

        auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
211 212 213 214
            dx[i],
            dx_vec_dims,
            platform::GetPlainMKLDNNFormat(dx_vec_dims.size()),
            ctx.GetPlace());
215 216 217 218 219 220 221
        auto reorder_p =
            reorder_handler.AcquireReorder(reorder_dst_memory_p, slice_mem_p);

        reorder_p->execute(astream, *slice_mem_p, *reorder_dst_memory_p);

        offset[axis] += dx[i]->dims()[axis];

222
        dx[i]->set_mem_desc(reorder_dst_memory_p->get_desc());
223 224 225 226 227 228
      }
    }
    astream.wait();
  }
};

M
Michal Gallus 已提交
229 230 231 232 233
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

234 235 236
REGISTER_OP_KERNEL(concat,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
237
                   ops::ConcatMKLDNNOpKernel<float>,
238
                   ops::ConcatMKLDNNOpKernel<paddle::platform::bfloat16>,
239 240
                   ops::ConcatMKLDNNOpKernel<int8_t>,
                   ops::ConcatMKLDNNOpKernel<uint8_t>);
241

242 243 244
REGISTER_OP_KERNEL(concat_grad,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
245 246
                   ops::ConcatGradMKLDNNOpKernel<float>,
                   ops::ConcatGradMKLDNNOpKernel<paddle::platform::bfloat16>);