role_maker.py 23.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Defination of Role Makers."""
15 16
import os
import numpy as np
17
import warnings
18 19
from multiprocessing import Process, Manager
import paddle.fluid as fluid
20

21
#__all__ = ['UserDefinedRoleMaker', 'PaddleCloudRoleMaker']
22 23 24 25 26


class Role:
    WORKER = 1
    SERVER = 2
27
    HETER_WORKER = 3
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44


class RoleMakerBase(object):
    """
    RoleMakerBase is a base class for assigning a role to current process
    in distributed training.
    A paddle developer can implement RoleMakerBase to design a role maker
    for worker or pserver assignment.
    """

    def __init__(self):
        self._worker_endpoints = []
        self._server_endpoints = []
        self._role_is_generated = False
        self._role = None
        self._current_id = -1

45 46 47 48 49
        # for heter parameter server mode
        self._heter_trainer_endpoints = []
        self._heter_trainer_device = "CPU"
        self._is_heter_parameter_server_mode = False

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
        self._node_type = None
        self._node_type_comm = None
        self._all_comm = None

    def is_worker(self):
        """
        return is_worker() of current process
        """
        raise NotImplementedError("Please implement this method in child class")

    def is_server(self):
        """
        return is_server() of current process
        """
        raise NotImplementedError("Please implement this method in child class")

    def is_first_worker(self):
        """
        Check whether the node is the first instance of worker.
        Returns:
            bool: True if this is the first node of worker,
                  False if not.
        """
        raise NotImplementedError("Please implement this method in child class")

    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker number
        """
        raise NotImplementedError("Please implement this method in child class")

    def server_num(self):
        """
        Get current total server number.

        Returns:
            int: server number
        """
        raise NotImplementedError("Please implement this method in child class")

    def worker_index(self):
        """
        Get current worker id.

        Returns:
            int: node id
        """
        raise NotImplementedError("Please implement this method in child class")

    def server_index(self):
        """
        Get current server id.

        Returns:
            int: node id
        """
        raise NotImplementedError("Please implement this method in child class")

    def role_id(self):
        """
        Get current id.

        Returns:
            int: node id
        """
        raise NotImplementedError("Please implement this method in child class")

120 121 122 123 124 125 126 127
    def node_num(self):
        """
        Get the training node number
        Returns:
            int: node num
        """
        raise NotImplementedError("Please implement this method in child class")

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
    def get_trainer_endpoints(self):
        """
        return trainer endpoints
        """
        return self._worker_endpoints

    def get_pserver_endpoints(self):
        """
        return pserver endpoints
        """
        return self._server_endpoints

    def to_string(self):
        return "role: {}, current_id: {}, worker_endpoints: {}, server_endpoints: {}".format(
            self._role, self._current_id, self._worker_endpoints,
            self._server_endpoints)

    def _all_gather(self, comm_world, input):
        """

        Args:
            input(int|float): input value

        Returns:
            return a list of values
        """
        print("warning: RoleMakerBase does not have all gather.")
        return None

    def _all_reduce(self, comm_world, input, mode="sum"):
        """
        Args:
            input(list/numpy.array): array of one dim
            output(list/numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        print("warning: RoleMakerBase does not have all reduce worker.")
        return None

    def _barrier(self, comm_world):
        """
        barrier between trainers if current role is TRAINER
        """
        print("warning: RoleMakerBase does not have barrier worker.")

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
    def _is_heter_worker(self):
        """
        Return is_heter_worker() of current process
        """
        warnings.warn("RoleMakerBase does not have function: _is_heter_worker.")
        return False

    def _heter_worker_num(self):
        """
        Get current total heter-worker number.

        Returns:
            int: heter_worker number
        """
        warnings.warn(
            "RoleMakerBase does not have function: _heter_worker_num.")
        return 0

    def _get_heter_worker_endpoints(self):
        """
        Returns:
            string: all heter_trainers'endpoints
        """
        assert self._heter_trainer_endpoints != []
        return self._heter_trainer_endpoints

    def _get_heter_worker_endpoint(self):
        """
        Returns:
            int: corresponding heter_trainer's endpoint

        e.g: if we have 4 cpu-trainer(default), 2 gpu-trainer(heter)
             then No.0 and No.2 cpu-trainer will work with No.0 gpu-trainer
             and No.1 and No.3 cpu-trainer will work with No.1 gpu-trainerr
        """
        assert self._heter_trainer_endpoints != []
        return self._heter_trainer_endpoints[(self._current_id + 1) %
                                             self._heter_worker_num()]

    def _get_heter_worker_device(self):
        """
        Returns:
            string: heter_trainer's device of current node, e.g: CPU/GPU/XPU
        """
        return self._heter_trainer_device.upper()

219 220

class PaddleCloudRoleMaker(RoleMakerBase):
221
    def __init__(self, is_collective=False, **kwargs):
222 223
        super(PaddleCloudRoleMaker, self).__init__()
        self._is_collective = is_collective
224
        self._init_gloo = False  # default no init gloo
225 226 227 228 229 230 231 232 233 234
        self._kwargs = kwargs

        self._role_is_generated = False

        self._server_endpoints = None
        self._worker_endpoints = None

        self._node_type_comm = None
        self._all_comm = None

235 236
        self._non_distributed = False

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
        if not self._is_collective:
            self._hdfs_name = kwargs.get("hdfs_name", "")
            self._hdfs_ugi = kwargs.get("hdfs_ugi", "")
            self._hdfs_path = kwargs.get("path", "").rstrip("/")
            self._init_timeout_seconds = kwargs.get("init_timeout_seconds",
                                                    3600)
            self._run_timeout_seconds = kwargs.get("run_timeout_seconds",
                                                   9999999)
            ip_port = kwargs.get("http_ip_port", "")
            self._http_ip_port = []
            self._http_server = None
            # if ip_port is not empty, it will use http instead of hdfs
            if ip_port != "":
                self._http_ip_port = ip_port.split(":")
                # it's for communication between processes
                self._manager = Manager()
                # global dict to store status
                self._http_server_d = self._manager.dict()
                # set running status of http server
                self._http_server_d["running"] = False
            self._iface = self.__get_default_iface()
            # this environment variable can be empty
            self._prefix = os.getenv("SYS_JOB_ID", "")

    def _barrier(self, comm_world):
262
        if isinstance(comm_world, fluid.core.Gloo):
263
            comm_world.barrier()
264 265
        else:
            print("warning: must init Gloo before using _barrier() function")
266 267

    def _all_gather(self, comm_world, input):
268
        if isinstance(comm_world, fluid.core.Gloo):
269 270 271 272
            self._barrier(comm_world)
            output = comm_world.all_gather(input)
            return output
        else:
273
            print("warning: must init Gloo before using _all_gather() function")
274 275 276
            return None

    def _all_reduce(self, comm_world, input, mode="sum"):
277
        if isinstance(comm_world, fluid.core.Gloo):
278

279
            input = np.array(input)
280

281 282
            input_shape = input.shape
            input_list = input.reshape(-1).tolist()
283

284 285 286 287 288 289 290
            self._barrier(comm_world)
            ans = comm_world.all_reduce(input_list, mode)
            output = np.array(ans).reshape(input_shape)
            return output
        else:
            print("warning: must init Gloo before using _all_reduce() function")
            return None
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

    def is_worker(self):
        """
        whether current process is worker
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._role == Role.WORKER

    def is_server(self):
        """
        whether current process is server
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._role == Role.SERVER

    def is_first_worker(self):
        """
        whether current process is worker of rank 0
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._role == Role.WORKER and self._current_id == 0

    def worker_index(self):
        """
        get index of current worker
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._current_id

    def server_index(self):
        """
        get index of current server
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._current_id

    def role_id(self):
        """
        get index of current node
        """
336
        return self._current_id
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353

    def worker_num(self):
        """
        retrun the current number of worker
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._trainers_num

    def server_num(self):
        """
        return the current number of server
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._trainers_num

354 355 356 357 358 359 360 361
    def node_num(self):
        """
        return the training node number
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._node_num

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
    def get_trainer_endpoints(self):
        """
        get endpoint of all trainers
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._worker_endpoints

    def get_pserver_endpoints(self):
        """
        get endpoint of all pservers
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._server_endpoints

378 379 380 381 382 383 384 385 386
    def _is_non_distributed(self):
        """
        Return True if indispensable environment for fleetrun is not found
        (use python-run to launch fleet-code directly)
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._non_distributed

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
    def _heter_worker_num(self):
        """
        get heter worker nums
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._heter_trainers_num

    def _is_heter_worker(self):
        """
        whether current process is heter worker
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._role == Role.HETER_WORKER

403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
    def _get_rank(self):
        """
        get current rank in all workers and pservers
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._rank

    def _get_size(self):
        """
        get total num of all workers and pservers
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._size

    def _ps_env(self):
        try:
            # Environment variable PADDLE_PSERVERS_IP_PORT_LIST must be set
422
            # format: string(ip:port,ip:port), eg. 127.0.0.1:6001,127.0.0.1:6002
423
            self._server_endpoints = os.getenv("PADDLE_PSERVERS_IP_PORT_LIST")
424 425
            self._worker_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS",
                                               "").split(",")
426 427 428 429 430 431 432 433 434 435 436 437 438
            if self._server_endpoints is None:
                # back to non_distributed execution.
                self._server_endpoints = ""
                self._trainers_num = 1
                self._role = Role.WORKER
                self._current_id = 0
                self._node_num = 1
                self._heter_trainers_num = 0
                self._heter_trainer_endpoints = None
                self._non_distributed = True
                return

            self._server_endpoints = self._server_endpoints.split(",")
439 440 441
            trainers_num = int(os.environ["PADDLE_TRAINERS_NUM"])
            training_role = os.environ["TRAINING_ROLE"]

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
            if training_role not in ["TRAINER", "PSERVER", "HETER_TRAINER"]:
                raise ValueError(
                    "TRAINING_ROLE must be PSERVER or TRAINER or HETER_TRAINER, but get {}, please check your environment.".
                    format(training_role))

            # For heter parameter server env setting
            heter_trainer_eplist = os.getenv(
                "PADDLE_HETER_TRAINER_IP_PORT_LIST", None)
            heter_trainer_device = os.getenv("PADDLE_HETER_TRAINER_DEVICE",
                                             None)
            if heter_trainer_eplist and heter_trainer_device:
                try:
                    heter_trainer_eplist = os.environ[
                        "PADDLE_HETER_TRAINER_IP_PORT_LIST"].split(",")
                except:
                    raise ValueError(
                        "Can not Find PADDLE_HETER_TRAINER_IP_PORT_LIST in env or its format doesn't match the requirement: 'IP:PORT,IP:PORT' ."
                    )

                self._is_heter_parameter_server_mode = True
                heter_trainers_num = len(heter_trainer_eplist)
                current_node_device = heter_trainer_device.upper()
                if current_node_device not in ["CPU", "GPU", "XPU"]:
                    raise ValueError(
                        "Heter Trainer doesn't support {} device now, please use CPU / GPU / XPU(KunLun)".
                        format(heter_trainer_device))
                self._heter_trainer_device = current_node_device
            else:
                self._is_heter_parameter_server_mode = False
                heter_trainers_num = 0
472 473 474 475 476 477 478 479 480 481 482 483

            if training_role == "TRAINER":
                role = Role.WORKER
                current_id = int(os.environ["PADDLE_TRAINER_ID"])
                if len(self._worker_endpoints) > 0:
                    self._cur_endpoint = self._worker_endpoints[current_id]
            elif training_role == "PSERVER":
                role = Role.SERVER
                port = os.environ["PADDLE_PORT"]
                ip = os.environ["POD_IP"]
                self._cur_endpoint = ip + ":" + port
                current_id = self._server_endpoints.index(self._cur_endpoint)
484 485 486 487 488 489
            elif training_role == "HETER_TRAINER":
                role = Role.HETER_WORKER
                cur_ip = os.environ["POD_IP"]
                cur_port = os.environ["PADDLE_PORT"]
                curr_endpoint = ":".join([cur_ip, cur_port])
                current_id = heter_trainer_eplist.index(curr_endpoint)
490
            else:
491 492 493
                raise ValueError(
                    "TRAINING_ROLE must be PSERVER or TRAINER or HETER_TRAINER")
        except ValueError as e:
494
            raise ValueError(
495
                "Something wrong with PaddleCloud, please check environment")
496 497 498 499

        self._trainers_num = trainers_num
        self._role = role
        self._current_id = current_id
500 501
        self._node_num = len(
            set([x.split(':')[0] for x in self._worker_endpoints]))
502 503
        self._heter_trainers_num = heter_trainers_num
        self._heter_trainer_endpoints = heter_trainer_eplist
504 505 506 507 508 509 510

    def _collective_env(self):
        self._current_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
        self._training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
        assert (self._training_role == "TRAINER")
        self._worker_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS")
        self._cur_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT")
511 512 513 514 515
        if self._worker_endpoints is None:
            # back to non_distributed execution.
            self._worker_endpoints = "127.0.0.1:6170"
            self._cur_endpoint = self._worker_endpoints
            self._non_distributed = True
516 517
        self._worker_endpoints = self._worker_endpoints.split(",")
        self._trainers_num = len(self._worker_endpoints)
518 519
        self._node_num = len(
            set([x.split(':')[0] for x in self._worker_endpoints]))
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596

    def _init_gloo_env(self):
        def init_gloo_instance(role="trainer"):
            role = role.lower()
            assert role in ["trainer", "pserver", "all"]
            if role == "trainer":
                all_list = self._worker_endpoints
                rank = self._current_id
            elif role == "pserver":
                all_list = self._server_endpoints
                rank = self._current_id
            else:
                all_list = self._worker_endpoints + self._server_endpoints
                rank = all_list.index(self._cur_endpoint)
            gloo = fluid.core.Gloo()
            gloo.set_rank(rank)
            gloo.set_size(len(all_list))
            gloo.set_prefix(self._prefix)
            gloo.set_iface(self._iface)
            gloo.set_timeout_seconds(self._init_timeout_seconds,
                                     self._run_timeout_seconds)
            if len(self._http_ip_port) != 0:
                gloo.set_http_store(self._http_ip_port[0],
                                    int(self._http_ip_port[1]), role)
            else:
                gloo.set_hdfs_store(self._hdfs_path + "/" + role,
                                    self._hdfs_name, self._hdfs_ugi)
            gloo.init()
            return gloo

        # paddlecloud support gloo
        if self._role == Role.WORKER:
            if self._current_id == 0 and len(self._http_ip_port) != 0:
                size_d = {
                    "trainer": len(self._worker_endpoints),
                    "pserver": len(self._server_endpoints),
                    "all":
                    len(self._worker_endpoints) + len(self._server_endpoints)
                }
                # child process for http server
                self._http_server = Process(
                    target=self.__start_kv_server,
                    args=(self._http_server_d, size_d))
                self._http_server.daemon = True
                # set running status to True
                self._http_server_d["running"] = True
                # start child process
                self._http_server.start()
            self._node_type = 1
            gloo = init_gloo_instance("trainer")
            self._node_type_comm = gloo
        else:
            assert self._role == Role.SERVER
            self._node_type = 0
            gloo = init_gloo_instance("pserver")
            self._node_type_comm = gloo

        all_list = self._worker_endpoints + self._server_endpoints
        self._rank = all_list.index(self._cur_endpoint)
        self._size = len(all_list)

        gloo = init_gloo_instance("all")
        self._all_comm = gloo

        if self._http_server is not None:
            # set running status to False
            self._http_server_d["running"] = False
            # wait until child process exits
            self._http_server.join()

    def generate_role(self):
        """
        generate role for role maker
        """
        if not self._role_is_generated:
            if not self._is_collective:
                self._ps_env()
597 598
                if "PADDLE_WITH_GLOO" in os.environ:
                    self._init_gloo = bool(os.environ["PADDLE_WITH_GLOO"])
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
                if self._init_gloo:
                    self._init_gloo_env()
            else:
                self._collective_env()
            self._role_is_generated = True

    def __get_default_iface(self):
        """
        get default physical interface
        """
        default1 = self.__get_default_iface_from_gateway()
        default2 = self.__get_default_iface_from_interfaces()
        return default2 if default1 == "lo" else default1

    def __get_default_iface_from_gateway(self):
        """
        get default physical interface
        """
        import netifaces
        gateways = netifaces.gateways()
        if gateways.get(netifaces.AF_INET) != None:
            gateway = gateways[netifaces.AF_INET]
            if len(gateway) > 0 and len(gateway[0]) > 1:
                return gateway[0][1]
        return "lo"

    def __get_default_iface_from_interfaces(self):
        """
        get default physical interface
        """
        import netifaces
        for intf_name in netifaces.interfaces():
            addresses = netifaces.ifaddresses(intf_name)
            if netifaces.AF_INET in addresses:
                ipv4_addresses = addresses[netifaces.AF_INET]
                for ipv4_address in ipv4_addresses:
                    if 'broadcast' in ipv4_address:
                        return intf_name
        return "lo"

    def __start_kv_server(self, http_server_d, size_d):
640
        from paddle.distributed.fleet.utils.http_server import KVServer
641 642 643 644 645 646 647 648 649 650 651 652 653
        http_server = KVServer(int(self._http_ip_port[1]), size_d)
        http_server.start()
        wait_seconds = 5
        while http_server_d.get("running",
                                False) and not http_server.shoud_stop():
            time.sleep(wait_seconds)
        http_server.stop()


class UserDefinedRoleMaker(PaddleCloudRoleMaker):
    def __init__(self, is_collective=False, init_gloo=False, **kwargs):
        super(UserDefinedRoleMaker, self).__init__(
            is_collective=is_collective, init_gloo=init_gloo, **kwargs)
654
        self._init_gloo = init_gloo
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672

    def _user_defined_ps_env(self):
        self._server_endpoints = self._kwargs.get("server_endpoints")
        self._worker_endpoints = self._kwargs.get("worker_endpoints", [])
        self._trainers_num = self._kwargs.get("worker_num", 0)

        if self._trainers_num == 0:
            assert (len(self._worker_endpoints) > 0)
            self._trainers_num = len(self._worker_endpoints)

        self._role = self._kwargs.get("role")
        self._current_id = self._kwargs.get("current_id")

        if self._role == Role.WORKER and len(
                self._worker_endpoints) > self._current_id:
            self._cur_endpoint = self._worker_endpoints[self._current_id]
        elif self._role == Role.SERVER:
            self._cur_endpoint = self._server_endpoints[self._current_id]
673 674
        self._node_num = len(
            set([x.split(':')[0] for x in self._worker_endpoints]))
675 676 677 678 679 680

    def _user_defined_collective_env(self):
        self._worker_endpoints = self._kwargs.get("worker_endpoints")
        self._current_id = self._kwargs.get("current_id")
        self._trainers_num = len(self._worker_endpoints)
        self._training_role = Role.Worker
681 682
        self._node_num = len(
            set([x.split(':')[0] for x in self._worker_endpoints]))
683 684 685 686 687 688 689 690 691 692 693 694 695

    def generate_role(self):
        """
        generate role for role maker
        """
        if not self._role_is_generated:
            if not self._is_collective:
                self._user_defined_ps_env()
                if self._init_gloo:
                    self._init_gloo_env()
            else:
                self._user_defined_collective_env()
            self._role_is_generated = True