test_multiply.py 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import unittest

18 19 20 21 22
import numpy as np

import paddle
import paddle.tensor as tensor
from paddle.static import Program, program_guard
23 24


25 26
class TestMultiplyApi(unittest.TestCase):
    def _run_static_graph_case(self, x_data, y_data):
27
        with program_guard(Program(), Program()):
28
            paddle.enable_static()
29 30 31 32
            x = paddle.static.data(
                name='x', shape=x_data.shape, dtype=x_data.dtype)
            y = paddle.static.data(
                name='y', shape=y_data.shape, dtype=y_data.dtype)
33
            res = tensor.multiply(x, y)
34

35 36 37 38
            place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda(
            ) else paddle.CPUPlace()
            exe = paddle.static.Executor(place)
            outs = exe.run(paddle.static.default_main_program(),
39 40 41 42 43 44
                           feed={'x': x_data,
                                 'y': y_data},
                           fetch_list=[res])
            res = outs[0]
            return res

45
    def _run_dynamic_graph_case(self, x_data, y_data):
46
        paddle.disable_static()
47 48
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
49
        res = paddle.multiply(x, y)
50 51
        return res.numpy()

52 53
    def test_multiply(self):
        np.random.seed(7)
54

55 56 57
        # test static computation graph: 1-d array
        x_data = np.random.rand(200)
        y_data = np.random.rand(200)
58
        res = self._run_static_graph_case(x_data, y_data)
59 60
        self.assertTrue(np.allclose(res, np.multiply(x_data, y_data)))

61 62 63
        # test static computation graph: 2-d array
        x_data = np.random.rand(2, 500)
        y_data = np.random.rand(2, 500)
64
        res = self._run_static_graph_case(x_data, y_data)
65 66
        self.assertTrue(np.allclose(res, np.multiply(x_data, y_data)))

67 68 69
        # test static computation graph: broadcast
        x_data = np.random.rand(2, 500)
        y_data = np.random.rand(500)
70
        res = self._run_static_graph_case(x_data, y_data)
71 72 73 74 75
        self.assertTrue(np.allclose(res, np.multiply(x_data, y_data)))

        # test dynamic computation graph: 1-d array
        x_data = np.random.rand(200)
        y_data = np.random.rand(200)
76
        res = self._run_dynamic_graph_case(x_data, y_data)
77 78
        self.assertTrue(np.allclose(res, np.multiply(x_data, y_data)))

79 80 81
        # test dynamic computation graph: 2-d array
        x_data = np.random.rand(20, 50)
        y_data = np.random.rand(20, 50)
82
        res = self._run_dynamic_graph_case(x_data, y_data)
83 84
        self.assertTrue(np.allclose(res, np.multiply(x_data, y_data)))

85 86 87
        # test dynamic computation graph: broadcast
        x_data = np.random.rand(2, 500)
        y_data = np.random.rand(500)
88
        res = self._run_dynamic_graph_case(x_data, y_data)
89 90 91 92 93 94
        self.assertTrue(np.allclose(res, np.multiply(x_data, y_data)))


class TestMultiplyError(unittest.TestCase):
    def test_errors(self):
        # test static computation graph: dtype can not be int8
95
        paddle.enable_static()
96
        with program_guard(Program(), Program()):
97 98
            x = paddle.static.data(name='x', shape=[100], dtype=np.int8)
            y = paddle.static.data(name='y', shape=[100], dtype=np.int8)
99 100 101 102
            self.assertRaises(TypeError, tensor.multiply, x, y)

        # test static computation graph: inputs must be broadcastable 
        with program_guard(Program(), Program()):
103 104
            x = paddle.static.data(name='x', shape=[20, 50], dtype=np.float64)
            y = paddle.static.data(name='y', shape=[20], dtype=np.float64)
105
            self.assertRaises(ValueError, tensor.multiply, x, y)
106 107 108

        np.random.seed(7)
        # test dynamic computation graph: dtype can not be int8
109
        paddle.disable_static()
110 111
        x_data = np.random.randn(200).astype(np.int8)
        y_data = np.random.randn(200).astype(np.int8)
112 113
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
114
        self.assertRaises(RuntimeError, paddle.multiply, x, y)
115 116 117 118

        # test dynamic computation graph: inputs must be broadcastable
        x_data = np.random.rand(200, 5)
        y_data = np.random.rand(200)
119 120
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
121
        self.assertRaises(ValueError, paddle.multiply, x, y)
122

123 124 125 126 127
        # test dynamic computation graph: inputs must be broadcastable(python)
        x_data = np.random.rand(200, 5)
        y_data = np.random.rand(200)
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
128
        self.assertRaises(ValueError, paddle.multiply, x, y)
129 130 131 132 133 134 135 136

        # test dynamic computation graph: dtype must be same
        x_data = np.random.randn(200).astype(np.int64)
        y_data = np.random.randn(200).astype(np.float64)
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
        self.assertRaises(TypeError, paddle.multiply, x, y)

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
        # test dynamic computation graph: dtype must be Tensor type
        x_data = np.random.randn(200).astype(np.int64)
        y_data = np.random.randn(200).astype(np.float64)
        y = paddle.to_tensor(y_data)
        self.assertRaises(TypeError, paddle.multiply, x_data, y)

        # test dynamic computation graph: dtype must be Tensor type
        x_data = np.random.randn(200).astype(np.int64)
        y_data = np.random.randn(200).astype(np.float64)
        x = paddle.to_tensor(x_data)
        self.assertRaises(TypeError, paddle.multiply, x, y_data)

        # test dynamic computation graph: dtype must be Tensor type
        x_data = np.random.randn(200).astype(np.float32)
        y_data = np.random.randn(200).astype(np.float32)
        x = paddle.to_tensor(x_data)
        self.assertRaises(TypeError, paddle.multiply, x, y_data)

        # test dynamic computation graph: dtype must be Tensor type
        x_data = np.random.randn(200).astype(np.float32)
        y_data = np.random.randn(200).astype(np.float32)
        x = paddle.to_tensor(x_data)
        self.assertRaises(TypeError, paddle.multiply, x_data, y)

        # test dynamic computation graph: dtype must be Tensor type
        x_data = np.random.randn(200).astype(np.float32)
        y_data = np.random.randn(200).astype(np.float32)
        self.assertRaises(TypeError, paddle.multiply, x_data, y_data)

166 167 168

if __name__ == '__main__':
    unittest.main()