op_test.py 9.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
import unittest
import numpy as np
import itertools
import paddle.v2.framework.core as core
from paddle.v2.framework.op import Operator


def grad_var_name(var_name):
    return var_name + "@GRAD"


def remove_grad_var_name(var_name):
    return var_name[0:-5]


def create_op(scope, op_type, inputs, outputs, attrs=None):
    kwargs = dict()

    for ins in Operator.get_op_inputs(op_type):
        in_name = ins[0]
        in_dup = ins[1]
        if in_name in inputs:
            kwargs[in_name] = []
            if in_dup:
                sub_in = inputs[in_name]
                for sub_in_name in sub_in:
                    var = scope.new_var(sub_in_name)
                    tensor = var.get_tensor()
                    kwargs[in_name].append(sub_in_name)
            else:
                var = scope.new_var(in_name)
                tensor = var.get_tensor()
                kwargs[in_name].append(in_name)

    for outs in Operator.get_op_outputs(op_type):
        out_name = outs[0]
        out_dup = outs[1]
        if out_name in outputs:
            kwargs[out_name] = []
            if out_dup:
                sub_in = outputs[out_name]
                for sun_in_name in sub_in:
                    var = scope.new_var(sun_in_name)
                    tensor = var.get_tensor()
                    kwargs[out_name].append(sun_in_name)
            else:
                var = scope.new_var(out_name)
                tensor = var.get_tensor()
                kwargs[out_name].append(out_name)

    # for attr_name in Operator.get_op_attr_names(op_type):
    #	  kwargs[attr_name] = attrs[attr_name]
    return Operator(op_type, **kwargs)


def set_input(scope, op, inputs, place):
    for ins in Operator.get_op_inputs(op.type()):
        in_name = ins[0]
        in_dup = ins[1]
        if in_name in inputs:
            if in_dup:
                sub_in = inputs[in_name]
                for sub_in_name in sub_in:
                    var = scope.find_var(sub_in_name)
                    tensor = var.get_tensor()
                    arr = sub_in[sub_in_name]
                    tensor.set_dims(arr.shape)
                    tensor.set(arr, place)
            else:
                var = scope.find_var(in_name)
                tensor = var.get_tensor()
                arr = inputs[in_name]
                tensor.set_dims(arr.shape)
                tensor.set(arr, place)


def set_output_grad(scope, op, outputs, place):
    for outs in Operator.get_op_outputs(op.type()):
        out_name = outs[0]
        out_dup = outs[1]
        if out_name in outputs:
            if out_dup:
                sub_out = outputs[out_name]
                for sub_out_name in sub_out:
                    out_tensor = scope.find_var(sub_out_name).get_tensor()
                    grad_tensor = scope.new_var(grad_var_name(
                        sub_out_name)).get_tensor()
                    grad_tensor.set_dims(out_tensor.shape())
                    data = np.ones(out_tensor.shape(), dtype=np.float32)
                    grad_tensor.set(data, place)
            else:
                out_tensor = scope.find_var(out_name).get_tensor()
                grad_tensor = scope.new_var(grad_var_name(out_name)).get_tensor(
                )
                grad_tensor.set_dims(out_tensor.shape())
                data = np.ones(out_tensor.shape(), dtype=np.float32)
                grad_tensor.set(data, place)


def get_numeric_gradient(scope,
                         op,
                         inputs,
                         input_to_check,
                         output_name,
                         delta=0.005,
                         in_place=False):

    set_input(scope, op, inputs, core.CPUPlace())
    op.infer_shape(scope)

    tensor_to_check = scope.find_var(input_to_check).get_tensor()

    def product(dim):
        return reduce(lambda a, b: a * b, dim, 1)

    ctx = core.DeviceContext.create(core.CPUPlace())

    def get_output():
        op.run(scope, ctx)
        return np.array(scope.find_var(output_name).get_tensor()).sum()

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
    tensor_size = product(tensor_to_check.get_dims())
    gradient_flat = np.zeros(shape=(tensor_size, ), dtype='float32')
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
    for i in xrange(tensor_size):
        if in_place:
            set_input(op, inputs, core.CPUPlace())

        # get one input element throw it's index i.
        origin = tensor_to_check.get_float_element(i)
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
        tensor_to_check.set_float_element(i, x_pos)
        y_pos = get_output()

        if in_place:
            set_input(op, inputs, core.CPUPlace())

        x_neg = origin - delta
        tensor_to_check.set_float_element(i, x_neg)
        y_neg = get_output()

        tensor_to_check.set_float_element(i, origin)
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

    return gradient_flat.reshape(tensor_to_check.get_dims())


def get_backward_op(scope, op, no_grad_set):
    backward_op = core.Operator.backward(op, no_grad_set)
    for input in backward_op.inputs_names():
        var = scope.new_var(input)
        var.get_tensor()
    for output in backward_op.outputs_names():
        var = scope.new_var(output)
        var.get_tensor()
    return backward_op


def get_gradient(scope, op, inputs, outputs, grad_name, place,
                 no_grad_set=None):
    ctx = core.DeviceContext.create(place)

    set_input(scope, op, inputs, place)

    op.infer_shape(scope)
    op.run(scope, ctx)

    if no_grad_set is None:
        no_grad_set = set()

    backward_op = get_backward_op(scope, op, no_grad_set)
    set_output_grad(scope, op, outputs, place)

    backward_op.infer_shape(scope)
    backward_op.run(scope, ctx)

    out = np.array(scope.find_var(grad_name).get_tensor())
    return out


class OpTest(unittest.TestCase):
    def check_output(self, place):
        self.scope = core.Scope()
        self.op = create_op(self.scope, self.op_type, self.inputs, self.outputs)
        if isinstance(place, core.GPUPlace) and not self.op.support_gpu():
            return
        set_input(self.scope, self.op, self.inputs, place)
        self.op.infer_shape(self.scope)
        ctx = core.DeviceContext.create(place)
        self.op.run(self.scope, ctx)

        for outs in Operator.get_op_outputs(self.op.type()):
            out_name = outs[0]
            out_dup = outs[1]
            if out_dup:
                sub_out = self.outputs[out_name]
                for sub_out_name in sub_out:
                    actual = np.array(
                        self.scope.find_var(sub_out_name).get_tensor())
                    expect = sub_out[sub_out_name]
                    self.assertTrue(
                        np.allclose(
                            actual, expect, atol=1e-05),
                        "output name: " + out_name + "has diff")
            else:
                actual = np.array(self.scope.find_var(out_name).get_tensor())
                expect = self.outputs[out_name]
                self.assertTrue(
                    np.allclose(
                        actual, expect, atol=1e-05),
                    "output name: " + out_name + "has diff")

    def __assert_is_close(self, numeric_grads, analytic_grads, names,
                          max_relative_error, msg_prefix):

        for a, b, name in itertools.izip(numeric_grads, analytic_grads, names):
            abs_a = np.abs(a)
            abs_a[abs_a < 1e-3] = 1

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
                return "%s Variable %s max gradient diff %f over limit %f, the first " \
                  "error element is %d" % (
                   msg_prefix, name, max_diff, max_relative_error, offset)

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

    def check_grad(self,
                   inputs_to_check,
                   output_name,
                   no_grad_set=None,
                   in_place=False,
                   max_relative_error=0.005):
        self.scope = core.Scope()
        self.op = create_op(self.scope, self.op_type, self.inputs, self.outputs)
        if no_grad_set is None:
            no_grad_set = set()

        numeric_grads = [
            get_numeric_gradient(
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
                output_name,
                in_place=in_place) for input_to_check in inputs_to_check
        ]
        grad_names = [
            grad_var_name(input_to_check) for input_to_check in inputs_to_check
        ]

        places = [core.CPUPlace()]
        if core.is_compile_gpu() and op.support_gpu():
            places.append(core.GPUPlace(0))

        for place in places:
            analytic_grads = [
                get_gradient(self.scope, self.op, self.inputs, self.outputs,
                             grad_name, place, no_grad_set)
                for grad_name in grad_names
            ]

            self.__assert_is_close(numeric_grads, analytic_grads, grad_names,
                                   max_relative_error,
                                   "Gradient Check On %s" % str(place))