lookup_table_op.cu 7.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15 16 17 18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/lookup_table_op.h"
#include "paddle/fluid/platform/assert.h"
#include "paddle/fluid/platform/cuda_helper.h"
20 21 22 23

namespace paddle {
namespace operators {

24 25
template <typename T, int BlockDimX, int BlockDimY, int GridDimX,
          bool PaddingFlag>
26
__global__ void LookupTable(T* output, const T* table, const int64_t* ids,
27 28
                            const int64_t N, const int64_t K, const int64_t D,
                            const int64_t padding_idx) {
29
  int idx = threadIdx.x;
30
  int idy = blockIdx.x + threadIdx.y * GridDimX;
31 32

  while (idy < K) {
33
    int64_t id = ids[idy];
34 35
    PADDLE_ASSERT(id >= 0);
    PADDLE_ASSERT(id < N);
D
dangqingqing 已提交
36 37
    T* out = output + idy * D;
    const T* tab = table + id * D;
38
    for (int i = idx; i < D; i += BlockDimX) {
39
      if (PaddingFlag) {
40
        if (id == padding_idx)
41 42 43 44 45 46
          out[i] = static_cast<T>(0);
        else
          out[i] = tab[i];
      } else {
        out[i] = tab[i];
      }
47
    }
48
    idy += BlockDimY * GridDimX;
49 50 51
  }
}

52
template <typename T, int BlockDimX, int BlockDimY, int GridDimX>
53 54 55
__global__ void LookupTableGrad(T* table, const T* output, const int64_t* ids,
                                const int64_t N, const int64_t K,
                                const int64_t D) {
56
  int idx = threadIdx.x;
57
  int idy = blockIdx.x + threadIdx.y * GridDimX;
58 59 60 61 62

  while (idy < K) {
    int id = ids[idy];
    PADDLE_ASSERT(id >= 0);
    PADDLE_ASSERT(id < N);
D
dangqingqing 已提交
63 64
    const T* out = output + idy * D;
    T* tab = table + id * D;
65
    for (int i = idx; i < D; i += BlockDimX) {
D
dangqingqing 已提交
66
      paddle::platform::CudaAtomicAdd(&tab[i], out[i]);
67
    }
68
    idy += BlockDimY * GridDimX;
69 70 71 72
  }
}

template <typename T>
Y
Yu Yang 已提交
73
class LookupTableCUDAKernel : public framework::OpKernel<T> {
74 75
 public:
  void Compute(const framework::ExecutionContext& context) const override {
F
fengjiayi 已提交
76
    auto* table_t = context.Input<LoDTensor>("W");
77
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");
C
chengduoZH 已提交
78 79 80 81
    auto* ids_var = context.InputVar("Ids");  // int tensor

    int64_t* ids;
    int64_t K;
C
chengduoZH 已提交
82
    auto* output_t = context.Output<Tensor>("Out");  // float tensor;
C
chengduoZH 已提交
83

C
chengduoZH 已提交
84 85 86 87
    // lookup_table and concat_rows use the same kernel, for lookup_table,
    // ids_var_type should be LoDTensor, for concat_rows, ids_var_type and
    // out_var_type should be SelectedRows.
    if (ids_var->IsType<LoDTensor>()) {
C
chengduoZH 已提交
88 89 90
      auto* ids_t = context.Input<LoDTensor>("Ids");
      ids = const_cast<int64_t*>(ids_t->data<int64_t>());
      K = ids_t->numel();
C
chengduoZH 已提交
91 92
    } else if (ids_var->IsType<SelectedRows>()) {
      auto* ids_t = context.Input<SelectedRows>("Ids");
C
chengduoZH 已提交
93 94 95 96 97 98
      ids = const_cast<int64_t*>(ids_t->rows().CUDAData(context.GetPlace()));
      K = ids_t->rows().size();
      output_t->Resize({K, table_t->dims()[1]});
    } else {
      PADDLE_THROW("Unsupported Variable Type of Ids");
    }
99 100 101

    size_t N = table_t->dims()[0];
    size_t D = table_t->dims()[1];
F
fengjiayi 已提交
102 103
    auto* table = table_t->data<T>();
    auto* output = output_t->mutable_data<T>(context.GetPlace());
104 105 106

    dim3 threads(128, 8);
    dim3 grids(8, 1);
107 108 109 110 111 112 113 114 115 116 117

    if (padding_idx == -1)
      LookupTable<
          T, 128, 8, 8,
          false><<<grids, threads, 0, context.cuda_device_context().stream()>>>(
          output, table, ids, N, K, D, padding_idx);
    else
      LookupTable<
          T, 128, 8, 8,
          true><<<grids, threads, 0, context.cuda_device_context().stream()>>>(
          output, table, ids, N, K, D, padding_idx);
118 119 120 121
  }
};

template <typename T>
Y
Yu Yang 已提交
122
class LookupTableGradCUDAKernel : public framework::OpKernel<T> {
123 124
 public:
  void Compute(const framework::ExecutionContext& context) const override {
Q
QI JUN 已提交
125 126
    auto& dev_ctx =
        context.template device_context<platform::CUDADeviceContext>();
127
    bool is_sparse = context.Attr<bool>("is_sparse");
128 129
    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
130
    if (is_sparse) {
F
fengjiayi 已提交
131 132 133
      auto* ids = context.Input<LoDTensor>("Ids");
      auto* table = context.Input<LoDTensor>("W");
      auto* d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
134 135 136 137 138
      auto* d_table = context.Output<SelectedRows>(framework::GradVarName("W"));

      auto* ids_data = ids->data<int64_t>();
      auto ids_dim = ids->dims();

Q
QI JUN 已提交
139
      auto stream = dev_ctx.stream();
140 141 142
      // copy GPU memory to CPU pinned memory
      framework::Vector<int64_t> new_rows;
      new_rows.resize(ids_dim[0]);
D
dzhwinter 已提交
143
      auto gpu_place = boost::get<platform::CUDAPlace>(context.GetPlace());
144

Y
Yu Yang 已提交
145 146 147
      // TODO(yuyang18): Strange code here.
      memory::Copy(platform::CPUPlace(),
                   new_rows.CUDAMutableData(context.GetPlace()), gpu_place,
D
dzhwinter 已提交
148
                   ids_data, ids_dim[0] * sizeof(int64_t), stream);
149 150 151 152 153 154 155 156 157 158 159

      d_table->set_rows(new_rows);

      auto* d_table_value = d_table->mutable_value();
      d_table_value->Resize({ids_dim[0], table->dims()[1]});
      d_table_value->mutable_data<T>(context.GetPlace());

      auto* d_table_data = d_table_value->data<T>();
      auto* d_output_data = d_output->data<T>();
      PADDLE_ENFORCE_EQ(d_table_value->dims(), d_output->dims());
      memory::Copy(gpu_place, d_table_data, gpu_place, d_output_data,
160
                   d_output->numel() * sizeof(T), stream);
161 162

    } else {
F
fengjiayi 已提交
163 164 165
      auto ids_t = context.Input<LoDTensor>("Ids");
      auto d_output_t = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto d_table_t = context.Output<LoDTensor>(framework::GradVarName("W"));
166 167 168 169 170 171 172 173 174

      int N = d_table_t->dims()[0];
      int D = d_table_t->dims()[1];
      int K = ids_t->numel();
      const int64_t* ids = ids_t->data<int64_t>();
      const T* d_output = d_output_t->data<T>();
      T* d_table = d_table_t->mutable_data<T>(context.GetPlace());

      auto t = framework::EigenVector<T>::Flatten(*d_table_t);
Q
QI JUN 已提交
175
      t.device(*dev_ctx.eigen_device()) = t.constant(static_cast<T>(0));
176 177 178

      dim3 threads(128, 8);
      dim3 grids(8, 1);
Q
QI JUN 已提交
179
      LookupTableGrad<T, 128, 8, 8><<<grids, threads, 0, dev_ctx.stream()>>>(
T
typhoonzero 已提交
180
          d_table, d_output, ids, N, K, D);
181
    }
182 183 184 185 186 187 188
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Q
QI JUN 已提交
189 190 191 192 193
REGISTER_OP_CUDA_KERNEL(lookup_table, ops::LookupTableCUDAKernel<float>,
                        ops::LookupTableCUDAKernel<double>);
REGISTER_OP_CUDA_KERNEL(lookup_table_grad,
                        ops::LookupTableGradCUDAKernel<float>,
                        ops::LookupTableGradCUDAKernel<double>);
C
chengduoZH 已提交
194 195 196

REGISTER_OP_CUDA_KERNEL(concat_rows, ops::LookupTableCUDAKernel<float>,
                        ops::LookupTableCUDAKernel<double>);