Util.h 14.6 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#pragma once

#include <algorithm>
#include <cmath>
#include <string>
#include <vector>
#include <memory>
#include <thread>
#include <unordered_map>
#include <mutex>
#include <functional>

#include "CommandLineParser.h"
#include "Logging.h"
#include "TrainerConfig.pb.h"
#include "DisableCopy.h"

#include "TypeDefs.h"
#include "Flags.h"
#include "hl_gpu.h"

/**
 * Loop over the elements in a container
 * TODO(yuyang18): It's this foreach useful? Why not use C++ 11 foreach,
 *                 or make it a inline method?
 * Example:
 * FOR_EACH(it, array) {
 *  sum += *it;
 * }
 */
#define FOR_EACH(iterator_name, container)                              \
  for (auto iterator_name = (container).begin(), e = (container).end(); \
       iterator_name != e; ++iterator_name)

/**
 * Loop over the elements in a container in reverse order
 * TODO(yuyang18): It's this foreach useful? Why not use C++ 11 foreach,
 *                 or make it a inline method?
 * Example:
 * FOR_EACH_R(it, array) {
 *  sum += *it;
 * }
 */
#define FOR_EACH_R(iterator_name, container)                              \
  for (auto iterator_name = (container).rbegin(), e = (container).rend(); \
       iterator_name != e; ++iterator_name)


namespace paddle {

66 67 68 69 70 71 72 73 74 75 76 77
/**
 * return the 1-based index of the highest bit set
 *
 * for x > 0:
 * \f[
 *    findLastSet(x) = 1 + \floor*{\log_{2}x}
 * \f]
 */
inline constexpr size_t findLastSet(size_t x) {
  return x ? 8 * sizeof(unsigned long) - __builtin_clzl(x) : 0;  // NOLINT
}

Z
zhangjinchao01 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
/**
 * calculate the non-negative remainder of a/b
 * @param[in] a
 * @param[in] b, should be positive
 * @return the non-negative remainder of a / b
 */
inline int mod(int a, int b) {
  int r = a % b;
  return r >= 0 ? r : r + b;
}


/**
 * find the value given a key k from container c.
 * If the key can be found, the value is stored in *value
 * return true if the key can be found. false otherwise.
 */
template <class K, class V, class C>
bool mapGet(const K& k, const C& c, V* value) {
  auto it = c.find(k);
  if (it != c.end()) {
    *value = it->second;
    return true;
  } else {
    return false;
  }
}

template <class Container, class T>
static bool contains(const Container& container, const T& val) {
  return std::find(container.begin(), container.end(), val) != container.end();
}

#define ARRAYSIZE(a) (sizeof(a) / sizeof(*(a)))

/**
 * Initialize some creators or initFunctions for layers and data
 * providers.
 * Client codes should call this function before they refer any other
 * codes that use the layer class and data provider class.
 *
 * Codes inside 'core' directory can call initMain which calls
 * runInitFunctions directly, while codes outside core can simply
 * call runInitFunctions if they don't need the commandline flags
 * designed for PADDLE main procedure.
 */
void runInitFunctions();

/**
 * Initialize logging and parse commandline
 */
void initMain(int argc, char** argv);

// read the whole file into a string
std::string readFile(const std::string& fileName);

// copy file to path
void copyFileToPath(const std::string& file, const std::string& path);

// test file exist or not
bool fileExist(const char* filename);
// touch file if not exist
void touchFile(const char* filename);
// make dir if not exist
void mkDir(const char* filename);
void mkDirRecursively(const char* filename);

void rmDir(const char* folderName);

// load a file list file into a vector(fileList)
void loadFileList(const std::string& fileListFileName,
                  std::vector<std::string>& fileList);

/**
 * Register a function, the function will be called in initMain(). Functions
 * with higher priority will be called first. The execution order of functions
 * with same priority is not defined.
 */
void registerInitFunction(std::function<void()> func, int priority = 0);
class InitFunction {
public:
  explicit InitFunction(std::function<void()> func, int priority = 0) {
    registerInitFunction(func, priority);
  }
};

/**
 * Class SetDevice provides a mechanism for set device enviroment.
 * When a SetDevice object is created, it attempts to change device enviroment.
 * When the SetDevice object is destructed, it will restore device environment.
 */
class SetDevice {
public:
  explicit SetDevice(int deviceId) {
    isSet_ = deviceId >= 0;
    devId_ = 0;
    if (isSet_) {
      devId_ = hl_get_device();
      hl_set_device(deviceId);
    }
  }
  ~SetDevice() {
    if (isSet_) {
      hl_set_device(devId_);
    }
  }

protected:
  bool isSet_;
  int devId_;
};


/**
 * Enables direct access to memory allocations on a peer device(d2).
 * input:
 * *d1* is device can direct access device d2.
 * *d2* is peer device to enable direct access to by the d1 device.
 */
inline void enablePeerAccess(int d1, int d2) {
#ifndef PADDLE_ONLY_CPU
  if (hl_device_can_access_peer(d1, d2)) {
    SetDevice dev(d1);
    hl_device_enable_peer_access(d2);
  }
#else
  LOG(FATAL) << "Paddle should be compiled in GPU mode to use this method.";
#endif
}

/**
 * Change the gpu computation mode to asynchronized mode for the rest of the
 * compilation block. This is useful if the computation consists of multiple
 * small steps. Async mode can overlap the cuda-kernel launch overhead with the
 * actual computation.
 * Example:
 * {
 *    AsycnGpuBlock asyncBlock;
 *    do_some_gpu_computation
 * }
 */
class AsyncGpuBlock {
public:
  AsyncGpuBlock() : syncFlag_(hl_get_sync_flag()) { hl_set_sync_flag(false); }
  ~AsyncGpuBlock() {
    if (syncFlag_) {
      hl_stream_synchronize(HPPL_STREAM_DEFAULT);
      hl_set_sync_flag(syncFlag_);
    }
  }

private:
  bool syncFlag_;
};


inline bool useGpu(int deviceId) {
  return FLAGS_parallel_nn ? (deviceId >= 0 ? true : false) : FLAGS_use_gpu;
}

/*
 * hppl activation mode
 */
hl_activation_mode_t hlActiveType(const std::string& type);

/**
 * Return value: memory usage ratio (from 0-1)
 */
double getMemoryUsage();

/**
 * split array by index.
 * used by sync multi thread task,
 * each thread call calcSplitArrayInterval with thread id,
 * get a interval as return.
 * input:
 * *totalSize* is array size,
 * *tId* is thread id, *tSize* is total worker thread num
 * output:
 * start and end index as a std::pair
 */
inline std::pair<size_t, size_t> calcSplitArrayInterval(size_t totalSize,
                                                        size_t tId,
                                                        size_t tSize) {
  size_t start = totalSize * tId / tSize;
  size_t end = totalSize * (tId + 1) / tSize;
  return std::make_pair(start, end);
}

/**
 * same as above, but split at boundary of block.
 */
inline std::pair<size_t, size_t> calcSplitArrayInterval(size_t totalSize,
                                                        size_t tId,
                                                        size_t tSize,
                                                        size_t blockSize) {
  size_t numBlocks = totalSize / blockSize;
  if (numBlocks * blockSize < totalSize) {
    numBlocks++;
  }

  auto interval = calcSplitArrayInterval(numBlocks, tId, tSize);
  size_t start = std::min(interval.first * blockSize, totalSize);
  size_t end = std::min(interval.second * blockSize, totalSize);

  return std::make_pair(start, end);
}

// Calculate the number of pservers/dservers based
// on the host list and port_num.
size_t calculateServiceNum(const std::string& pservers, int ports_num);

/**
 * sort and unique ids vector.
 */
inline void uniqueIds(std::vector<uint32_t>& ids) {
  std::sort(ids.begin(), ids.end());
  auto endpos = std::unique(ids.begin(), ids.end());
  ids.erase(endpos, ids.end());
}

/**
 * Read Type value
 */
template <typename T>
T readT(char*& p, const char* pEnd) {
  int minus = pEnd - p - sizeof(T);
  CHECK_LE(0, minus) << "readT: Out of range.";
  T v = *reinterpret_cast<T*>(p);
  p += sizeof(T);
  return v;
}

void memcpyWithCheck(void* dest, const void* src, size_t num,
                     const void* srcEnd);

/**
 * A global sync thread pool, has #FLAGS_trainer_count of threads.
 * can be used in main thread.
 */
class SyncThreadPool;
SyncThreadPool* getGlobalSyncThreadPool();


namespace path {

// directory separator
const char sep = '/';

// Return the base name of pathname path.
std::string basename(const std::string& path);

// Return the directory name of path. If the path does not contains any
// directory, it returns an empty string.
std::string dirname(const std::string& path);

/*
  Join two path components intelligently.
  The return value is the concatenation of part1 and part2 with exactly one
  directory separator (path.sep) following each non-empty part except the last,
  meaning that the result will only end in a separator if the last part is
  empty.
  If a component is an absolute path, all previous components are thrown away
  and joining continues from the absolute path component.
*/
std::string join(const std::string& part1, const std::string& part2);

template <typename... Args>
std::string join(const std::string& part1, const std::string& part2,
                 Args... args) {
  return join(join(part1, part2), args...);
}

}  // namespace path

/**
 * A Checker for each invoke of method in same thread.
 */
class SameThreadChecker {
public:
  SameThreadChecker() {}

  /**
   * Disable copy
   */
  SameThreadChecker(const SameThreadChecker& other) = delete;
  SameThreadChecker& operator=(const SameThreadChecker& other) = delete;

  /**
   * Each invoke of check method should be in same thread, otherwise, it will
   * failed and core dump.
   */
  void check() {
    std::thread::id curThreadId = std::this_thread::get_id();
    std::call_once(onceFlag_, [&] { invokeThreadId_ = curThreadId; });
    CHECK_EQ(invokeThreadId_, curThreadId)
        << "This method should invoke in "
           "same thread, but first invoked in " << invokeThreadId_
        << " current invoked in " << curThreadId;
  }

private:
  std::once_flag onceFlag_;
  std::thread::id invokeThreadId_;
};

/**
 * Key-Value Cache Helper.
 *
 * It store a object instance global. User can invoke get method by key and a
 * object creator callback. If there is a instance stored in cache, then it will
 * return a shared_ptr of it, otherwise, it will invoke creator callback, create
 * a new instance store global, and return it.
 *
 * The cache instance will release when nobody hold a reference to it.
 *
 * The KType is the key type.
 * The VType is the value type.
 * The Hash is the key hasher object.
 */
template <typename KType, typename VType, typename Hash>
class WeakKVCache {
public:
  WeakKVCache() {}

  std::shared_ptr<VType> get(const KType& key,
                             const std::function<VType*()>& creator) {
    std::lock_guard<std::mutex> guard(this->lock_);
    auto it = this->storage_.find(key);
    if (it != this->storage_.end()) {
      auto& val = it->second;
      auto retVal = val.lock();
      if (retVal != nullptr) {
        return retVal;
      }  // else fall trough. Because it is WeakPtr Cache.
    }
    auto rawPtr = creator();
    CHECK(rawPtr != nullptr);
    std::shared_ptr<VType> retVal(rawPtr);
    this->storage_[key] = retVal;
    return retVal;
  }

private:
  std::mutex lock_;
  std::unordered_map<KType, std::weak_ptr<VType>, Hash> storage_;
};

/**
 * @brief The ScopedCallbacks class is a callback invoker when object is
 *        created and destroyed.
 */
template <typename CallbackType, typename ...Args>
class ScopedCallbacks {
public:
  ScopedCallbacks(CallbackType enter,
                  CallbackType exit,
                  Args& ... args)
    : exit_(std::bind(exit, args...)) {
    enter(args...);
  }

  ScopedCallbacks(const ScopedCallbacks& other) = delete;
  ScopedCallbacks& operator = (const ScopedCallbacks& other) = delete;

  ~ScopedCallbacks() {
    exit_();
  }

private:
  std::function<void()> exit_;
};


/**
 * std compatible allocator with memory alignment.
 * @tparam T type of allocator elements.
 * @tparam Alignment the alignment in bytes.
 */
template <typename T, size_t Alignment>
class AlignedAllocator {
public:
  /// std campatible typedefs.
  typedef T* pointer;
  typedef const T* const_pointer;
  typedef T& reference;
  typedef const T& const_reference;
  typedef T value_type;
  typedef size_t size_type;
  typedef ptrdiff_t difference_type;

  T* address(T& r) const { return &r; }

  const T* address(const T& r) const { return &r; }

  size_t max_size() const {
    return std::numeric_limits<size_t>::max() / sizeof(T);
  }

  template <typename U>
  struct rebind {
    typedef AlignedAllocator<U, Alignment> other;
  };

  bool operator==(const AlignedAllocator& other) const { return true; }

  bool operator!=(const AlignedAllocator& other) const {
    return !(*this == &other);
  }

  void construct(const T* p, const T& t) const {
    void* pv = const_cast<T*>(p);
    new (pv) T(t);
  }

  void deallocate(const T* p, const size_type n) const {
    (void)(n);  // UNUSED n
    free(const_cast<T*>(p));
  }

  void destroy(const T* p) const { p->~T(); }

  AlignedAllocator() {}
  ~AlignedAllocator() {}

  AlignedAllocator(const AlignedAllocator&) {}
  template <typename U>
  AlignedAllocator(const AlignedAllocator<U, Alignment>&) {}

  /**
   * @brief allocate n elements of type T, the first address is aligned by
   *        Alignment bytes.
   * @param n element count.
   * @return begin address of allocated buffer
   * @throw std::length_error for n * sizeof(T) is overflowed.
   * @throw std::bad_alloc
   */
  T* allocate(const size_type n) const {
    if (n == 0) {
      return nullptr;
    }
    if (n > max_size()) {
      throw std::length_error(
          "AlignAllocator<T>::allocate() - Int Overflow.");
    }
    void* r = nullptr;
    CHECK_EQ(posix_memalign(&r, Alignment * 8, sizeof(T) * n), 0);
    if (r == nullptr) {
      throw std::bad_alloc();
    } else {
      return static_cast<T*>(r);
    }
  }

  template <typename U>
  T* allocate(const std::size_t n, const U* /* const hint */) const {
    return this->allocate(n);
  }

private:
  AlignedAllocator& operator=(const AlignedAllocator&);  // disable
};


class Deprecated {
public:
  explicit Deprecated(const std::string& msg = "") {
    if (msg.empty()) {
      LOG(WARNING) << "This class is deprecated, please do not use this class.";
    } else {
      LOG(WARNING) << msg;
    }
  }
};

}  // namespace paddle